首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The fungicides miconazole, fenarimol, and etaconazole block ergosterol biosynthesis in fungi by inhibiting sterol 14α-demethylation, which is mediated by a cytochrome P-450 enzyme. The sensitivity of cytochrome P-450-dependent hydroxylation or demethylation of several substrates to these fungicides and similar compounds was compared to that of fungal growth and sterol 14α-demethylation. Demethylation of p-chloro-N-methylaniline (PCMA) by sporidia of Ustilago maydis and 11α-hydroxylation of progesterone by Aspergillus nidulans were relatively insensitive to these compounds and to metyrapone. The ability of a sterol 14α-demethylation-deficient mutant to demethylate PCMA indicates that this substrate is not demethylated by the sterol 14α-demethylation system of U. maydis. The 14α-hydroxylation of progesterone by cells of Curvularia lunata was quite sensitive to the three fungicides, and also to metyrapone and isopropylphenylimidazole. This system was less sensitive to the three fungicides than sterol 14α-demethylation, but was appreciably more sensitive than PCMA demethylation. A study of progesterone 14α-hydroxylation in cell-free preparations of C. lunata showed the reaction to be inhibited by CO, and to be competitively inhibited by low concentrations of miconazole. These data suggest that the primary action of sterol biosynthesis-inhibiting (SBI) fungicides is competitive inhibition of sterol/steroid-type cytochrome P-450 enzymes rather than interference with the function of sterol carrier proteins or enzyme-modulating phospholipids.  相似文献   

2.
The inhibitory activity of commercial and experimental triazole fungicides on the target enzyme, sterol 14α-demethylase (P45014DM), was studied in a cell-free sterol synthesis assay of Botrytis cinerea Pers. ex Fr. In order to assess structure-activity relationships, the inhibitory activities of the compounds on radial growth of the fungus were tested as well. The EC50 values (concentrations of fungicide inhibiting radial growth of B. cinerea on PDA by 50%) of all triazoles tested ranged between 10?8 and 10?5 m. IC50 values (concentrations of fungicide inhibiting incorporation of [2-14C]mevalonate into C4-desmethyl sterols by 50%) generally ranged between 10?9 and 10?7 M and correlated with inhibition of radial mycelial growth. However, differences in IC50 values did not reflect quantitatively the observed differences in EC50 values, since the ratio between EC50 and IC50 increased with decreasing fungitoxicity. For a limited number of compounds the correlation between intrinsic inhibitory activity and fungitoxicity was low. Both in-vitro tests were used to investigate structure-activity relationships for stereoisomers of cyproconazole, SSF-109 and tebucona-zole. Fungitoxicity and the potency to inhibit cell-free C4-desmethyl sterol synthesis correlated for all stereoisomers tested. Mixtures of isomers of tebucona-zole or cyproconazole were slightly less active than the most potent isomer. The high activity of several commercial triazoles in both experiments implies that poor field performance of triazole fungicides against B. cinerea is due neither to insensitivity of the P45014DM nor to low in-vitro sensitivity of the fungus.  相似文献   

3.
The relative importance of the depletion of ergosterol versus the accumulation of precursor or abnormal sterols in the mechanism of fungal growth inhibition by sterol biosynthesis inhibitor fungicides is incompletely understood. In order to investigate this problem further, the degree of inhibition of the growth of Nectria haematococca by fungicides with different enzymatic targets in the sterol biosynthetic pathway was determined and compared with their effects on the sterol profile. The sensitivity of N. haematococca was highest towards fenpropimorph, followed by tebuconazole, terbinafine, fenpropidin and tridemorph. Terbinafine, a squalene epoxidase inhibitor, induced a very large accumulation of squalene without very significant inhibition of ergosterol biosynthesis and growth. The fungus appeared able to tolerate large amounts of squalene. In the case of tebuconazole, a sterol 14α-demethylase inhibitor, it seemed that the accumulation of C4 mono- and dimethyl sterols was responsible for fungitoxicity. Fenpropimorph and fenpropidin seemed to be good inhibitors of both sterol Δ14-reductase and Δ8→Δ7-isomerase, whereas tridemorph was a better inhibitor of Δ8→Δ7-isomerase than of the Δ14-reductase. Large accumulations of Δ8,14- or Δ8-sterols and correspondingly large decreases in the ergosterol content are both implicated in the fungitoxicity of these compounds in N. haematococca. © 1998 Society of Chemical Industry  相似文献   

4.
A survey of fungicide resistance in Mycosphaerella graminicola and Tapesia acuformis, two major pathogens of winter wheat in France, respectively responsible for speckled leaf blotch and eyespot, led to the characterization of two types of resistant strains to sterol 14α-demethylation inhibitors (DMIs). Most of the strains of M. graminicola collected in France in 1997–1998 were resistant to all DMIs, and only in a few strains was the resistance to several triazoles associated with increased susceptibility to pyrimidine derivatives (i.e., fenarimol, nuarimol) and triflumizole. On the other hand, in T. acuformis the most prevalent strains were those which exhibited negative-cross resistance between DMIs. In both fungi such a phenomenon could be related to changes in cytochrome P450 sterol 14α-demethylase, the target site of these fungicides. For Botryotinia fuckeliana, the causal agent of grey mould, the extensive monitoring conducted in French vineyards before the marketing of fenhexamid revealed the presence of highly resistant strains to this promising botryticide (only in tests involving mycelial growth measurements). Negative cross-resistance to edifenphos and several sterol biosynthesis inhibitors, such as prochloraz and fenpropimorph, was observed in fenhexamid resistant strains. Synergism of the antifungal action of fenhexamid by cytochrome P450 inhibitors, such as the DMI fungicides, was only recorded in fenhexamid resistant strains. These data and those previously obtained with edifenphos resistant strains of Magnaporthe grisea (rice blast pathogen) suggest that in fenhexamid resistant strains of B. fuckeliana the same cytochrome P450 monooxygenase could be involved in detoxification of fenhexamid and activation of edifenphos. Received 6 September 1999/ Accepted in revised form 13 September 1999  相似文献   

5.
Triazole and imidazole compounds are important both as pharmaceutical and agrochemical fungicides. It has been demonstrated that they exhibit this activity because they inhibit the 14 α-demethylase enzyme involved in the biosynthesis of fungal sterols. A knowledge of the mode of action of the triazoles paclobutrazol, diclobutrazol and propiconazole has made it possible to devise inhibitors of the 14 α-demethylase enzyme somewhat more readily, using computer graphic techniques. These techniques were used in the discovery of flutriafol, one of the first examples of a triazole tertiary alcohol structure. They also assisted in identifying other triazole tertiary alcohol structures for testing as fungicides. Hexaconazole is one example of a highly active broad-spectrum fungicide. Modification of the hexaconazole structure has produced many other active fungicides, many of which can be conveniently synthesised by the addition of organometallic (e.g. lithium, magnesium, aluminium, titanium or zinc) reagents to α-1,2,4-triazol-1-yl ketones or α-haloketones. Alternatively, they can be prepared by the reaction of nucleophiles such as mercaptans, nitrogen heterocycles or organometallic (e.g. magnesium) reagents with epoxides.  相似文献   

6.
In spite of considerable efforts by many workers, there has been a lack of progress in the area of amine fungicides since fenpropimorph. Random synthesis of a large variety of different amine compounds, as well as intelligent structural modification of the lead structure fenpropimorph (well over 15 000 amines have been screened at BASF alone) have not led to a new market product so far. Further work has been focused on the reported mode of action of fenpropimorph, notably on the inhibition of the sterol Δ14-reductase. Although some doubt has to be cast on the hypothesis that fenpropimorph behaves as a sterol mimic, the concept of ‘high energy intermediate’ inhibitors has been employed successfully. Rational drug design of azasterol mimics has led to a number of very potent inhibitors of the sterol Δ14-reductase which also displayed high fungicidal activity in the greenhouse. Although many of these compounds are more powerful reductase inhibitors than fenpropimorph, under field conditions none showed significant advantages over this established fungicide. Most likely, fenpropimorph already exhibits the maximum fungicidal activity which can be attained by blocking the sterol Δ14-reductase. This would mean that, with the development of the ‘second generation’ amine fungicide fenpropimorph, this class of compounds has already virtually been optimized.  相似文献   

7.
Isolate 840905 of Cladosporium cucumerinum, when grown on agar or in liqiud medium, was sensitive to triadimenol, HWG 1608 (tebuconazole), fenpropimorph and pimaricin but relatively resistant to terbinafine. Conversely, isolate 49628 was sensitive to terbinafine but relatively resistant to the other fungicides. Changes in sterol composition following treatment with the fungicides reflected the known modes of action of each fungicide. When individual enantiomers of triadimenol were tested against isolate 840905 the order of activity in reducing mycelial growth was 1 S, 2R > 1R, 2R > 1R, 2S ≈? 1S, 2S, and this was paralleled by the depletion of ergosterol and the appearance of 14α-methyl sterols. Isolate 49628 had a greater saturated:unsaturated fatty acid ratio than did isolate 840905 but no major changes in fatty acid composition of either isolate were induced by fungicide treatment. There appears to be no obvious explanation for the differences in fungicide sensitivity of the isolates in terms of their lipid compositions.  相似文献   

8.
With three plant pathogens,Botrytis cinerea, Venturia inaequalis and Puccinia graminis f. sp.tritici, the time course of sterol biosynthesis during spore germination was examined by labeling experiments along with the question whether this pathway could be inhibited by triazole fungicides. Conidia ofB. cinerea andV. inaequalis are able to synthesize sterols immediately after the beginning of the germination process when the germ tubes have not yet emerged. On the contrary uredospores ofP. graminis start sterol biosynthesis after 6 to 8 h germination time almost at the end of the germ tube phase, indicating that sterol reserves of the spores are likely to be used for the germ tube growth.The sterol C-14 demethylation appeared to be the rate limiting step within the sterol biosynthetic pathway: the half life of 24-methylenedihydrolanosterol was less than 1 h forB. cinerea. It was more than 1 h forV. inaequalis and 3 h forP. graminis. Independent of these differences in the time course of sterol biosynthesis and in the C-14 demethylation rate, the synthesis of sterols in germinating spores was strongly inhibited by triazole fungicides in all three pathogens examined. In contrast toP. graminis, this inhibition could be demonstrated withB. cinerea andV. inaequalis even in ungerminated conidia, indicating that the fungicides were rapidly taken up and reached their target within 1 or 2 h. These results are discussed along with the question whether spore germination can be used as a bioassay for the estimation of sensitivities of triazole fungicides.  相似文献   

9.
Rapidly growing mycelia of Aspergillus fumigatus treated with 10 μg/ml triforine (N,N′-bis-(1-formamido-2,2,2-trichloroethyl)-piperazine) showed little or no inhibition in dry weight increase prior to 2 h. By 2.5–3 h, triforine inhibited dry weight increase by 85%. The effects of triforine on protein, DNA, and RNA syntheses corresponded to the effect on dry weight increase both in time of onset and magnitude. Neither glucose nor acetate oxidation were inhibited by triforine.Ergosterol synthesis was almost completely inhibited by triforine even in the first hour after treatment. Inhibition of ergosterol synthesis was accompanied by an accumulation of the ergosterol precursors 24-methylenedihydrolanosterol, obtusifoliol, and 14α-methyl-Δ8, 24 (28)-ergostadienol. Mycelia treated with 5 μg/ml of triarimol (α-(2,4-dichlorophenyl)-α-phenyl-5-pyrimidinemethanol) also accumulated the same sterols as well as a fourth sterol believed to be Δ5, 7-ergostadienol.Identification of 4,4-dimethyl-Δ8, 24 (28)-ergostadienol in untreated mycelia indicates that the C-14 methyl group is the first methyl group removed in the biosynthesis of ergosterol by A. fumigatus. The lack of detectable quantities of 4,4-dimethyl-Δ8, 24 (28)-ergostadienol in triforine or triarimol-treated mycelia and the accumulation of C-14 methylated sterols in treated mycelia suggests that both fungicides inhibit sterol C-14 demethylation. The accumulation of Δ5, 7-ergostadienol in triarimol-treated mycelia further implies that triarimol also inhibits the introduction of the sterol C-22(23) double bond.Two strains of Cladosporium cucumerinum tolerant to triforine and triarimol were also tolerant to the fungicide S-1358 (N-3-pyridyl-S-n-butyl-S′-p-t-butylbenzyl imidodithiocarbonate).  相似文献   

10.
An assay for measuring ergosterol synthesis in cell-free extracts of the filamentous plant pathogen Botrytis cinerea is described. The extracts capable of synthesizing C4-desmethyl sterols from [2- 14 C]mevalonate were derived by mechanical disruption of young conidial germlings in a Bead-Beater apparatus. The C4-desmethyl sterol fraction consisted of three distinct compounds and totalled 39% of the non-saponifiable lipids formed. Ergosterol accounted for 63% of the C4-desmethyl sterols. Only small amounts of C4-monomethyl sterols were synthesized, while C4, 4-dimethyl sterols made up 29% of the non-saponifiable lipids. The latter fraction mainly consisted of lanosterol (54%) and eburicol (28%). The cell-free system had a narrow pH optimum for synthesis of C4-desmethyl sterols of pH 7.3–7.4. Cell-free synthesis of C4-desmethyl sterols was inhibited by the imidazole fungicide imazalil, concomitant with an accumulation of eburicol. The IC50 value (concentration of fungicide which inhibited cell-free synthesis of C4-desmethyl sterols by 50%) was 9.1 × 10 ?9 M. These results are consistent with the hypothesis that imazalil is a potent inhibitor of the cytochrome P450-dependent sterol 14x-demethylase of B. cinerea. The method described may be used to screen compounds biochemically for inhibition of sterol synthesis in an agriculturally important plant pathogen.  相似文献   

11.
Fluotrimazole [BUE 0620; 1-(3-trifluoromethyltriphenyl) 1,2,4-triazole] (20 μg/ml of nutrient solution) and clotrimazole [Bay b 5097; bisphenyl(2-chlorophenyl)-1-imidazolyl methane] (5 μg/ml) did not inhibit dry weight increase and only slightly reduced multiplication of sporidia of Ustilago avenae during the first doubling period (about 4 hr). After 8 hr, both fluotrimazole and clotrimazole more strongly inhibited sporidia multiplication than dry weight increase. As a consequence of treatment with both fungicides the usually single-celled sporidia appear swollen, multicellular, and branched. Both chemicals at a concentration range of 5–100 μg/ml did not affect oxidation of glucose. The effect of fluotrimazole and clotrimazole on protein, DNA, and RNA synthesis was similar to that on dry weight. Following a 6-hr incubation period total lipid synthesis was quantitatively unaffected by both chemicals. As the analysis of major fatty acids of total lipids revealed fluotrimazole substantially induced the synthesis of 20:4 carbon fatty acids, while in clotrimazole-treated sporidia the pattern of fatty acids did not differ from that of control sporidia. Fluotrimazole and clotrimazole produced a higher quantity of free fatty acids in sporidia of U. avenae. Gas-liquid chromatographic analysis of sterol fractions in treated and control sporidia (6 hr) indicated that both fluotrimazole and clotrimazole seriously inhibited ergosterol biosynthesis and concomitantly caused an accumulation of immediate ergosterol precursors which represent C-4-methyl and 4,4-dimethyl sterols. Incorporation of [14C]acetate for 2 hr into various lipid fractions of sporidia of U. avenae also revealed that radioactivity in C-4-desmethyl sterols in both fluotrimazole- and clotrimazole-treated sporidia was drastically reduced, while the radioactivity of C-4-methyl and 4,4-dimethyl sterols distinctly increased. The data suggest that fluotrimazole and clotrimazole are specific inhibitors of the oxidative demethylation of the C-14-methyl group during ergosterol biosynthesis in U. avenae.  相似文献   

12.
In Botrytis cinerea, multidrug resistant (MDR) strains collected in French and German vineyards were tested in vitro, at the germ-tube elongation stage, towards a wide range of fungicides. Whatever the MDR phenotype, resistance was recorded to anilinopyrimidines, diethofencarb, iprodione, fludioxonil, tolnaftate and several respiratory inhibitors (e.g., penthiopyrad, pyraclostrobin). In MDR1 strains, overproducing the ABC transporter BcatrB, resistance extended to carbendazim and the uncouplers fluazinam and malonoben. In MDR2 strains, overproducing the MFS transporter BcmfsM2, resistance extended to cycloheximide, fenhexamid and sterol 14α-demethylation inhibitors (DMIs). MDR3 strains combined the overexpression of both transporters and exhibited the widest spectrum of cross resistance and the highest resistance levels. The four transport modulators, amitriptyline, chlorpromazine, diethylstilbestrol, and verapamil, known to affect some ABC transporters, were tested in B. cinerea. In our experimental conditions, the activity of several fungicides was only enhanced by verapamil. Interestingly, synergism was only recorded in MDR2 and/or MDR3 isolates treated with tolnaftate, fenhexamid, fludioxonil or pyrimethanil, suggesting that verapamil may inhibit the MFS transporter BcmfsM2. This is the first report indicating that a known modulator of ABC transporters could also block MFS transporters.  相似文献   

13.
Genetic control and mechanisms of resistance to tebuconazole, a sterol C14-demethylation inhibitor, were investigated in the phytopathogenic fungusNectria haematococca. Resistant mutants have been selected from the laboratory, following UV irradiation. They have been characterized through genetic crosses and mutations in at least three genes were found to be responsible for resistance. The genesTeb1, Teb2, andTeb3were clearly identified, a fourth gene calledTeb4could be hypothesized. Mutations at lociTeb2andTeb3induced pleiotropic effects such as reduced sporulation and growth rate, mycelium pigmentation (Teb2), or altered ascospore viability (Teb3). The resistance levels determined by mutations in the different genes were relatively low (below 10). When associated in double mutants, the additive effect was recorded. Cross-resistance toward other sterol C14-demethylation inhibitors was observed in all the resistant strains, except in theTeb4-carrying strain; moreover, for some C14-demethylation inhibitors hypersensitivity was expressed. A constitutive energy-dependent efflux seemed implicated in the mechanism of resistance for theTeb1-carrying strain and probably also for theTeb2andTeb3-carrying strains. However, theTeb4-carrying strain exhibited a kinetic of fungicide uptake similar to that of the wild-type strain. The sterol profile of theTeb4-carrying strain was similar to that of all the other resistant mutants and wild-type strains. Thus the resistance mechanism induced by mutation at theTeb4locus has not been found yet.  相似文献   

14.
The effect of the fungicide, diclobutrazol, on the germination, growth, chloroplast pigment and sterol content of winter wheat seedlings has been studied. At 250 μEm it retards their germination and growth, producing smaller, darker green and apparently healthy young plants. This is largely due to the 2S,3S–enantiomeric component. The increased greenness is not due to a direct effect on chloroplast pigments. It inhibits sterol 14—demethylation, causing an increase in the content of 4α,14α–dimethyl sterols, and also increases the proportion of campesterol, a 24—methyl sterol, relative to that of the 24—ethyl sterols, stigmasterol and sitosterol. Both the 2R,3R– and 2S,3S–enantiomers appear to be able to cause these changes in sterol content.  相似文献   

15.
Imazalil differentially inhibited dry weight increase of 10-hour-old germlings of wild-type and DMI-resistant isolates ofPenicillium italicum in liquid malt cultures. EC50 values ranged from 0.005 to 0.27 μg ml?1. In all isolates ergosterol constituted the major sterol (over 95% of total sterols) in the absence of the fungicide. Therefore, DMI-resistance cannot be associated to a deficiency of the C-14 demethylation enzyme in the ergosterol biosynthetic pathway. Imazalil treatment at concentrations around EC50 values for inhibition of mycelial growth resulted in a decrease in ergosterol content and a simultaneous increase in 24-methylene-24,25-dihydrolanosterol content in all isolates. A correlation existed between the imazalil concentration necessary to induce such changes in sterol composition and the EC50 values for inhibition of mycelial growth of the different isolates. The reason for the differential effects of imazalil on sterol composition in the variousP. italicum isolates may be due to decreased accumulation of the fungicide in the mycelium and to other yet non-identified mechanisms of resistance.  相似文献   

16.
Isolates of Erysiphe graminis f. sp. hordei and tritici with decreased sensitivity to triadimefon showed cross-resistance to other inhibitors of sterol C-14-demethylation, such as triadimenol, propiconazol, diclobutrazol, prochloraz and nuarimol. The isolates exhibited a moderate degree of resistance to these compounds. No cross-resistance was detected to tridemorph, fenpropimorph and pyrazophos. The resistant hordei isolates were more sensitive to ethirimol than the sensitive isolate. The competitive abilities of resistant hordei and tritici isolates were inferior to that of the sensitive isolates. In the presence of the fungicides no differences in germination, appressorium formation and penetration between the sensitive and resistant isolates were observed; 48 h after inoculation the sensitive isolate showed several morphological alterations and further fungal development was arrested. At four to five times higher doses of triadimefon, similar morphological alterations were detected in the resistant isolate. Low concentrations of triazole fungicides which slightly affected mycelium growth of both the sensitive and the resistant isolate of f.sp. hordei severely inhibited development of conidiophores of the sensitive isolate whereas that of the resistant isolate was hardly affected.  相似文献   

17.
Using a Random Amplified Polymorphic DNA (RAPD) assay, we investigated the genetic polymorphism existing among 62 European isolates of the grape powdery mildew fungus (Uncinula necator [Schw.] Burr.). Isolates overwintering as mycelium in buds were genetically distinct from isolates overwintering as ascospores, suggesting the existence of two genetically isolated powdery mildew populations, and consequently of two independent sources of inoculum in the vineyard. Isolates resistant to fungicides inhibiting sterol 14α-demethylation (DMIs) were found in both populations, suggesting that resistance to DMIs may arise independently in the two powdery mildew populations. A PCR assay targeting the gene encoding U. necator 14α-demethylase has been developed which will permit an early, specific detection of U. necator infections, and may be useful for spraying programmes. ©1997 SCI  相似文献   

18.
Triarimol and triforine inhibit ergosterol biosynthesis in fungi and cause accumulation of free fatty acids, 24-methylenedihydrolanosterol, obtusifoliol and 14α-methyl-δ8,24(28)-ergostadienol. Triparanol also inhibits ergosterol synthesis and causes accumulation of free fatty acids, but not of the latter 3 sterols. Triparanol appears to inhibit prior to lanosterol in the sterol biosynthetic pathway of Ustilago maydis and at unidentified sites subsequent to lanosterol which lead to the accumulation of a sterol which migrates with desmethylsterols on TLC plates. Quantitative abnormalities in sterols and free fatty acids in U. maydis are not produced by the fungicides carbendazim, chloroneb, carboxin and cycloheximide. A deficiency in nitrogen leads to a marked increase in triglycerides, but a normal distribution pattern for other lipids.Inhibition of oxidative demethylation of the sterol 14α-methyl group is probably the prime mechanism of inhibition of ergosterol biosynthesis by triarimol. Rates of formation of obtusifoliol and 14α-methyl-δ8,24(28)-ergostadienol in triarimol-treated U. maydis cells suggest that C-4 demethylation occurs along an abnormal pathway which operates effectively only at high substrate concentrations. The growth retardant action of triarimol and ancymidol in higher plants most likely results from inhibition of a reaction in the gibberellin biosynthetic pathway analogous to sterol C-14 demethylation.Free fatty acid accumulation in U. maydis cells treated with inhibitors of sterol synthesis are derived mainly from polar lipid degradation and from de novo synthesis as a consequence of the disproportionality between fatty acid synthesis and utilization. The free fatty acids may play a significant role in the lethality of these inhibitors in this organism.  相似文献   

19.
植物病原菌抗药性遗传研究   总被引:19,自引:0,他引:19  
 植物病原菌对杀菌剂的抗药性是由遗传基因控制的,抗药基因位于细胞质遗传因子或细胞核染色体基因上,细菌对许多药剂如铜制剂、链霉素等的抗药性和真菌对少数药剂如甲氧丙烯酸酯类药剂的抗性属于前一种情况,而真菌对大多数药剂的抗性则属于后一种情况。核基因控制的抗药性又可分为主效基因(major-gene)抗性和微效多基因(poly-gene)抗性,分别使病菌对药剂的抗性表现质量性状和数量性状。病原菌对苯并咪唑类药剂、春日霉素、羧基酰胺类药剂、苯酰胺类药剂、芳烃类药剂、二甲酰亚胺类药剂等的抗性通常为主效基因控制;使病菌表现微效多基因抗性的杀菌剂主要有多果定、羟基嘧啶类药剂、甾醇合成抑制剂(SBIs)等  相似文献   

20.
An ergosterol-deficient mutant of Ustilago maydis was compared to the wild type in regard to morphology, growth rate, lipid content, and sensitivity to ergosterol biosynthetic inhibitors. Morphology of mutant sporidia is abnormal and resembles that of fenarimol-treated wild-type sporidia. Doubling time of mutant sporidia is 6.3 hr compared to 2.5 hr for the wild type. The mutant produces 24-methylenedihydrolanosterol, obtusifoliol, and 14α-methylfecosterol; ergosterol is absent. The sterols of the mutant are the same as those which accumulate in wild-type sporidia treated with the sterol C-14 demethylation inhibitors fenarimol, etaconazole, and miconazole. The level of free fatty acids is higher in the mutant than in wild-type cells. Growth of mutant sporidia is not inhibited by fenarimol, etaconazole, and miconazole, or by the sterol Δ14-reductase inhibitor azasterol A25822B at low concentrations which inhibit growth of wild-type sporidia. The residual growth rate of wild-type sporidia treated with low concentrations of the sterol C-14 demethylation inhibitors is about the same as that of untreated mutant sporidia. Therefore, the mutant would not be recognized as resistant in a wild-type population. The mutant is deficient in sterol C-14 demethylation and is similar in all properties studied to wild-type sporidia treated with sterol C-14 demethylation inhibitors. These findings support the contention that inhibition of sterol C-14 demethylation in U. maydis is the primary mode of toxicity of fenarimol, etaconazole, and miconazole. A secondary mode of toxicity is evident for miconazole and etaconazole at higher concentrations but is doubtful for fenarimol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号