首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Poly dispersive aerosols of SrCl2, NaI, CsCl having a size distribution of 2.33 m (Activity Median Aerodynamic Diameter, [AMAD]) with a geometric standard deviation of 1.83 m are used for the determination of deposition velocity for 85Sr, 131I and 137Cs aerosols on tropical spinach (Spinicia olericia), radish (Raphanous sative) and beans (Phasolous valugeries) plant leaves. The experiments were carried out in a specially designed exposure chamber to simulate deposition under accidental releases of radioactivity in tropical environment. The rates of particles deposition are expressed as a function of plant surface area and of plant dry weight. The deposition velocities obtained are in the range of 10–6 to 10–7 m/s. These values differ significantly from those in temperate regions. The lower values for deposition velocities (v g) for the tropical environment is attributed due to high humidity. Therefore, the deposition of suspended aerosols on leaf surfaces caused by impaction and Brownian diffusion becomes slower in tropical environment and resulted into lower value of deposition velocities.  相似文献   

2.
To compare the effects of the system of rice intensification (SRI) on yield, water use efficiency, and microbial biomass in associated rice soils, a field experiment was conducted in 2004 at the Agriculture Experimental Farm of Zhejiang University in Zhejiang Province, China. The treatments evaluated were traditional flooding (TF) vs. SRI cultivation methods. Grain yield in the SRI treatment was 26.4% greater than that in the TF treatment, reducing water use by 461.5 mm. Compared to TF, SRI increased water use efficiency by 91.3% and irrigation water use efficiency by 194.9%. Soil microbial indicators during the rice‐growing season also diverged between TF and SRI. Microbial biomass C (MBC) was in the range of 101–196 mg kg?1 for TF vs. 113–224 mg kg?1 for SRI; microbial biomass N (MBN) was in the range of 14–33 mg kg?1 for TF vs. 28–53 mg kg?1 in SRI. Compared to TF, SRI significantly increased both MBC and MBN, regardless of sampling date.  相似文献   

3.
Abstract

Phytotoxicity, due to chromium [Cr (VI)] additions from low to very high levels in a swell–shrink clayey soil (Haplustert), in maize and spinach was studied in a pot culture experiment. Six levels of Cr (VI) (0, 5, 10, 25, 50, and 75 mg kg?1 soil) for maize and five levels for spinach (0, 2, 5, 10, and 25 mg kg?1 soil) were applied singly and in combination with two doses (0 and 20 t ha?1) of city compost. At levels of more than 75 mg Cr (VI) kg?1 soil for maize there was virtually no growth after germination, whereas 25 mg Cr (VI) kg?1 soil hindered the germination of spinach crop. Initial symptoms of Cr (VI) toxicity appeared as severe wilting of the tops of treated plants. Maize plants suffering from severe Cr (VI) toxicity had smaller roots and narrow brownish red leaves covered with small necrotic spots. In spinach, severe chlorosis was observed in leaves. Higher levels of Cr (VI) inhibited the growth and dry‐matter yield of the crops. However, application of city compost alleviated the toxic effect of Cr (VI). The concentration of Cr (VI) in plant parts increased when Cr (VI) was applied singly but decreased considerably when used in combination with city compost. There was evidence of an antagonistic effect of Cr (VI) on other heavy‐metal (Mn, Cu, Zn, and Fe) concentrations in plant tops. Thus, when Cr (VI) concentration increases, the concentration of other beneficial metals decreases. Chromium (VI) concentration in maize roots ranged from traces (control) to 30 mg kg?1and were directly related to soil Cr (VI) concentration. At 25 mg Cr (VI) kg?1 soil, yield of maize was reduced to 41% of control plants, whereas in spinach, 10 mg Cr (VI) kg?1 soil caused a 33% yield reduction. Experimental results revealed that the maize top (cereal) is less effective in accumulating Cr (VI) than spinach (leafy vegetables). Laboratory studies were also conducted to know Cr (VI) sorption capacity of a swell–shrink clayey soil with and without city compost, and it was found that Cr (VI) sorption reaction was endothermic and spontaneous in nature.  相似文献   

4.

Purpose

Lead (Pb) pollution is appearing as an alarming threat nowadays in both developed and developing countries. Excessive Pb concentrations in agricultural soils result in minimizing the microbiological activities which leads to the decrease in crop production. A pot experiment was conducted with the purpose to examine the deleterious effect of Pb on microbiological index under spinach cultivation.

Materials and methods

Pb was added to 5 kg soil in each pot (with 6 seeds/pot) using Pb(NO3)2 at the rate of 0, 150, 300, 450, and 600 mg kg?1 with three replications in completely randomized design. All soil microbial, enzymatic, and chemical properties and plant growth parameters and nutrient uptake were measured by standard methods.

Results and discussion

Both soil and plant measured parameters decreased after the addition of Pb (150, 300, 450, and 600 mg Pb kg?1 soil) treatments with the passage of time (from 15 to 60 days) compared with control (CK). However, high Pb levels had more suppressive effect, therefore, highest Pb level (600 mg Pb kg?1 soil) significantly (P?<?0.05) decreased the microbial biomass carbon (5.59-fold); microbial biomass nitrogen (N; 11.71-fold); microbial biomass phosphorus (P; 25.1-fold); dehydrogenase (4.02-fold); phosphatase (9.40-fold); urease (9.26-fold); pH (1.40-fold); spinach shoot (2.17-fold) and root (2.54-fold) length; shoot (2.36-fold) and root (2.69-fold) fresh weight; shoot (3.90-fold) and root (3.50-fold) dry weight; chlorophyll content (5.60-fold); carotenoid content (4.29-fold); plant macronutrients uptake, i.e., N (4.38- and 2.97-fold), P (3.88- and 6.58-fold), K (3.88- and 4.6-fold), Ca (6.60- and 6.70-fold), and Mg (5.57- and 4.45-fold); and plant micronutrient uptake, i.e., Zn (2.39- and 3.05-fold), Cu (3.70- and 2.62-fold), Fe (4.13- and 3.23-fold), and Mn (4.17- and 4.09-fold) in spinach shoot and root, respectively. Conversely, highest Pb level, i.e., 600 mg Pb kg?1 soil significantly (P?<?0.05) increased the biomass carbon (C)/nitrogen (N) (4.69-fold) and C/P (6.01-fold) ratios, soil extractable Pb (5.87-fold), and Pb uptake in spinach shoot (3.58-fold) and root (4.38-fold), respectively, at the end of the experiment, i.e., day 60.

Conclusions

Pb contamination significantly decreased the soil microbial and enzymatic activities, pH, spinach plant growth, and nutrients uptake in all the samples spiked with Pb. The degree of the influence increased with the increased Pb concentrations and incubation time, showing that Pb threshold is strongly associated with the extent of Pb concentration and time to accumulate. The soil microbial biomass, enzymatic activities, pH, and spinach physiological indices, could be used as a sensitive indicators to reflect environmental stress in soil ecosystems.  相似文献   

5.
Zinc deficiency in calcareous soils is a serious problem, which may be ameliorated by the application of some soil amendments. A completely randomized factorial experiment was done to investigate the effect of zeolite, vermicompost, zeolite + vermicompost, and Zn application to a calcareous soil on Zn availability, dry weight of spinach (Spinacia oleracea L.), and Zn concen-tration in spinach. Results indicated that zeolite had no effect on soil Zn availability, dry weight, and Zn concentration in spinach. Vermicompost significantly increased dry weight (1.33 g pot?1) and decreased Zn concentration in spinach (16 mg kg?1). Application of zeolite + vermicompost significantly increased dry weight (by 2.8 times) and Zn uptake in spinach and it also decreased Zn concentration in spinach less than vermicompost. Zinc application increased Zn concentration in spinach (up to 496 mg kg?1), but did not affect dry weight except in soils treated with zeolite + vermicompost. Generally, application of zeolite + vermicompost is recommended instead of separate zeolite or vermicompost application for improvement of soil Zn fertility and Zn uptake by spinach.  相似文献   

6.
Irrigation of arable land with contaminated sewage waters leads to the accumulation of trace metals in soils with subsequent phyto‐/zootoxic consequences. In this study, biochar derived from cotton sticks was used to amend an agricultural silt‐loam soil that had been previously irrigated with trace metal contaminated sewage waters. Metal accumulation and toxicity to spinach (Spinacia oleracea) and fenugreek (Trigonella corniculata) was investigated by measuring concentrations of Cd and Ni in plant tissues and various photosynthetic and biochemical activities of plants. Positive impacts of biochar on both spinach and fenugreek were observed in terms of biomass production that increased from 29% to 36% in case of spinach, while for fenugreek this increase was 32% to 36%. In the control treatment there was an increase in malondialdihyde, soluble sugar, and ascorbic acid contents, indicating heavy metal stress. Biochar applications increased soluble proteins and amino acids in plants and reduced the uptake of Cd from 5.42 mg kg?1 at control to 3.45 mg kg?1 at 5% biochar amended soil and Ni (13.8 mg kg?1 to 7.3 mg kg?1 at 5% biochar) by the spinach plants. In fenugreek, the Cd was reduced from 7.72 mg kg?1 to 3.88 mg kg?1 and reduction in Ni was from 15.45 mg kg?1 to 9.46 mg kg?1 at 5% biochar treated soil, reducing the possibility of transfer up the food chain. This study demonstrates that the use of biochar made from cotton‐sticks, as an amendment to arable soils that have received contaminated irrigation water, could improve plant growth and decrease Cd and Ni uptake to crops, alleviating some of the negative impacts of using sewage waters on arable land.  相似文献   

7.
Selection of a phytoextraction plant with high Cd accumulation potential based on compatibility with mechanized cultivation practice and local environmental conditions may provide more benefits than selection based mainly on high Cd tolerance plants. In this hydroponics study, the potential of Cd accumulation by three plant species; arum (Colocasia antiquorum), radish (Raphanus sativus L.) and water spinach (Ipomoea aquatica) were investigated. Arum (Colocasia antiquorum L.) plants were grown for 60 days in a nutrient solution with 0, 10 or 50 μM Cd, while radish and water spinach plants grew only 12 days in 0, 1.5, 2.5, 5 or 10 μM Cd. Growth of radish and water spinach plants decreased under all Cd treatments (1.5 to 10 μM), while arum growth decreased only at 50 μM Cd. At 10 μM Cd treatment, the growth of arum was similar to the control treatment indicating higher tolerance of arum for Cd than radish and water spinach. Cadmium concentrations in different plant parts of all plant species increased significantly with Cd application in the nutrient solution. Arum and water spinach retained greater proportions of Cd in their roots, while in radish, Cd concentration in leaves was higher than in other plant parts. Cadmium concentrations in arum increased from 158 to 1,060 in the dead leaves, 37 to 280 in the normal leaves, 108 to 715 in the stems, 42 to 290 in the bulbs and 1,195 to 3,840 mg kg?1 in the roots, when the Cd level in the solution was raised from 10 μM Cd to 50 μM Cd. Arum accumulated (dry weight?×?concentration) 25 mg plant?1 at 10 μM, while the corresponding values for radish and water spinach were 0.23 and 0.44 mg plant?1, respectively. With no growth retardation at Cd concentrations as high as 166 mg kg?1 measured in entire plant (including root) of arum at 10 μM Cd in the nutrient solution, arum could be a potential Cd accumulator plant species and could be used for phytoremediation.  相似文献   

8.
The interaction between copper, zinc, and chicken manure, whenadded to soil, was studied in a greenhouse setting. Coppersulfate and of zinc chloride at concentrations of 0.5 to 2.0mmol kg-1 were added separately to pots containing 3.0 kgof dystrophic dark red latosoil (LEd) plus 1,0% (m/m) pH 4.2chicken manure. IAPAR 57 beans were used as test plant andcultivated in the experimental soils for 30 days. Plant growthin terms of dry weight and the concentrations of copper and zincin the aerial part of the plants were determined. Bean plantingswere repeated four times, at four-month intervals. A 20%decrease in dry weight was observed when amounts of copper orzinc equal to or geater than 1.0 or 2.0 mmol kg-1, respectively, were applied to the soil over an average of fourplantings. For these concentrations, the average amount of metalfound in the plant was 13.4 mg kg-1 for copper and 224.8 mgkg-1 for zinc. Chlorosis of the leaves in the bean plantswas also observed. The copper and zinc concentrations in thetreated soil were determined using different extractants. Amongthe solutions evaluated for the extraction of available zinc,1.0 M ammonium acetate, pH 4.8, showed a better correlation withthe metal concentration in the plant. As for copper, the bestcorrelation was found with the Mehlich-1 extractant.  相似文献   

9.
The concentrations of various radionuclides have been measured in the incoming water, the outgoing water and the sludge from the sewage treatment plant serving the town of Lund in southern Sweden. The mean residence time for the water in the plant is 1 to 2 days, whereas for the sludge it is 3 to 4 weeks. Variations in the residence time, which may influence the efficiency of the plant, are related to the season of the year and the load on the plant. Measurements show that for 7Be, 51Cr, 134Cs, and 137Cs between 37 and 56% of the incoming activity leaves the plant with the sludge. For 106Ru and 131I these figures lie between 6 and 14%. The deposition of 7Be has been measured at Lund and the relation between the deposition on the ground (Bq m?2) and the activity concentration in the sludge (Bq kg?1 dry weight) has been studied and found to by relatively constant at ?(0.8 ±0.2) kg m?2. In measurements on sewage sludge, the detection limit for deposition of 7Be on the ground is around 16 Bq m?2.  相似文献   

10.
Soil erosion is a major threat to food security in rural areas of Africa. Field experiments were conducted from 2011 to 2014 in Majulai and Migambo villages with contrasting climatic conditions in Usambara Mountains, Tanzania. The aim was to investigate the effectiveness of mulching in reducing soil erosion and restoring soil fertility for productivity of maize (Zea mays) and beans (Phaseolus vulgaris) under miraba, a unique indigenous soil conservation measure in the area. Soil loss was significantly higher (p < 0·05) under miraba sole than under miraba with mulching, for example, 35 versus 20 and 13 versus 8 Mg ha−1 y−1 for Majulai and Migambo villages, respectively, in 2012. Soil fertility status was significantly higher (p < 0·05) under miraba with Tughutu mulching than under miraba sole, for example, 0·35 versus 0·25% total N, 37 versus 22 mg kg−1 P and 0·6 versus 0·2 cmol(+) kg−1 K for the Majulai village; and 0·46 versus 0·38 total N, 17·2 versus 10·2 mg kg−1 P and 0·50 versus 0·2 cmol(+) kg−1 K for the Migambo village. Maize and bean yields (Mg ha−1) were significantly higher (p < 0·05) under miraba with Tughutu mulching than under miraba sole, 2·0 versus 1·3 for maize and 0·9 versus 0·8 for beans in Majulai; and 3·8 versus 2·6 for maize and 1·0 versus 0·8 for beans in the Migambo village in 2012. This implies that Tughutu mulching is more effective in improving crop yield than Tithonia, although both could potentially protect the arable land from degradation caused by water erosion under miraba. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Interception and translocation factors for some of the important activation products like 54Mn, 59Fe and 60Co are of use in hazard evaluation of atmospheric contamination from accidental releases. Deposition on leafy vegetables which are consumed fresh is one of the important pathways of radionuclides reaching man. In the work reported here results of laboratory scale investigation on interception and translocation of 59Fe and 60Co by spinach plants are discussed. The interception factors obtained for 59Fe and 60Co are, respectively, 0.51 and 0.06 m3 kg?1. 60Co is found more mobile than 59Fe even through the latter translocates from surface quickly and to a greater extent.  相似文献   

12.
Carbonatite originating from the Lillebukt Alkaline Complex at Stjernøy in Northern Norway possesses favorable lime and potassium (K) fertilizer characteristics. However, enrichments of barium (Ba) and strontium (Sr) in carbonatite may cause an undesired uptake by plants when applied to agroecosystems. A field survey was carried out to compare concentrations of Ba, Sr, and macronutrients in indigenous plants growing in mineral soil developed on a bedrock of apatite–biotite–carbonatite (high in Ba and Sr) and of apatite–hornblende–pyroxenite (low in Ba and Sr) at Stjernøy. Samples of soil and vegetation were collected from three sites, two on carbonatite bedrock and one on pyroxenite bedrock. Ammonium lactate (AL)‐extracted soil samples and nitric acid microwave‐digested samples of soil, grasses, dwarf shrubs, and herbs were analyzed for element concentration using ICP‐MS and ICP‐OES. Concentrations of magnesium (Mg) and calcium (Ca) in both soil (AL) and plants were equal to or higher compared to values commonly reported. A high transfer of phosphorus (P) from soil to plants indicates that the apatite‐P is available to plants, particularly in pyroxenite soil. The non‐exchangeable K reservoir in the soil made a significant contribution to the elevated K transfer from soil to plant. Total concentrations of Ba and Sr in surface soil exhibited a high spatial variation ranging from 490 to 5,300 mg Ba kg?1 and from 320 to 1,300 mg Sr kg?1. The transfer of AL‐extractable elements from soil to plants increased in the order Ba < Sr < Ca < Mg < K, hence reflecting the chemical binding strength of these elements. Concentrations of Ba and Sr were low in grasses (≈ 20 mg kg?1), intermediate in dwarf shrubs and highest in herbs. Plant species and their affinity for Ca seemed more important in explaining the uptake of Ba and Sr than the soil concentration of these elements. The leguminous plant species Vicia cracca acted as an accumulator of both Ba (1.800 mg kg?1) and Sr (2.300 mg kg?1).  相似文献   

13.
Soil and plant samples (Lolio-Cynosuretum) were taken from four different locations in Hesse, Germany. Different doses of nitrogen, phosphorus, and potassium fertilizers were applied to verify metal input due to fertilization. Metal concentrations in plants increased due to mineral fertilization. Detected plant cadmium (Cd), copper (Cu), manganese (Mn), lead (Pb), and zinc (Zn) concentrations in non-fertilized plots were 0.04, 4.13, 106.5, 0.57, and 23.0 mg kg?1 and in long-term NPK-amended plots they were 0.31, 15.3, 524.9, 3.49, and 60.0 mg kg?1, respectively. Transfer factor (TF) was observed to decrease in the order of Cd>Cu>Zn>Mn>Pb. The results of regression analysis showed that organic carbon (Corg) content, effective-cation exchange capacity (CECeff), and bioavailable metal content are the most important predictors for plant metal uptake. This study confirmed that plant metal uptake was not only highly affected by the soil metal content but also influenced by soil properties.  相似文献   

14.
Abstract

Within Amaranthaceae, 33 different varieties, including local varieties from Japan, were grown in 2012 in a field in the town of Iino in the Fukushima prefecture, which is located approximately 51 km north of Tokyo Electric Power Company, Fukushima Daiichi Nuclear Power Plant (FDNPP). The contamination level of the soil was 2770 ± 140 Bq kg?1 dry weight (134Cesium (Cs) + 137Cs, average ± SE), and the field was also cultivated in 2011. There was a significant varietal difference in the dry weight production, radiocesium accumulation and transfer factor (TF) of radiocesium from the soil to the plant. The ratio of the lowest TF to the highest TF was approximately 3. Because the ratio of 137Cs to 133Cs was significantly positive, radiocesium seems to be absorbed in a manner similar to that of 133Cs. It is suggested that the varietal difference in the behavior of radiocesium uptake mainly depends on its genetic background rather than on environmental factors.  相似文献   

15.
Abstract

Zinc (Zn) deficiency is a widespread micronutrient disorder in crops grown in calcareous soils; therefore, we conducted a nutrient indexing of farmer‐grown rainfed wheat (Triticum aestivum, cv. Pak‐81) in 1.82 Mha Potohar plateau of Pakistan by sampling up to 30 cm tall whole shoots and associated soils. The crop was Zn deficient in more than 80% of the sampled fields, and a good agreement existed between plant Zn concentration and surface soil AB‐DTPA Zn content (r=0.52; p≤0.01). Contour maps of the sampled areas, prepared by geostatistical analysis techniques and computer graphics, delineated areas of Zn deficiency and, thus, would help focus future research and development. In two field experiments on rainfed wheat grown in alkaline Zn‐deficient Typic Haplustalfs (AB‐DTPA Zn, 0.49–0.52 mg kg?1), soil‐applied Zn increased grain yield up to 12% over control. Fertilizer requirement for near‐maximum wheat grain yield was 2.0 kg Zn ha?1, with a VCR of 4∶1. Zinc content in mature grain was a good indicator of soil Zn availability status, and plant tissue critical Zn concentration ranges appear to be 16–20 mg kg?1 in young whole shoots, 12–16 mg kg?1 in flag leaves, and 20–24 mg Zn kg?1 in mature grains.  相似文献   

16.
Laboratory batch and greenhouse pot experiments were conducted to determine the extraction efficiency of ethylenediaminetetraacetic acid (EDTA) for solubilizing lead (Pb) and cadmium (Cd) and to explore the natural and chemically induced Pb and Cd phytoextraction efficiencies of spinach and mustard after EDTA application. The EDTA was applied at 0, 1.25, 2.5, and 5.0 mM kg?1 soil in three replicates. Addition of EDTA increased significantly the soluble fraction Pb and Cd over the control and maximum increases for Pb (1.42- and 1.96-fold) and Cd (1.45- and 1.38-fold) were observed with the addition of 5.0 mM EDTA kg?1 in Gujranwala and Pacca soils, respectively. Similarly, addition of EDTA increased significantly the Pb and Cd concentrations in the plant shoots, soil solution, bioconcentration factor, and phytoextraction rate. Mustard exhibited better results than spinach when extracting Pb and Cd from both contaminated soils.  相似文献   

17.
ABSTRACT

Long-term irrigation with untreated industrial sewage effluents causes accumulation of high concentrations of chromium (Cr) and other heavy metals in soil and subsequently in crop plants (especially leafy vegetables), which can be phytotoxic to plants and/or a health hazard to animals and humans. Greenhouse experiments were conducted to determine the effects of Cr application on the growth of spinach (Spinacia oleracia L.) and to develop critical toxic ranges of Cr in plants and in soil. The study involved growing of spinach variety ‘Punjab Green’ in a greenhouse on silty clay loam and sandy soils equilibrated with different levels of applied Cr (0, 1.25, 2.5, 5, 10, 20, 40, 80, 160, and 320 mg Cr kg? 1 soil). Plants were harvested at: three growth stages 45, 60, and 90 days after sowing (DAS). Critical toxic ranges were estimated by regressing and plotting data on ammoniumbicarbonate-diethylenetriaminepenta-acetic acid (AB-DTPA) extractable Cr in soil or Cr concentration in plants versus dry-matter yield (DMY) of spinach at the three growth stages. Toxic ranges, i.e., slightly toxic (80%–90%), moderately toxic (70%–80%), and extremely toxic (< 70%) in terms of DMY relative to the attainable maximum DMY, were established for both soils and for plants at all three growth stages. There was no germination of spinach with applied Cr at 320 mg Cr kg? 1 rate in silty clay loam soil and at 40 mg Cr kg? 1 rate in sandy soil due to Cr toxicity. Roots accumulated more Cr in comparison with shoots. Chromium concentrations of 0.47–1.93 mg Cr kg? 1 soil in silty clay loam soil, 0.13–0.94 mg Cr kg? 1 soil in sandy soil, 1.08–5.40 mg Cr kg? 1 plant DM in silty clay loam soil and 0.54–11.7 mg Cr kg? 1 plant DM in sandy soil were found to be toxic. The critical toxicity ranges of Cr thus established in this study could help in demarcating Cr toxicity in soils and in plants such as spinach and other leafy vegetables due to irrigation of soils with untreated sewage water contaminated with chromium.  相似文献   

18.
Deficiency of micronutrients increasing in field crops, including upland rice in recent years. The objective of this study was to determine requirement of zinc (Zn), copper (Cu) boron (B) and iron (Fe) for upland rice grown on a Brazilian Oxisol. The levels used were: Zn (0, 10, 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20 and 40 mg kg?1), B (0, 5, 10, 20 and 40 mg kg?1) and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Plant height, straw yield, grain yield, panicle number and grain harvest index (GHI) were significantly improved with the addition of these micronutrients. Root growth was also improved with the application of micronutrients, except with the addition of B. Maximum grain yield was obtained with the addition of 51 mg Zn, 24 mg Cu, 5 mg B kg?1, and 283 mg Fe kg?1 soil. Similarly, maximum straw yield was obtained with the addition of 38 mg Zn, 17 mg Cu, 6 mg B kg?1, and 1500 mg Fe kg?1 soil. Maximum plant height was obtained with the addition of 54 mg Zn, 10 mg B kg?1, and 1197 mg Fe kg?1 soil. Copper did not affect plant height significantly. Maximum panicle number was obtained with the addition of 22 mg Cu kg?1, 3 mg B kg?1, and 1100 mg Fe kg?1 soil. Zinc did not affect panicle number significantly. Maximum GHI was obtained with the addition of 61 mg Zn kg?1, and 8 mg B kg?1. Zinc was had a linear increase in GHI in the range of 0 to 80 mg kg?1, and Fe showed a negative relationship with GHI.  相似文献   

19.
The objectives of this study are: (1) Evaluate the capacity of Indian mustard (Brassica juncea) for uptake and accumulation of Cs and Sr natural isotopes. (2) Identify foliar structural and other physiological changes (biomass, relative water content etc.) resulted from the accumulation of these two elements. (3) Monitor the Cs and Sr uptake and bioaccumulation process by spectral reflectance. Potted Indian mustard plants were exposed to different concentrations of Cs (50 and 600 ppm) and Sr (50 and 300 ppm) natural isotopes in solution form for 23 days. Bioaccumulation of Cs and Sr were found in the order of leaves > stems > roots for both Cs- and Sr-treated plants. The highest leaf and root Sr accumulations are observed to be 2,708, and 1,194 mg kg?1, respectively; and the highest leaf and root Cs accumulations are 12,251, and 6,794 mg kg?1, respectively. High translocation efficiency for both elements is documented by shoot/root concentration ratios greater than one. Biomass decreases were observed for plants treated with higher concentration of Cs or Sr. Cs accumulation affected the pigment concentration and internal structure of the leaf and the spectral characteristics of plants. Within the applied concentration range, Sr accumulation resulted in no significant changes in relative water content (RWC), leaf structural and spectral characteristics of mustard plants. Cs shoot concentration showed significant negative correlation with relative water content (RWC; r = ?0.88*) and normalized difference vegetative index (NDVI) value (r = ?0.68*) of plant shoots. The canopy spectral reflectance and NDVI analysis clearly revealed (p < 0.05) the stress caused by Cs accumulation.  相似文献   

20.
Ethnic vegetable crops are increasingly being grown in the United States and may accumulate heavy metals when grown on urban soils. This study evaluated accumulation of lead (Pb) and arsenic (As) in tissues of Malabar spinach (Basella alba L.) and sweet potato (Ipomoea batatas L.) grown on an urban and an orchard soil with Pb concentrations of 1,120 and 272 mg kg?1, respectively, and As concentrations of 6.92 and 90 mg kg?1, respectively. Tissue Pb was higher in both crops grown on both contaminated soils compared with an uncontaminated soil, while tissue As was higher on the orchard soil only. Malabar spinach did not accumulate Pb or As in its shoot, but concentrations of both metals were higher in sweet potato stems compared to leaves or tubers. Consumption of sweet potato stems should be avoided when sweet potato leaves are grown as a vegetable on soils with elevated levels of Pb and As.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号