首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
Spatio-temporal modeling of fine particulate matter   总被引:1,自引:0,他引:1  
Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this article, we propose a random effects model for PM2.5 concentrations. In particular, we anticipate urban/rural differences with regard to both mean levels and variability. Hence we introduce two random effects components, one for rural or background levels and the other as a supplement for urban areas. These are specified in the form of spatio-temporal processes. Weighting these processes through a population density surface results in nonstationarity in space. We analyze daily PM2.5 concentrations in three midwestern U.S. states for the year 2001. A fully Bayesian model is implemented, using MCMC techniques, which enables full inference with regard to process unknowns as well as predictions in time and space.  相似文献   

2.
Alberta has one of the largest oil reserves in the world, some of which is extracted by surface mining representing a large scale disturbance to forest soils. We examined ecosystem function in reclaimed soils by measuring microbial community structure with phospholipid fatty acid (PLFA) analysis and nutrient availability with plant root simulator (PRS?) probes. Samples were taken from three slope positions, at three sites, on three dates (June and August 2005, and August 2006), and non-metric multi-dimensional scaling ordination was used to examine trends in the data. Repeated measures ANOVA was used to examine trends over time in key response variables identified by ordination. Ordination results revealed distinct differences between the spring and summer microbial community structure across sites, although large site differences were also found between fall measurements in the two consecutive years. Total microbial biomass (TMB) and the fungal to bacterial ratio (FBR) emerged as key response variables for microbial community structure, and repeated measures ANOVA indicated significant site differences for these parameters. Soil nutrient availability was predominantly affected by site, but was also greatly affected by season and by year of sampling. The key response variables for nutrient availability were NH4+ and NO3?, which also varied significantly by site and season, with high NH4+ availability in the spring on vegetated/fertilized sites and high NO3? availability year round on the non-vegetated site. Slope position had an inconsistent effect on the measured parameters which may indicate that these reclaimed soils are not characterized by near surface lateral flow. Seasonal fluctuations in nitrogen and boron availability, reflected in microbial community PLFA profiles, point at possible mechanistic linkages between the functioning of microbial communities and soil mineral nutrient availability.  相似文献   

3.
"3414"肥料试验模型拟合的探讨   总被引:174,自引:2,他引:174  
以UNDP95-98年在河北唐山进行的27个3414冬小麦试验为例,研究了三元二次施肥模型与一元施肥模型对3414肥料试验结果的拟合情况。结果表明,三元二次施肥模型进行拟合试验成功率仅为56%,而采用一元施肥模型可以对全部试验进行数据处理。在同一试验中,与一元施肥模型相比,采用三元二次施肥模型计算的推荐施肥量偏高;根据一元施肥模型拟合计算分别有15%、44%、67%的点不需要施用N、P、K肥,而采用三元二次施肥模型则无法获得这一信息。因此,在3414试验中,一元施肥模型是三元二次施肥模型拟合的一种很好补充和优化手段。  相似文献   

4.
5.
Abstract

Field studies were made to determine the yield and quality of wheat at different landscape positions managed with uniform vs. variable rates of nitrogen (N). A moderately‐eroded wheat farm near Thana (Swat) was divided into four parallel transects which were further divided into two strips each. On one strip, fertilizer was applied at a uniform rate of 120 kg N ha‐1, and along the other strip, three different rates of N (80, 110, and 125 kg N ha‐1) were applied to match the crop productivity patterns. A basal dose of 90 kg P2O5 and 60 kg K2O ha‐1 was applied to the whole field. Soil profiles were described for the three different zones, i.e., low, medium, and high productivity zones. Soil in Zone I was Pirsabak, moderately deep variant, and in Zones II and III, Badwan soil series. Although uniformly fertilized strip (120 kg N ha‐1) received 40 and 10 kg N ha1 more than Zone I and Zone II (variable management strategy), there were no significant differences in yield. The differences in three fertilizer management zones were due to differences in moisture content at sowing, infiltration rate, lime content, steepness, and soil depth. Test weight of wheat grains was not significantly affected. Protein content of wheat was significantly higher in variably fertilized strips than in uniformly treated strips. Based on these results, it is suggested that farms with spatially‐variable soils should be fertilized according to the crop productivity and soil fertility patterns.  相似文献   

6.
Nitrogen fertilizers are supposed to be a major source of nitrous oxide (N2O) emissions from arable soils. The objective of this study was to compare the effect of N forms on N2O emissions from arable fields cropped with winter wheat (Triticum aestivum L.). In three field trials in North‐West Germany (two trials in 2011/2012, one trial in 2012/2013), direct N2O emissions during a one‐year measurement period, starting after application of either urea, ammonium sulfate (AS) or calcium ammonium nitrate (CAN), were compared at an application rate of 220 kg N ha?1. During the growth season (March to August) of winter wheat, N2O emission rates were significantly higher in all three field experiments and in all treatments receiving N fertilizer than from the non‐fertilized treatments (control). At two of the three sites, cumulative N2O emissions from N fertilizer decreased in the order of urea > AS > CAN, with emissions ranging from 522–617 g N ha?1 (0.24–0.28% of applied fertilizer) for urea, 368–554 g N ha?1 (0.17–0.25%) for AS, and 242–264 g N ha?1 (0.11–0.12%) for CAN during March to August. These results suggest that mineral nitrogen forms can differ in N2O emissions during the growth period of winter wheat. Strong variations in the seasonal dynamics of N2O emissions between sites were observed which could partly be related to weather events (e.g., precipitation). Between harvest and the following spring (post‐harvest period) no significant differences in N2O emissions between fertilized and non‐fertilized treatments were detected on two of three fields. Only on one site post‐harvest emissions from the AS treatment were significantly higher than all other fertilizer forms as well as compared to the control treatment. The cumulative one‐year emissions varied depending on fertilizer form across the three field sites from 0.05% to 0.51% with one exception at one field site (AS: 0.94%). The calculated overall fertilizer induced emission averaged for the three fields was 0.38% which was only about 1/3 of the IPCC default value of 1.0%.  相似文献   

7.
基于3个站点校准与验证的晋江流域径流模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
 应用分布式水文模型SWAT,对东南沿海晋江流域内3个水文站点的年、月径流和基流分别进行模拟。选取1972—1975年作为模型校准期,以效率系数、平均误差、相对误差和决定系数为评价指标,率定出6个模型敏感参数,并用1976—1979年的资料进行模型验证。结果表明:利用3个站点模拟的方法可以从流域尺度上更客观地率定模型参数,改善模型的模拟效果;模型在东南沿海流域的模拟效果较好,精度较高;模拟期内降水量的差异以及水库年径流调节均会对水量模拟结果造成影响。  相似文献   

8.
Compositions of soil solution obtained by the following methods were compared with those obtained by lysimetry: centrifugation; 2:1 extracts of air dried (2:1dried) and field moist (2:1moist) samples; saturation extracts; the ‘equilibrium soil pore solution’︁ method using columns with undisturbed (ESPS) and composited soil (ESPScomp); and a method using pressure. Two soil depths of a Spodic Dystric Cambisol at Solling, Germany, were sampled with 10 to 12 replications. A coupled equilibrium model was used to describe the effect of soil to solution ratio on the solution composition. The model included multiple cation exchange and inorganic complexation, and for the subsoil solubility products of AlOHSO4 and Al(OH)3. Saturation extracts gave similar results as lysimetry and thus may be useful for calculating output fluxes. However, biological transformations (N mineralisation, solubilisation of organic matter) occurred during the preparation of saturation extracts. Composition of soil solutions obtained by either 2:1dried extracts or centrifugation differed greatly from the results of other methods, indicating that these two methods may not be the best means to investigate equilibrium soil solutions. The values of molar ion ratios depended largely on the method used to obtain soil solutions: Ca2+/Al3+ ratios for each depth ranged from less than 0.3 (which suggests that liming is required urgently) to greater than 1 (liming not necessary). Modelling described the effect of soil to solution ratio on element concentrations for the methods pressure, saturation extracts, ESPScomp and 2:1moist extracts qualitatively with a few exceptions. The model suggested that differences in element concentrations using these methods may be mainly due to dilution, cation exchange and solubilisation of sparingly soluble salts, depending on the soil to solution ratio used.  相似文献   

9.
The most frequently used models simulating soil organic matter (SOM) dynamics are based on first-order kinetics. These models fail to describe and predict such interactions as priming effects (PEs), which are short-term changes in SOM decomposition induced by easily available C or N sources. We hypothesized that if decomposition rate depends not only on size of the SOM pool, but also on microbial biomass and its activity, then PE can be simulated. A simple model that included these interactions and that consisted of three C pools - SOM, microbial biomass, and easily available C - was developed. The model was parameterized and evaluated using results of 12C-CO2 and 14C-CO2 efflux after adding 14C-labeled glucose to a loamy Haplic Luvisol. Experimentally measured PE, i.e., changes in SOM decomposition induced by glucose, was compared with simulated PE. The best agreement between measured and simulated CO2 efflux was achieved by considering both the total amount of microbial biomass and its activity. Because it separately described microbial turnover and SOM decomposition, the model successfully simulated apparent and real PE.The proposed PE model was compared with three alternative approaches with similar complexity but lacking interactions between the pools and neglecting the activity of microbial biomass. The comparison showed that proposed new model best described typical PE dynamics in which the first peak of apparent PE lasted for 1 day and the subsequent real PE gradually increased during 60 days. This sequential decomposition scheme of the new model, with immediate microbial consumption only of soluble substrate, was superior to the parallel decomposition scheme with simultaneous microbial consumption of two substrates with different decomposability. Incorporating microbial activity function in the model improved the fit of simulation results with experimental data, by providing the flexibility necessary to properly describe PE dynamics. We conclude that microbial biomass should be considered in models of C and N dynamics in soil not only as a pool but also as an active driver of C and N turnover.  相似文献   

10.
籼稻不同基因型对钾、钠的反应   总被引:5,自引:2,他引:3  
本研究用微区试验研究了4种典型基因型在田间条件下对钾、钠反应的遗传差异。这4种基因型是经液培方法从近300种基因型中筛选得到的。结果表明,在低钾条件下,钾高效基因型的钾素利用效率、钾素经济利用效率、对胡麻斑病的抗性等都显著高于钾低效基因型;不同基因型对钠的反应差异明显;茎叶的钾钠含量互成显著的反相关。  相似文献   

11.
《Journal of plant nutrition》2013,36(7):1145-1161
Abstract

Production of new high-yielding canola hybrids has been extremely prolific and, as a consequence, very little work has been performed to assess the fertility requirements of these crops. A series of experiments (14 site-years) was carried out over three years (1999–2001), primarily to assess the nitrogen (N) fertility of canola hybrid cultivars and at the same time ascertain whether the associated phosphate and sulfur (S) fertility are influenced by N application. All experiments included 12 rates of N (0 to 220 kg N ha?1 in 20 kg ha? 1 increments) and three rates of either P2O5 or S (0, 20, and 40 kg ha? 1) with blanket application of other nutrients. Although differences in the performance of individual canola hybrid cultivars can be significant in some cases, the term “hybrid” in this study does not refer to the performance of one specific cultivar, but to the group of hybrids tested. Under an identical nutrient regime, on average, hybrid cultivars produced a 17% higher seed yield, but did not reach maximum potential; on average, this result, occurred under a higher N fertility regime at which hybrid cultivars produced 33% higher yields than did conventional cultivars. To maintain maximum yield, hybrids must be supplied with phosphate and S at levels that are similar to those used on conventional cultivars. Hence, it would appear that hybrids are more efficient scavengers of soil nutrients, a fact that may have serious ramifications for the fertility of the following crops.  相似文献   

12.
Understanding genetic relationships among the three most important Agrostis species will be important in breeding and genomic studies aimed at cultivar improvement. Creeping, colonial, and velvet bentgrasses (Agrostis stolonifera L., A. capillaris L., and A. canina L., respectively) are commercially important turfgrass species often used on golf courses. Velvet bentgrass is a diploid and creeping and colonial bentgrasses are both allotetraploids. A model for the genomic relationships among these species was previously developed from cytological evidence. The genome designations were A1A1 for velvet bentgrass, A1A1A2A2 for colonial bentgrass, and A2A2A3A3 for creeping bentgrass. Here we used phylogenetic analysis based on DNA sequences of nuclear ITS and protein coding genes and the plastid trnK intron and matK gene to reexamine these relationships. In contrast to the previous model, the DNA sequence analysis suggested that velvet bentgrass was closely related to creeping bentgrass and it is likely the maternal parent of creeping bentgrass. Phylogenetic analysis of some conserved nuclear genes revealed a close relationship of the velvet bentgrass sequences with the A2 subgenome sequences of creeping bentgrass. We therefore propose that velvet bentgrass be designated as having the A2 genome, rather than the A1 genome as in the previous model.  相似文献   

13.
《Geoderma》2005,124(3-4):335-348
In order to gain understanding of the movement of pollutant metals in soil, the chemical mechanisms involved in the transport of zinc were studied. The displacement of zinc through mixtures of sand and cation exchange resin was measured to validate the methods used for soil. With cation exchange capacities of 2.5 and 5.0 cmolc kg−1, 5.6 and 8.4 pore volumes of 10 mM CaCl2, respectively, were required to displace a pulse of ZnCl2 . A simple Burns-type model (Wineglass) using an adsorption coefficient (Kd) determined by fitting a straight line relationship to an adsorption isotherm gave a good fit to the data (Kd=0.73 and 1.29 ml g−1, respectively).Surface and subsurface samples of an acidic sandy loam (organic matter 4.7 and 1.0%, cation exchange capacity (CEC) 11.8 and 6.1 cmolc kg−1, respectively) were leached with 10 mM calcium chloride, nitrate and perchlorate. With chloride, the zinc pulse was displaced after 25 and 5 pore volumes, respectively. The Kd values were 6.1 and 2.0 ml g−1, but are based on linear relationships fitted to isotherms which are both curved and show hysteresis. Thus, a simple model has limited value although it does give a general indication of rate of displacement. Leaching with chloride and perchlorate gave similar displacement and Kd values, but slower movement occurred with nitrate in both soil samples (35 and 7 pore volumes, respectively) which reflected higher Kd values when the isotherms were measured using this anion (7.7 and 2.8 ml g−1, respectively). Although pH values were a little higher with nitrate in the leachates, the differences were insufficient to suggest that this increased the CEC enough to cause the delay. No increases in pH occurred with nitrate in the isotherm experiments. Geochem was used to calculate the proportions of Zn complexed with the three anions and with fulvic acid determined from measurements of dissolved organic matter. In all cases, more than 91% of the Zn was present as Zn2+ and there were only minor differences between the anions. Thus, there is an unexplained factor associated with the greater adsorption of Zn in the presence of nitrate.Because as little as five pore volumes of solution displaced Zn through the subsurface soil, contamination of ground waters may be a hazard where Zn is entering a light-textured soil, particularly where soil salinity is increased. Reductions in organic matter content due to cultivation will increase the hazard.  相似文献   

14.
Measured surface-atmosphere fluxes of energy (sensible heat, H, and latent heat, LE) and CO2 (FCO2) represent the “true” flux plus or minus potential random and systematic measurement errors. Here, we use data from seven sites in the AmeriFlux network, including five forested sites (two of which include “tall tower” instrumentation), one grassland site, and one agricultural site, to conduct a cross-site analysis of random flux error. Quantification of this uncertainty is a prerequisite to model-data synthesis (data assimilation) and for defining confidence intervals on annual sums of net ecosystem exchange or making statistically valid comparisons between measurements and model predictions.We differenced paired observations (separated by exactly 24 h, under similar environmental conditions) to infer the characteristics of the random error in measured fluxes. Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian), distribution, and increase as a linear function of the magnitude of the flux for all three scalar fluxes. Across sites, variation in the random error follows consistent and robust patterns in relation to environmental variables. For example, seasonal differences in the random error for H are small, in contrast to both LE and FCO2, for which the random errors are roughly three-fold larger at the peak of the growing season compared to the dormant season. Random errors also generally scale with Rn (H and LE) and PPFD (FCO2). For FCO2 (but not H or LE), the random error decreases with increasing wind speed. Data from two sites suggest that FCO2 random error may be slightly smaller when a closed-path, rather than open-path, gas analyzer is used.  相似文献   

15.
The transport parameters were determined for the 18O isotope (in the form of H2 18O), the Br? ion, and atrazine in intact columns of allophanic Andosol (Mexico State, Mexico). A one-dimensional model for the convective-dispersive transport of chemicals with account for the decomposition and equilibrium adsorption (HYDRUS-1D), which is widely applied for assessing the risk of the chemical and bacterial contamination of natural waters, was used. The model parameters were obtained by solving the inverse problem on the basis of laboratory experiments on the transport of the 18O isotope, the Br? ion, and atrazine in intact soil columns at a fixed filtration velocity. The hydrodynamic dispersion parameters determined for the 18O and Br? ions in one column were of the same order of magnitude, and those for atrazine were higher by 3?C4 times. The obtained parameters were used to calculate the transport of these substances in another column with different values of the water content and filtration velocity. The transport process was adequately described only for the 18O isotope. In the case of the Br? ion, the model significantly underestimated the transport velocity; for atrazine, its peak concentration in the column was overestimated. The column study of the transport of the three chemical compounds showed that transport parameters could not be reliably predicted from the results of a single experiment, even when several compounds were used in this experiment.  相似文献   

16.
《Soil Use and Management》2018,34(3):370-379
The unsaturated soil hydraulic conductivity accounting for film flow is important for understanding soil hydrological and biological processes, especially in arid and semi‐arid regions. Recently, a theoretically based hydraulic conductivity model was developed to describe the hydraulic conductivity as a function of water content. We have used this model to compare seven soil water retention functions commonly used for predicting soil hydraulic conductivity due to film flow. A total of 30 soils, varying in basic properties, were selected from the Unsaturated Soil Hydraulic Database to evaluate the seven functions. The Webb method was applied to identify the critical soil matric potential (h c) below which thin film flow controls water movement. Soil hydraulic conductivity measurements at matric potential below h c were then used for curve fitting according to the seven functions. Slight differences were observed among the functions in predicting soil hydraulic conductivity due to film flow. Six of the seven functions in combination with the hydraulic conductivity model described the hydraulic conductivity due to film flow well, according to the terms of the coefficient of efficiency. The relatively poor performance of the one exception was due to the fact that the linear shape of the function made it less flexible at low matric potentials. In addition, the effect of textural class on its performance was substantial, showing a poorer fit for the sand soil compared with the loam and clay soils. These findings have important applications related to soil and water resources conservation especially in arid and semi‐arid regions.  相似文献   

17.
CO2 is one of the most important gases linked to climate change. However, its ambient concentrations in a clean atmosphere have scarcely been investigated. In this paper a close relationship between CO2 concentrations and meteorological variables was proposed to establish atmospheric conditions linked to high CO2 values. A detailed 3-year campaign was carried out in a rural area with a CO2 continuous analyser and a RASS sodar for meteorological variables. Daily and yearly CO2 cycles were obtained. In addition, semi-hourly medians and quartiles were fitted to straight lines during the night time and daily maxima and minima were parameterised by means of a second order cylindrical model. Six meteorological variables were considered: wind speed, wind direction and temperature at one level and differences between them at two levels. Intervals were proposed from the highest CO2 concentrations during the night to build up a binary system of 64 meteorological classes. Analysis of both CO2 medians and meteorological classes enabled simplification of the system to four groups. The first group, characterised by high temperatures and drainage flow, was associated with detrended median concentrations above 15 ppm. Two groups of moderate concentrations were linked to thermal inversions and no prevailing wind directions. The final group corresponded to low concentrations associated with less than three meteorological variables with values linked to high concentrations. Only high directional shear and low wind speed were relevant in this group. This 4-group system was successfully used with the whole dataset.  相似文献   

18.
A simple three step method is described for isolation of soil fulvic acids in high yield. The complexing agent H2P2O72? (at pH 2) is used to release soil-bound fulvic acids. Extraction of humic acids is minimal. Selective separation of the protonated fulvic acids from the ionic extractant is achieved on a non-ionic polyacrylate resin (Amberlite XAD-7); after washing the resin, fulvic acids were retrieved in >98% yield by adjusting the pH to 6.5. Two problems associated with the classical alkali extraction method are avoided: possible alkaline oxidation of phenolic components, and their oxidation by Fe3+ under the acidic conditions employed to precipitate humic acids. The product typically has an ash weight of <0.6% after one XAD treatment. The method has been applied to three soils and one IHSS peat sample.  相似文献   

19.
Abstract

The “Four-plane model” is one of the surface complexation models developed for analyzing the electrostatic charge of synthetic oxides. This model which was applied to the B horizon of Andisols, was equilibrated with an electrolyte solution containing KCl, KNO3, K2SO4 in the concentration range of 0.0033, 0.01, 0.033, 0.1 M, and pH range of 2 to 11. The amounts of NO3 -, Cl-, SO4 2-, and K+ adsorbed were determined from the products remaining in the liquid phase. The increase in the pH value results in the increase of K+ adsorption, and decrease of anion adsorption. The increase in the equilibrium concentration increased both K+ and anion adsorption. The parameters of the model were determined by measurements and the iterative method. The model have a good agreement between calculated and measured values of cation and anion adsorption. Among the anion species, the amount of adsorbed anions was in the order of SO4 2-?Cl->NO3 -. The differences in the degree of adsorption were mainly associated with the differences in the equilibrium constants of surface complexation. The surface complexation of the anions produced a negative charge and increased cation adsorption. The degree of surface complexation was most significant in the K2SO4 solution, and the phenomenon was considered to be important not only for anion adsorption but also for cation adsorption on Andisols.  相似文献   

20.
Bacteria-mediated reduction processes play a decisive role in the water quality alterations in the subsurface environment of coastal aquifers. Availability of organic carbon as the electron donor with other electron acceptors such as NO3 ?, MnO2, Fe(OH)3 and SO4 2? induces different bacteria to activate under aerobic and anaerobic conditions. A two-dimensional reactive transport model has been developed to simulate the bacteria-mediated reduction reactions in a coastal aquifer. The model explains the utilisation of O2, NO3 ?, MnO2, Fe(OH)3 and SO4 2? as electron acceptors for the oxidation of organic carbon in the aquifer under aerobic and anaerobic conditions. The conceptual model consists of three different phases named as bio phase, mobile phase and matrix phase. Model parameters are adopted from literature on bacteria-mediated multi-component modelling and bioremediation processes. Monod kinetic equation is assumed to formulate the bacterial growth. The model explains the behaviours of aerobic and anaerobic bacteria under the availability of organic carbon. Two scenarios are tested and numerical results are discussed. The present numerical study highlights the possibility of the simulation of the formation of reduced environments in coastal aquifers which has not received much attention of groundwater modelling community yet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号