首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The responses of nitrogen transformations and nitrate (NO_3 -) leaching to experimentally increased N deposition were studied in forested sub-catchments (1500 m2) with Gleysols in Central Switzerland. The aim was toinvestigate whether the increase in NO3 - leaching,due to elevated N deposition, was hydrologically driven orresulted from N saturation of the forest ecosystem.Three years of continuous N addition at a rate of 30 kgNH4NO3-N ha-1 yr-1 had no effects on bulksoil N, on microbial biomass N, on K2SO4-extractableN concentrations in the soil, and on net nitrification rates.In contrast, N losses from the ecosystem through denitrification and NO3 - leaching increased significantly. Nitrate leaching was 4 kg N ha-1yr-1at an ambient N deposition of 18 kg N ha-1 yr-1.Leaching of NO3 - at elevated N deposition was 8 kg Nha-1 yr-1. Highest NO3 - leaching occurredduring snowmelt. Ammonium was effectively retained within theuppermost centimetres of the soil as shown by the absence ofNH4 + in the soil solution collected with microsuction cups. Quantifying the N fluxes indicated that 80% ofthe added N were retained in the forest ecosystem.Discharge and NO3 - concentrations of the outflow from the sub-catchments responded to rainfall within 30 min. The water chemistry of the sub-catchment outflow showed thatduring storms, a large part of the runoff from this Gleysol derived from precipitation and from water which had interactedonly with the topsoil. This suggests a dominance of near-surface flow and/or preferential transport through this soil. The contact time of the water with the soil matrix wassufficient to retain NH4 +, but insufficient for a complete retention of NO3 -. At this site with soilsclose to water saturation, the increase in NO3 - leaching by 4 kg N ha-1 yr-1 through elevated N inputsappeared to be due to the bypassing of the soil and the rootsystem rather than to a soil-internal N surplus.  相似文献   

2.
A mixed provenance Sitka spruce plantation, planted in 1986 on a drained deep peat, has been exposed to 6 different simulated mist treatments in 4 replicated blocks since 1996. Treatments provided N and/or S at a concentration of 1.6 mol m?3, supplying ca. 50 kg S and/or N ha?1 yr?1 as N (NH4NO3), S (Na2SO4), NS Acid (NH4NO3 + H2SO4 at pH 2.5), 2NS Acid (double dose by application at twice frequency), a control treatment supplied with additional rainwater only and a 'no treatment' set of plots. Throughfall, preserved with thymol in the field, was collected using gutters with a surface area of 1 m2 in all the replicate plots, and was analysed for all major ions. Prior to treatment in 1999, S deposition in throughfall exceeded that in rain because of dry deposition of SO2 and SO4 2? to the canopy; NH4 + and NO3 ? ions were both retained in the canopy. During treatment, only 20–40% of the applied N in the high-N treatments was retained in the canopy. Acidity in the applied mist was partly neutralised by the canopy, but not primarily through exchange of base cations, leading to the conclusion that weak organic acids, in solution or in situ in the canopy, contributed to the buffering of the H+ ion deposition in the acid treatments.  相似文献   

3.
Rainfall, stemflow, and throughfall were collected from 1996 to 1999 at two types of forest sites: (1) forests near the traffic roads and urban areas and (2) forests away from the urban areas at Mt. Gokurakuji, Hiroshima, western Japan in order to estimatethe effects of anthropogenic activities on atmospheric deposition. Rainfall deposition for major ions showed small differences between the sites. The NO3 - and SO4 2-concentrations in stemflow were higher at the urban-facing slope than at the mountain-facing slope. Throughfall deposition of NO3 - and SO4 2- was also higher at urban-facing slopes. Net throughfall (NTF) deposition (throughfall minus rainfall) of NO3 - and SO4 2- accounted for 77 and50% of the total throughfall deposition on urban-facing slopes, respectively, while it accounted for 44 and 23% on themountain-facing slopes, respectively. These results indicated a higher contribution from dry deposition on urban-facing slopes compared to mountain-facing slopes. Atmospheric N (NO3 - +NH4 +) deposition from throughfall was estimated to be around 17–26 kg N ha-1 yr-1 on urban-facing slopes, which was greater than the threshold of N deposition that could cause nitrogen leaching in Europe and the United States. The highload of atmospheric N deposition may be one of the factors bringing about the decline of pine forests on urban-facing slopesof Mt. Gokurakuji.  相似文献   

4.
We estimated the total inorganic fluxes of nitrogen (N), sulfur (S), chloride (Cl?, sodium (Na+, calcium (Ca2+, magnesium (Mg2+, potassium (K+ and hydronium (H+. The resistance deposition algorithm that is programmed as part of the CALMET/CALPUFF modeling system was used to generate spatially-distributed deposition velocities, which were then combined with measurements of urban and rural concentrations of gas and particle species to obtain dry deposition rates. Wet deposition rates for each species were determined from rainfall concentrations and amounts available from the National Acid Deposition Program (NADP) monitoring network databases. The estimated total inorganic nitrogen deposition to the Tampa Bay watershed (excluding Tampa Bay) was 17 kg-N ha?1 yr?1 or 9,700 metric tons yr?1, and the ratio of dry to wet deposition rates was ~2.3 for inorganic nitrogen. The largest contributors to the total N flux were ammonia (NH3 and nitrogen oxides (NO x at 4.6 kg-N ha?1 yr?1 and 5.1 kg-N ha?1 yr?1, respectively. Averaged wet deposition rates were 2.3 and 2.7 kg-N ha?1 yr?1 for NH4 + and NO3 ?, respectively.  相似文献   

5.
The present study aims to establish the annual NH3 deposition to an inland heathland in Denmark using a micro-meterological approach with passive wind-vane flux samplers. The integrating samplers were replaced at weekly intervals from May 1995 to May 1996. The average concentration, 2.05 μg m-3 at the heathland is at a moderate level when compared to heathlands in other parts of Europe. The average deposition velocity was 0.83 cm s-1 which is within the range of depositon velocities found for other heathlands in Europe. The average canopy resistance was found to be relatively high, 61 s -1. The measurements yielded a total NH3-N deposition of 2.4 (± 0.9) kg ha-1 yr-1 with a data coverage of 71% for 1995/1996. In 40% of this time the flux is regarded as zero because the flux is not significant different from zero. In 60% of this time the significant fluxes varied from –0.052 μg m-2 s-1 (deposition equal 16.4 kg N ha-1 yr-1) to 0.089 μg m-2 s-1 (emission equal 28.2 kg N ha-1 yr-1). The method is only able to direct measure significant fluxes down to the equivalence of 0.010 μg m-2 s-1 (approximately 3.2 kg ha-1 yr-1). Therefore the exact deposition cannot be determined by the applied method at very low deposition sites such as a coastal heathland in Denmark. In a high-deposition area as in the central Netherlands the method gave significant fluxes with a 100% data coverage for a two month period.  相似文献   

6.
One-year field measurements were conducted in a Japanese cedar (Cryptomeria japonica) forest, located in Gunma Prefecture, Japan. On the basis of the meteorological and atmospheric concentration data, the dry deposition of SO2, HNO3, NO2 and HCl was estimated using the inferential method. The annual dry deposition of H+ was estimated at 721 eq ha?1yr?1, which was 40% larger than the measured annual wet deposition of H+ (514 eq ha?1yr?1). Therefore, dry deposition is an important pathway for the atmospheric input of H+ to the forest in the study site. The contribution of each gas to the dry deposition of H+ was as follows: SO2, 25%; HNO3, 32%; NO2, 10%; and HCl, 33%. The extremely high contribution of HCl appeared to be caused by the high emission intensity of HCl due to waste incineration in the site region. The differences between estimated deposition and throughfall and stemflow measurements indicated that about 80% of the total deposition of H+ was taken up by the canopy.  相似文献   

7.
Morales  J. A.  Albornoz  A.  Socorro  E.  Morillo  A. 《Water, air, and soil pollution》2001,128(3-4):207-221
In order to make an estimation of thewet deposition levels of the major nitrogen compoundsin Lake Maracaibo system, the precipitation wascollected by events at five sites located on shorearound the Lake from 1991 to 1994. Also the phosphorusconcentrations were determined in rain samples. RainpHs averaged about 5 to 6. NH4 + levels weresignificantly higher (up to 1.44 mg L-1NH4-N) than NO3 -plus NO2 -ions which resulted in the highest pHs values in thestrait Maracaibo. The strait is the nearest zone toAmmonia Plant located upwind at the TablazoPetrochemical Complex. At the strait, theinorganic-nitrogen ((NH4 + NO3 +NO2)-N) concentrations were greater than organicnitrogen levels, but at the other sites were lower.Phosphorus levels were low, ranging from undetectableto 1.5 mg L-1; organic-P was estimated to accountfor about 40% of total-P. Total mean nitrogen wetdepositions were 6.93 kg ha-1 yr-1 (≈59% asNH4-N) at the strait and 9.85–16.84 kg ha-1yr-1 (≈55% as organic-N) around the lakeshore.Inorganic and organic nitrogen account for about equalportions of the total nitrogen loading. These amountsrepresents ≈24% of the annual total-N inputsby the tributary rivers to the lake and aresubstantially higher than those reported in the shoreof Lake Valencia (north-central part of Venezuela) andother tropical areas. The contribution ofprecipitation to P in lake is very small; ≈0.6 kg ha-1 of total-P are added annually. The N and Pinputs were greater than the sewage contributions. Themean molar ratio N/P is ≈22 at the straitsite whilst at lake sites the N/P ratio isconsistently >22 (about 35~1 to 100~1). The results of this preliminary study show that the atmosphere represents a significant factor for the total nitrogen loading to Lake Maracaibo system.  相似文献   

8.
On acid sandy soils of Niger (West Africa) fertilizer N recovery by pearl millet (Pennisetum glaucum L.) is often more than 100 per cent in years with normal or above average rainfall. Biological nitrogen fixation (BNF) by N2-fixing bacteria may contribute to the N supply in pearl millet cropping systems. For a long-term field experiment comprising treatments with and without mineral fertilizer (F) and with and without crop residue application (CR) a N balance sheet was calculated over a period of six years (1983-1988). After six years of successive millet cropping total N uptake (36-77 kg N ha?1 yr?1) was distinctly higher than the amount of fertilizer N applied (30 kg N ha?1 yr?1). The atmospheric input of NH4-N and NO3-N in the rainwater was about 2 kg N ha?1 yr?1, 70 % in the form of NH4-N. Gaseous NH3 losses from urea (broadcast, incorporated) were estimated from other experiments to amount to 36 % of the fertilizer N applied. Nitrogen losses by leaching (15 to > 25 kg N ha?1 yr?1) were dependent on the treatment and on the quantity and distribution of single rainfall events (>50 mm). Decline in total soil N content (0-60 cm) ranged from 15 to 48 kg N ha?1 yr?1. The long-term N balance (1983-1988) indicated an annual net gain between 6 (+CR-F) and 13 (+CR+F) kg N ha?1 yr?1. For the control (-CR-F) the long-term N balance was negative (10 kg N ha?1 yr?1). In the treatment with crop residues only, the N balance was mainly determined by leaching losses, whereas in treatments with mineral fertilizer application the N balance depended primarily on N removal by the millet crop. The annual net gain in the N balance increased from 7 kg ha?1 with mineral fertilizer to 13 kg ha?1 in the combination mineral fertilizer plus crop residues. In both the rhizosphere and the bulk soil (0-15 cm), between 9 and 45% of the total bacterial population were N2-fixing (diazotrophic) bacteria. The increased N gain upon crop residue application was positively correlated with an increase in the number of diazotrophic and total bacteria. The data on bacterial numbers suggest that the gain of N in the longterm N balance is most likely due to an N input by biological nitrogen fixation. In addition, evidence exists from related studies that the proliferation of diazotrophs and total bacteria in the rhizosphere due to crop residue application stimulated root growth of pearl millet, and thus improved the phosphorus (P) acquisition in the P deficient soil.  相似文献   

9.
High nitrogen, especially ammonium, input has been observed in Schichinohe, Aomori Prefecture, northeastern Japan. A monitoring study on precipitation, throughfall, and stream water has been carried out to estimate the stage of nitrogen saturation since 1996. Fifty-two to 70% of nitrogen input in throughfall was retained in forest ecosystems. Nitrate concentration in stream water tended to decrease throughout the study. There was no symptom of nitrogen saturation at Japanese cedar stands in Shichinohe, although high nitrogen input in open bulk has been observed. Ammonium (NH4 +) was retained in the canopy. The ratio of NH4 + input in throughfall to that by open bulk was 0.40 – 0.47. Total inorganic nitrogen input under the canopy amounted 0.68 – 0.72 kmolc ha?1 yr?1 (9.6 – 10.0 kg N ha?1 yr?1). Our results suggests that atmospheric nitrogen input has benefitted the three growth.  相似文献   

10.
Atmospheric nitrogen species (NH4-N and (NO3+NO2)-N) were determined in weekly samples of atmospheric bulk deposition (dry plus wet), collected in France at seven sites over the course of a year. Rural, semi-rural and industrialised-urban sites were chosen in the Seine river watershed from the Seine estuary to upstream from Paris. Mean NH4-N concentrations varied from 0.7 to 1.7 mg L-1. Mean (NO3+NO2)-N concentrations were approximately 0.5 mg L-1 for all sites except Paris (0.7 mg L-1), which has a local impact on the fallout contamination from urban emissions. The relation between concentration and rainfall amount obeys a power law, in the form of y = ax b. When the nitrogen sources are very local, this relationship turns into a dilution law. Annual atmospheric nitrogen deposition (NH4-N+(NO3+NO2)-N) was calculated and varied from 7.8 kg ha-1 yr-1 in the neighbourhood of a rural town to 17.3 kg ha-1 yr-1 in a very industrialised harbour. 58% of the atmospheric nitrogen deposition occurred during ‘spring + summer’ period. The total nitrogen atmospheric input to the Seine estuary, via direct deposition + indirect input via the watershed, was estimated to about 5% of the total nitrogen load within the Seine river basin.  相似文献   

11.
The beneficial effect of sewage sludge in crop production has been demonstrated, but there is concern regarding its contribution to nitrate (NO3) leaching. The objectives of this study were to compare nitrogen (N) rates of sewage sludge and ammonium nitrate (NH4NO3) on soil profile (0–180 cm), inorganic N [ammonium nitrate (NH4‐N) and nitrate nitrogen (NO3‐N)] accumulation, yield, and N uptake in winter wheat (Triticum aestivum L.). One field experiment was established in 1993 that evaluated six N rates (0 to 540 kg·ha‐1·yr‐1) as dry anaerobically digested sewage sludge and ammonium nitrate. Lime application in 1993 (4.48 Mg ha‐1) with 540 kg N ha‐1·yr‐1 was also evaluated. A laboratory incubation study was included to simulate N mineralization from sewage sludge applied at rates of 45, 180, and 540 kg N ha‐1·yr‐1. Treatments did not affect surface soil (0–30 cm) pH, organic carbon (C), and total N following the first (1994) and second (1995) harvest. Soil profile inorganic N accumulation increased when ≥270 kg N ha‐1 was applied as ammonium nitrate. Less soil profile inorganic N accumulation was detected when lime was applied. In general, wheat yields and N uptake increased linearly with applied N as sewage sludge, while wheat yields and N uptake peaked at 270 kg N ha‐1 when N was applied as ammonium nitrate. Lime did not affect yields or N uptake. Fertilizer N immobilization was expected to be high at this site where wheat was produced for the first time in over 10 years (previously in native bermudagrass). Estimated N use efficiency using sewage sludge in grain production was 20% (average of two harvests) compared to ammonium nitrate. Estimated plant N recovery was 17% for sewage sludge and 27% for ammonium nitrate.  相似文献   

12.
David  M.B.  Cupples  A.M.  Lawrence  G.B.  Shi  G.  Vogt  K.  Wargo  P.M. 《Water, air, and soil pollution》1998,105(1-2):183-192
The responses of temperate and boreal forest ecosystems to increased nitrogen (N) inputs have been varied, and the responses of soil N pools have been difficult to measure. In this study, fractions and pool sizes of N were determined in the forest floor of red spruce stands at four sites in the northeastern U.S. to evaluate the effect of increased N inputs on forest floor N. Two of the stands received 100 kg N ha-1 yr-1 for three years, one stand received 34 kg N ha-1 yr-1 for six years, and the remaining stand received only ambient N inputs. No differences in total N content or N fractions were measured in samples of the Oie and Oa horizons between treated and control plots in the three sites that received N amendments. The predominant N fraction in these samples was amino acid N (31-45% of total N), followed by hydrolyzable unidentified N (16-31% of total N), acid-soluble N (18-22% of total N), and NH4 + (9-13% of total N). Rates of atmospheric deposition varied greatly among the four stands. Ammonium N and amino acid N concentrations in the Oie horizon were positively related to wet N deposition, with respective r2 values of 0.92 and 0.94 (n = 4, p < 0.05). These relationships were somewhat stronger than that observed between atmospheric wet N deposition and total N content of the forest floor, suggesting that these pools retain atmospherically deposited N. The NH4 + pool may represent atmospherically deposited N that is incorporated into organic matter, whereas the amino acid N pool could result from microbial immobilization of atmospheric N inputs. The response of forest floor N pools to applications of N may be masked, possibly by the large soil N pool, which has been increased by the long-term input of N from atmospheric deposition, thereby overwhelming the short-term treatments.  相似文献   

13.
The purpose of this study was to determine the nitrogen (N) deposition in a mire of the German National Park Hochharz Mountains in regard to different input pathways of open area and forest stand deposition. High N deposition rates strongly affect the development and growth of mires in general. For determination of the open area N deposition two methods were applied: the bulk deposition method and the Integral Total Nitrogen Input (ITNI) method. This method is based on the 15N isotope dilution technique and was adapted at this study to evaluate its applicability for natural ecosystems as well as to compare with the traditional bulk method. The forest stand deposition included canopy throughfall, stemflow and fog was measured by means of bulk collectors. On the test site, bulk deposition measurements showed an input of 27 kg N ha? 1 yr? 1 in the open area and 47 kg N ha? 1 yr? 1 in the forest stand. The higher N input in the forest stand is caused by interception of fog by the canopy. N concentrations in fog were up to more than six times higher than in rain. The ITNI system yielded a total N deposition of 30 kg N ha? 1 yr? 1 on average in the open area. The small differences between the two simultaneously applied measuring techniques were caused by a minimum biomass development of the autochthonous plant Calamagrostis villosa in the ITNI system. With increasing biomass production the influence of plants on the atmospheric N input also increased. It can be concluded that the ITNI system is beneficial for the application in a natural ecosystem when using more robust and biomass producing plants. The measured atmospheric N deposition exceeds the critical load for nutrient poor mires and represents therefore a potential risk for the continuity of this ecosystem.  相似文献   

14.
Fisher  T.R.  Lee  K.-Y.  Berndt  H.  Benitez  J.A.  Norton  M.M. 《Water, air, and soil pollution》1998,105(1-2):387-397
The Choptank River basin is a coastal plain catchment dominated by agriculture (52% of land use). We summarize an 11 year data set of discharge and chemistry from a gauged subbasin. Discharge exhibited seasonal variations driven by seasonal evapotranspiration. There were double seasonal maxima of pH, NH4 +, NO3 -, total N, Fe, and total P concentrations in late spring and fall as the saturated zone rose and fell within the soil. Significant interannual variability in discharge was the result of rainfall variation. There were positive nterannual trends in NO3 - concentrations and negative interannual trends in NH4 + and PO4 3- concentrations. These data were combined to estimate N and P export coefficients of 3-11 kg N ha-1 yr-1 and 0.14-0.66 kg P ha-1 yr-1, driven primarily by interannual variations in discharge. These export coefficients are low compared to other coastal plain watersheds dominated by agriculture and may be responsible for the small anthropogenic effects in the Choptank estuary compared to other Chesapeake drainages.  相似文献   

15.
Input-output budgets for dissolved inorganic nitrogen (DIN) are summarized for 24 small watersheds at 15 locations in the northeasternUnited States. The study watersheds are completely forested, free of recent physical disturbances, and span a geographical region bounded by West Virginia on the south and west, and Maine on the north and east. Total N budgets are not presented; however, fluxes of inorganic N in precipitation and streamwater dominate inputs and outputs of N at these watersheds. The range in inputs of DIN in wet-only precipitation from nearby National Atmospheric Deposition Program (NADP) sites was 2.7 to 8.1 kg N ha-1 yr-1 (mean = 6.4 kg N ha-1 yr-1; median = 7.0 kg N ha-1 yr-1). Outputs of DIN in streamwater ranged from 0.1 to 5.7 kg N ha-1 yr-1 (mean = 2.0 kg N ha-1 yr-1; median = 1.7 kg N ha-1 yr-1). Precipitation inputs of DIN exceeded outputs in streamwater at all watersheds, with net retention of DIN ranging from 1.2 to 7.3 kg N ha-1 yr-1 (mean = 4.4 kg N ha-1 yr-1; median = 4.6 kg N ha-1 yr-1). Outputs of DIN in streamwater were predominantly NO3-N (mean = 89%; median = 94%). Wet deposition of DIN was not significantly related to DIN outputs in streamwater for these watersheds. Watershed characteristics such as hydrology, vegetation type, and land-use history affect DIN losses and may mask any relationship between inputs and outputs. Consequently, these factors need to be included in the development of indices and simulation models for predicting 'nitrogen saturation' and other ecological processes.  相似文献   

16.
Atmospheric deposition of N and S on terrestrial and aquatic ecosystems causes effects induced by eutrophication and acidification. Effects of eutrophication include forest damage, NO3 pollution of groundwater and vegetation changes in forests, heathlands and surface waters due to an excess of N. Effects of acidification include forest damage, groundwater pollution, and loss of fish populations due to Al mobilization. Critical loads (deposition levels) for N and S on terrestrial and aquatic ecosystems in the Netherlands related to these effects have been derived by empirical data and steady-state acidification models. Critical loads of N generally vary between 500 and 1500 mol c ha?1 yr?1 for forests, heathlands and surface waters and between 1500 and 3600 for phreatic groundwaters. Critical loads of total acid (S and N) vary between 300 to 500 mol c ha?1 yr?1 for phreatic groundwaters and surface waters and between 1100 to 1700 mol ha?1 yr?1 for forests. On the basis of the various critical loads a deposition target for total acid of 1400 mol c ha?1 yr?1 has been set in the Netherlands from which the N input should be less than 1000 mol c ha?1 yr?1. This level, to be reached in the year 2010, implies an emission reduction of 80–90% in SO2, NO x and NH3 in the Netherlands and of about 30% in neighboring countries compared to 1980 emissions.  相似文献   

17.
For elucidating the atmospheric deposition contribution of dissolved organic nitrogen (DON) to the total dissolved nitrogen (TDN) deposition rate, dissolved inorganic nitrogen (DIN: NH4 + + NO3 ) and DON deposition rates were annually and monthly estimated during 4 and half-yr monitoring period in an experimental multi-farm under intensive agricultural activities of N fertilizer use and animal husbandry in Central Japan. Annual NH4 +, DON and NO3 deposition rates in bulk and wet deposition data accounted for 48%, 32% and 20% of TDN deposition, respectively, which indicated that this area is strongly affected by the intensive agricultural activities. The DIN and DON deposition rates were respectively estimated at 21.6 and 10.1 kg N ha?1 yr?1, which ranked high in a worldwide regional data set. Consequently, this area has been exposed to a large amount of N deposition including DON with N fertilizer input. The difference between bulk and wet deposition rates (NH4 + and DON) is one of important factors controlling the N deposition in this area. Monthly DON deposition showed positive correlations with DIN and NH4 + deposition rates, respectively, with a significant linear regression curve. The linear regression curve of our monthly data (n = 127) indicates the same trend as the worldwide annual data set (n = 31).  相似文献   

18.
Treatment of a soil under permanent pasture with carbaryl (a broad spectrum carbamate biocide) resulted in a 2-fold increase in the volume of surface runoff. This was attributed to a 3-fold reduction in infiltration rate as a result of litter accumulation at the soil surface in the absence of surface-casting earthworm activity. The amounts of dissolved inorganic P (DIP), NH+4-N, and NO?3-N in surface runoff from pasture treated with carbaryl (1.18, 9.53 and 4.25 kg ha?1 yr?1, respectively) were appreciably greater than those from untreated pasture (0.31, 1.63 and 0.52 kg ha?1 yr?1). This was attributed to the large amounts of DIP, NH+4-N, and NO?13-N released from decomposing litter. Following incubation at 4°C for 18 days the release of DIP, NH+4-N and NO?3-N from litter was 160, 1600 and 950 μg g?1, respectively. Losses of particulate P and sediment in surface runoff were lower in the absence (0.31 and 290 kg ha?1 yr?1, respectively) than in the presence (0.56 and 1120 kg ha? yr?1) of surface casts, pointing to the importance of surface casts as a source of sediment. Surface casts accounted for 45 and 75%, respectively, of the annual loading of particulate P and sediment in surface runoff. Nevertheless, the total loss in surface runoff of P and N forms was increased substantially when the production of earthworm casts was eliminated  相似文献   

19.
From 1986–1989, a team of scientists measured atmospheric concentrations and fluxes in precipitation and throughfall, and modeled dry and cloudwater deposition in a spruce-fir forest of the Great Smoky Mountains National Park which is located in the Southern Appalachian Region of the United States. The work was part of the Integrated Forest Study (IFS) conducted at 12 forests in N. America and Europe. The spruce-fir forest at 1740 m consistently received the highest total deposition rates (~2200, 1200, and 700 eq ha?1 yr?1 for SO4 2?, NO3 ?, and NH4 +). During the summers of 1989 and 1990 we used multiple samplers to measure hydrologie, SO4 2?, and NO3 ? fluxes in rain and throughfall events beneath spruce forests above (1940 m) and below (1720 m) cloud base. Throughfall was used to estimate total deposition using relationships determined during the IFS. Although the SO4 2? fluxes increased with elevation by a factor of ~2 due to higher cloudwater interception at 1940 m, the NO3 ? fluxes decreased with elevation by ~30%. To investigate further, we began year round measurements of fluxes of all major ions in throughfall below spruce-fir forests at 1740 m and at 1920 m in 1993–1994. The fluxes of most ions showed a 10–50% increase with elevation due to the ~70 cm yr?1 cloudwater input at 1920 m. However, total inorganic nitrogen exhibited a 40% lower flux in throughfall at 1920 m than at 1740 m suggesting either higher dry deposition to trees at 1740 m or much higher canopy uptake of nitrogen by trees at 1920 m. Differential canopy absorption of N by trees at different elevations would have significant consequences for the use of throughfall N fluxes to estimate deposition. We used artificial trees to understand the foliar interactions of N.  相似文献   

20.
Input-output fluxes of nitrogen (N) and other ecosystem data from 64 European forest ecosystem studies have been compiled in a database (ECOFEE). Sites with high N deposition (up to 64 kg N ha–1yr–1) were characterized by high input of ammonia/ammonium. The deposition of oxidized N was usually only 10 to 15 kg N ha–1yr–1 Of all the sites included, 60 % leached more than 5 kg N ha–1yr–1. Elevated nitrate leaching appeared at inputs above 10 kg N ha–1yr–1. At several sites with inputs of 15–25 kg N ha–1yr–1 nitrate leaching approached the N input, whereas ammonium dominated sites with high input still retained c. 50 % of the input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号