首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The nature of target site or knockdown resistance (kdr) to DDT and pyrethroids was studied by investigating specific binding of [14C] DDT and [14C] cis-permethrin to the previously established membrane receptors from the heads of susceptible (sbo) and resistant (kdr) strains of the house fly, Musca domestica L. In vivo studies showed the heads from sbo flies bound two to three times more DDT than those from kdr flies at all doses tested. Reduced binding was also observed in kdr flies in in vitro [14C] DDT binding assays. Scatchard analysis indicated that kdr flies have the same affinity but fewer receptors per milligram protein in the CNS than sbo flies. Assays with [14C] cis-permethrin also showed binding was much reduced in kdr flies in comparison with sbo flies. Based on these results, the nature of the target site insensitivity of kdr flies may relate to their having a reduced number of receptors for the insecticides.  相似文献   

2.
The ability of spinosyn A to either enhance or displace binding to selected insecticidally-relevant receptors was investigated using a number of radioligands including, [3H]imidacloprid and [3H]ivermectin in tissues from the ventral nerve cord (VNC) membranes of the American cockroach, Periplaneta americana and head membranes from the housefly, Musca domestica. In these insect neural tissues, spinosyn A does not appear to alter the binding of a number of radioligands suggesting that spinosyn A does not interact directly with a variety of known receptors, including nicotinic or γ-aminobutyric acid (GABA)-based insecticidal target sites. However, available data are consistent with spinosyn A interacting with a site distinct from currently known insecticidal target sites, thus supporting a novel insecticidal mechanism of action for the spinosyns.  相似文献   

3.
The metabolic fate of six 3H-ring-substituted ethoxychlor analogs with altered aliphatic moieties and [14C]p,p′-DDT was investigated in susceptible and DDT-resistant strains of the house fly Musca domestica Linnaeus. The chloroalkane analogs, dichloroethane, chloropropane, and dichloropropane were primarily metabolized to the corresponding dehydrochlorinated products. This pathway was relatively more prominent in the resistant strain than in the susceptible strain. Biotransformation and detoxication of the isobutane, nitropropane, and neopentane derivatives was through microsomal oxidation (O-deethylation) of aryl ethoxy degradophores, and oxidation of the aliphatic moieties to produce the corresponding benzophenones, with no substantial differences between the resistant and susceptible strain. There was a strong correlation between the Taft (σ1) values for the altered aliphatic moieties of chloroalkane analogs and their rate of dehydrochlorination in both the strains. These results suggest the importance of altered aliphatic moieties in developing resistance-proof DDT derivatives.  相似文献   

4.
Naturally derived insecticides such as pyrethrum and man-made insecticides such as DDT and the synthetic pyrethroids act on the voltage-gated sodium channel proteins found in insect nerve-cell membranes. The correct functioning of these channels is essential for the normal transmission of nerve impulses, and this process is disrupted by binding of the insecticides, leading to paralysis and eventual death. Some insect pest populations have evolved modifications of the sodium channel protein that inhibit the binding of the insecticide and result in the insect developing resistance. This perspective outlines the current understanding of the molecular processes underlying target-site resistance to these insecticides (termed kdr and super-kdr), and how this knowledge may in future contribute to the design of novel insecticidal compounds.  相似文献   

5.
Solutions of tetramethrin, RU 11679, or cismethrin caused uncoupled convulsions in 30–40 min in exposed thoracic ganglia from SNAIDM house flies at concentrations down to 10?10M: whereas these same compounds at 10?6M concentrations failed to produce poisoning symptoms when perfused onto the exposed ganglia of the kdr strain of house fly. The pyrethroid analogs examined had a negative temperature coefficient of action on the exposed thoracic ganglia from SNAIDM flies. DDT and GH-74 possessed positive temperature coefficients of action on the exposed thoracic ganglion of susceptible house flies. It is concluded that the central nervous system of the kdr strain of house fly is resistant to pyrethroid action; furthermore, the resistance appears to be widespread throughout the house fly nervous system, involving sensory, motor, and central neural elements.  相似文献   

6.
An acetylcholinesterase was found in a Japanese organophosphorus-resistant strain which was about 60-fold less sensitive to paraoxon than that of a susceptible strain, and more than 2-fold less sensitive than that of an American resistant strain. The enzymes in the resistant strains seem to be dependent on two alleles of the acetylcholinesterase gene on chromosome 2.  相似文献   

7.
Specific binding of [35S]t-butylbicyclophosphorothionate ([35S]TBPS) to a house fly thorax-plus-abdomen membrane preparation at 20°C is characterized by apparent Kd and Bmax values of 0.21 μM and 2.5 pmol/mg protein, respectively, an association half-time of 13 min at 2 nM, and a biphasic dissociation curve showing half-times of 15 and 35 min. Specific binding is reduced at 37°C apparently due to instability of the receptor-ligand complex and at 0°C as the result of very slow association. [35S]TBPS binding is diminished by detergents, stimulated by GABA at low ligand concentration, and inhibited by picrotoxinin and certain barbiturates, benzodiazepines, bicyclophosphorus compounds, and polychlorocycloalkane insecticides. The potency of TBPS and three related phosphorothionates in displacing [35S]TBPS parallels their toxicity on injection into house flies; the corresponding bicyclophosphates are less active in both assays. Cyclodienes of low toxicity are generally poor inhibitors of radioligand binding. α-Endosulfan and syn-12-hydroxyendrin are more potent than their β and anti isomers, respectively, both as inhibitors of TBPS binding and as toxicants. Analysis of Scatchard plots indicates that picrotoxinin and heptachlor epoxide are non-competitive inhibitors of [35S]TBPS binding. The [35S]TBPS binding site of the house fly membrane preparation differs from that extensively studied in mammalian brain with respect to their responses to many insecticides and GABAergic agents.  相似文献   

8.
A fenthion-resistant strain of the house fly (Musca domestica L.) was selected with bioresmethrin resulting in ca. 90-fold resistance to the selecting agent. This strain was subsequently selected with (1R)-trans-permethrin producing ca. 140-fold resistance to this latter insecticide. The permethrin-resistant (147-R) strain was highly cross-resistant to several other pyrethroids and demonstrated resistance to knockdown by these insecticides as well as by DDT. The sensitivity of the central nervous system to four pyrethroids was investigated. The 147-R strain was 2.6-fold less sensitive to (1R)-trans-ethanoresmethrin than the susceptible (NAIDM-S) strain, and >43-fold and >67-fold less sensitive to (1R,S)-cis, trans-tetramethrin and (1R)-trans-permethrin, respectively. It also displayed decreased penetration of (1R,S)-trans-[14C]permethrin when compared to the NAIDM-S strain. Lower nerve sensitivity and decreased cuticular penetration are potential mechanisms of resistance to pyrethroids in house flies in the United States.  相似文献   

9.
10.
The genetics and biochemistry of oxidative resistance to diazinon were investigated in a diazinon-resistant strain of the house fly, Musca domestica L. The resistant strain was crossed with a multimarker susceptible strain and substrains containing portions of the resistant strain genome were prepared. Resistance, microsomal oxidase, and cytochrome P-450 spectral characteristics were then compared in the different strains. The major gene for resistance to diazinon is semidominant and is located on chromosome II, 13 crossing over units from the recessive mutant stubby wing. Additional resistance genes occur on chromosome II and on other chromosomes as well. Resistance to diazinon was introduced into a susceptible mutant-marked strain via genetic crossing over. Increases in parathion oxidase, total and P-450-specific N- and O-demethylase activity, and resistant strain type I binding spectrum were introduced along with resistance, indicating genes controlling these parameters and resistance are either identical or closely linked. No increase in activity of cytochrome P-450 itself was introduced into the mutant strain. Additional genes controlling the amount of cytochrome P-450 and several spectral changes characteristic of the resistant strains are apparently controlled by genes located at different loci on chromosome II. Resistance factors on other chromosomes are also present, but were not characterized.  相似文献   

11.
When applied at concentrations of one nM or higher to a house fly larval neuromuscular preparation, deltamethrin (DM) and fenvalerate (FV) greatly increased miniature excitatory postsynaptic potential (mepsp) rate and blocked neuromuscular transmission. The DM-induced mepsp discharge was abolished by tetrodotoxin (TTX), removal of Ca2+ from the saline, or by application of hyperpolarizing stimuli to the nerve, indicating that it was due to depolarization of the presynaptic terminals. Also, in the presence of TTX, K+ depolarization increased mepsp rate at the same external K+ concentration before and after DM treatment, confirming that DM released transmitter by depolarizing the nerve terminals rather than by altering the voltage dependence of transmitter release. The potassium channel blocker tetraethylammonium (TEA) increased mepsp rate somewhat, while aconitine (20 μM), which keeps sodium channels open, increased mepsp rate consistently. Pretreatment of nerves with a subthreshold dose of TEA greatly increased the mepsp rate-increasing activity of DM and aconitine, while a subthreshold level of aconitine did not synergize DM. These observations suggest that DM, like aconitine, depolarized nerves by modifying the sodium channels. Knockdown resistant (kdr) larvae were resistant to the depolarizing action of DM and aconitine but not to that of TEA, indicating that the kdr gene produced a modified sodium channel which was less sensitive to the action of pyrethroids and aconitine. During sustained transmitter release by DM, evoked release gradually declined, resulting in a condition called early block in which spontaneous release was high and release could be evoked by electrotonic depolarization of the nerve terminals, but not by a nerve action potential. Early block was probably due to conduction block in the nerve terminals. Early block eventually gave way to late block, characterized by the decline of spontaneous release to subnormal levels and complete failure of evoked release. After late block, the calcium ionophore X-537A could not release transmitter, suggesting that late block was due to depletion of available transmitter. DM did not have a direct effect upon extrasynaptic muscle membrane. However, after late block, muscles were left insensitive to the putative transmitters glutamate and aspartate when these were bath or iontophoretically applied. A low rate of mepsps persisted after late block, indicating that the muscles were still sensitive to the natural transmitters.  相似文献   

12.
The effects of a wide range of pyrethroids and DDT analogs on the membrane potential and membrane sodium currents were studied in crayfish giant axons. Compounds differed greatly in their ability to produce depolarizing afterpotentials, repetitive firing, and membrane depolarization. The differences observed at the membrane potential level could be explained by differences in the kinetics with which the insecticides interact with the nerve membrane sodium channel. The compounds containing a cyano group at the α position retain sodium channels in a modified open state persistently, depolarize the membrane, and block the action potential without causing repetitive firing. The pyrethroids without an α-cyano group and DDT analogs retain sodium channels in a modified open state only transiently, cause large depolarizing afterpotentials, and evoke repetitive firing with minimal effect on the resting potential. The effects of the phenoxybenzyl pyrethroids were found to be intermediate between these two extremes suggesting that a continuous variation exists in kinetics with which pyrethroids and DDT analogs modify sodium channels. It was not necessary to assume a second site of action to account for the variability observed. The implications of these results to the construction of quantitative structure-activity relationships is discussed.  相似文献   

13.
Indoxacarb (DPX-MP062) is a recently introduced oxadiazine insecticide with activity against a wide range of pests, including house flies. It is metabolically decarbomethoxylated to DCJW. Selection of field collected house flies with indoxacarb produced a New York indoxacarb-resistant (NYINDR) strain with >118-fold resistance after three generations. Resistance in NYINDR could be partially overcome with the P450 inhibitor piperonyl butoxide (PBO), but the synergists diethyl maleate and S,S,S-tributyl phosphorothioate did not alter expression of the resistance, suggesting P450 monooxygenases, but not esterases or glutathione S-transferases are involved in the indoxacarb resistance. Conversely, the NYINDR strain showed only 3.2-fold resistance to DCJW, and this resistance could be suppressed with PBO. Only limited levels of cross-resistance were detected to pyrethroid, organophosphate, carbamate or chlorinated hydrocarbon insecticides in NYINDR. Indoxacarb resistance in the NYINDR strain was inherited primarily as a completely recessive trait. Analysis of the phenotypes vs. mortality data revealed that the major factor for indoxacarb resistance is located on autosome 4 with a minor factor on autosome 3. It appears these genes have not previously been associated with insecticide resistance.  相似文献   

14.
Calcium regulation is an important event in synaptic transmission and neuronal function, which is governed by a very intricate signal transduction system which is not completely understood. Using a variety of pharmacological assays, we have characterized the action of deltamethrin on the ciliary voltage-sensitive calcium channel and on phospholipase C activity of Paramecium tetraurelia Sonneborn, an organism that does not possess a voltage-sensitive sodium channel. In fura-2 fluorometric assays, which examined whole cells and ciliary membrane vesicles enriched with calcium channels, deltamethrin stimulated Ca2+ uptake. We also determined that the phospholipase C activity of the ciliary membrane vesicles is regulated by the βγ-subunit from heterotrimeric G-proteins. Subsequent treatment with deltamethrin resulted in a substantial and highly significant increase in phospholipase C activity. These results provide evidence that the molecular mode of action of pyrethroids on the voltage-sensitive calcium channel is distinct from the action of this insecticide on the voltage-sensitive sodium channel and may be dependent, in part, upon an interaction with the βγ-subunit of heterotrimeric G-protein.  相似文献   

15.
The field strain of Anopheles stephensi, the main malaria vector in south of Iran, was colonized in laboratory and selected with DDT and dieldrin in two separate lines for 3 generations to a level of 19.5- and 14-fold for DDT and dieldrin resistance, respectively. Synergist tests with chlorofenethol (DMC) and piperonyl butoxide (PBO) on the selected strains indicated that dehydrochlorination and oxidative detoxification might be the underlying mechanisms involved in the resistance to dieldrin and DDT in selected strains. DDT selection decreased susceptibility to DDT and pyrethroids including lambdacyhalothrin, permethrin deltamethrin and cyfluthrin. The result also showed that selection with dieldrin caused negative and positive cross-resistance to pyrethroid and fipronil, respectively. Based on these results, it can be concluded that besides metabolic resistance mechanisms, other factors such as mutation in γ aminobutyric acid (GABA) and voltage-gated sodium channels (Kdr) might be involved.  相似文献   

16.
The head of the house fly, Musca domestica L., was found to contain saturable components of specific binding of 4-n-propyl[2,3-3H]-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide ([3H]Pr-BP). A ratio of specific to total binding of radioreceptor assays was quite favorable, being 0.89 under the standard conditions. The apparent dissociation constant and maximal binding capacity were estimated to be about 4 nM and about 30 fmol/mg of protein, respectively, although association, dissociation, and saturation analyses suggested the presence of two or more populations of binding sites. Specific [3H]Pr-BP binding showed a marked negative temperature coefficient and was little affected by pH in incubation media. Anions which pass through chloride channels attenuated specific [3H]Pr-BP binding whereas impermeable anions enhanced it. Specific binding was selectively inhibited by insecticidal bicyclic phosphorus esters. Various neuroactive chemicals such as GABA agonists, GABA antagonists, cyclodiene insecticides, and benzodiazepines had little effect on specific binding. There was a correlation between GABA content and the density of specific Pr-BP binding sites in each part of the house fly body. In many respects, however, characteristics of the current binding site were different from those of GABA receptor-coupled sites already characterized with [3H]Pr-BP and the [35S]t-butyl thiono analog in the rat brain. Bicyclic phosphorus esters may act on site(s) apart from the GABA neurotransmission system in the house fly.  相似文献   

17.
18.
The mechanisms responsible for > 6000-fold permethrin resistance in a pyrethroid-selected strain of house fly, Learn-PyR, were investigated. Through electrophysiological, in vitro metabolism, in vivo penetration and synergism studies it was demonstrated that the resistance mechanisms consisted of enhanced metabolic detoxification via the mixed-function oxidase (MFO) system, target-site insensitivity and decreased cuticular penetration. The major resistance mechanism was the MFO-mediated detoxification. The elevated MFO activity was correlated with higher levels of cytochrome P-450, cytochrome b5 and NADPH-cytochrome c reductase activity. The kinetics of the latter showed similar Km but greater Vmax values in the Learn-PyR than in the susceptible strain, suggesting that the elevated activity was due to an altered amount, but not an altered form, of the enzyme. The Learn-PyR strain showed widely varying levels of resistance to the pyrethroids tested. Comparison of the pyrethroid structures with the resistance ratios revealed that resistance was highest in the presence of an unsubstituted phenoxybenzyl alcohol moiety. Substitution or certain modifications of the alcohol moiety reduced the level of resistance. Structure of the acid moiety or the presence or absence of an a-CN group did not affect the resistance level. These results are discussed with reference to the resistance mechanisms present.  相似文献   

19.
Kinetic parameters were measured for glutathione S-transferase, an enzyme important in metabolic resistance to insecticides, in one susceptible and two insecticide-resistant strains of the house fly (Musca domestica L.), and in untreated and chemically induced flies. Both resistant strains differed from the susceptible strain in apparent Km values for the enzyme, while only one differed in apparent Vmax. Two of the strains were inducible with phenobarbital; the third with 3-methylcholanthrene. Kinetic analysis indicated enzyme induction was associated with changes in Km rather than Vmax, and genetic experiments showed that most variation relating to Km and Vmax was controlled by chromosome II. Based on these results, both metabolic resistance and induction of enzyme activity were associated primarily with the production of different forms of glutathione S-transferase rather than more of the enzyme present in susceptible flies.  相似文献   

20.
Membranes from house fly heads were tested for the presence of mucarinic acetylcholine receptors using as a probe [3H]quinuclidinyl benzilate ([3H]QNB). Based on the presence of saturable and reversible high-affinity binding of [3H]QNB, which is inhibited by muscarinic drugs, it is suggested that these sites may be muscarinic receptors. However, these putative muscarinic receptors differ in several characteristics from the ones in mammalian brain. They have lower affinities for muscarinic drugs and lower stereoselectivity, a relatively higher affinity for the nicotinic antagonist d-tubocurarine, a lower Hill coefficient for binding of muscarinic antagonists, and a lower concentration relative to α-bungarotoxin binding sites in the same membranes. Also, unlike mammalian muscarinic receptors, they are sensitive to treatments with N-ethylmaleimide and 5,5′-dithiobis(2-nitrobenzoic acid). The effect of reduction of disulfide bonds by dithiothreitol or mercaptoethanol suggests that only the insect receptor has one or more disulfide bonds which are important to binding. On the other hand, the putative muscarinic receptors of both insect and mammalian brains have important SH group(s), whose alkylation by p-chloromercuribenzoate inhibits binding. Also, chlorobenzilate is equally effective in inhibiting [3H]QNB binding to muscarinic putative receptors of house fly and bovine brains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号