首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The BRCT repeats of the breast and ovarian cancer predisposition protein BRCA1 are essential for tumor suppression. Phosphopeptide affinity proteomic analysis identified a protein, Abraxas, that directly binds the BRCA1 BRCT repeats through a phospho-Ser-X-X-Phe motif. Abraxas binds BRCA1 to the mutual exclusion of BACH1 (BRCA1-associated C-terminal helicase) and CtIP (CtBP-interacting protein), forming a third type of BRCA1 complex. Abraxas recruits the ubiquitin-interacting motif (UIM)-containing protein RAP80 to BRCA1. Both Abraxas and RAP80 were required for DNA damage resistance, G(2)-M checkpoint control, and DNA repair. RAP80 was required for optimal accumulation of BRCA1 on damaged DNA (foci) in response to ionizing radiation, and the UIM domains alone were capable of foci formation. The RAP80-Abraxas complex may help recruit BRCA1 to DNA damage sites in part through recognition of ubiquitinated proteins.  相似文献   

2.
Kim H  Chen J  Yu X 《Science (New York, N.Y.)》2007,316(5828):1202-1205
Mutations in the breast cancer susceptibility gene 1 (BRCA1) are associated with an increased risk of breast and ovarian cancers. BRCA1 participates in the cellular DNA damage response. We report the identification of receptor-associated protein 80 (RAP80) as a BRCA1-interacting protein in humans. RAP80 contains a tandem ubiquitin-interacting motif domain, which is required for its binding with ubiquitin in vitro and its damage-induced foci formation in vivo. Moreover, RAP80 specifically recruits BRCA1 to DNA damage sites and functions with BRCA1 in G2/M checkpoint control. Together, these results suggest the existence of a ubiquitination-dependent signaling pathway involved in the DNA damage response.  相似文献   

3.
Yu X  Chini CC  He M  Mer G  Chen J 《Science (New York, N.Y.)》2003,302(5645):639-642
The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.  相似文献   

4.
We used a proteomic approach to identify phosphopeptide-binding modules mediating signal transduction events in the DNA damage response pathway. Using a library of partially degenerate phosphopeptides, we identified tandem BRCT (BRCA1 carboxyl-terminal) domains in PTIP (Pax transactivation domain-interacting protein) and in BRCA1 as phosphoserine- or phosphothreonine-specific binding modules that recognize substrates phosphorylated by the kinases ATM (ataxia telangiectasia-mutated) and ATR (ataxia telangiectasia- and RAD3-related) in response to gamma-irradiation. PTIP tandem BRCT domains are responsible for phosphorylation-dependent protein localization into 53BP1- and phospho-H2AX (gamma-H2AX)-containing nuclear foci, a marker of DNA damage. These findings provide a molecular basis for BRCT domain function in the DNA damage response and may help to explain why the BRCA1 BRCT domain mutation Met1775 --> Arg, which fails to bind phosphopeptides, predisposes women to breast and ovarian cancer.  相似文献   

5.
Germline mutations of the breast cancer 1 (BRCA1) gene are a major cause of familial breast and ovarian cancer. The BRCA1 protein displays E3 ubiquitin ligase activity, and this enzymatic function is thought to be required for tumor suppression. To test this hypothesis, we generated mice that express an enzymatically defective Brca1. We found that this mutant Brca1 prevents tumor formation to the same degree as does wild-type Brca1 in three different genetically engineered mouse (GEM) models of cancer. In contrast, a mutation that ablates phosphoprotein recognition by the BRCA C terminus (BRCT) domains of BRCA1 elicits tumors in each of the three GEM models. Thus, BRCT phosphoprotein recognition, but not the E3 ligase activity, is required for BRCA1 tumor suppression.  相似文献   

6.
Mutations in the BRCA2 (breast cancer susceptibility gene 2) tumor suppressor lead to chromosomal instability due to defects in the repair of double-strand DNA breaks (DSBs) by homologous recombination, but BRCA2's role in this process has been unclear. Here, we present the 3.1 angstrom crystal structure of a approximately 90-kilodalton BRCA2 domain bound to DSS1, which reveals three oligonucleotide-binding (OB) folds and a helix-turn-helix (HTH) motif. We also (i) demonstrate that this BRCA2 domain binds single-stranded DNA, (ii) present its 3.5 angstrom structure bound to oligo(dT)9, (iii) provide data that implicate the HTH motif in dsDNA binding, and (iv) show that BRCA2 stimulates RAD51-mediated recombination in vitro. These findings establish that BRCA2 functions directly in homologous recombination and provide a structural and biochemical basis for understanding the loss of recombination-mediated DSB repair in BRCA2-associated cancers.  相似文献   

7.
Cells respond to DNA double-strand breaks by recruiting factors such as the DNA-damage mediator protein MDC1, the p53-binding protein 1 (53BP1), and the breast cancer susceptibility protein BRCA1 to sites of damaged DNA. Here, we reveal that the ubiquitin ligase RNF8 mediates ubiquitin conjugation and 53BP1 and BRCA1 focal accumulation at sites of DNA lesions. Moreover, we establish that MDC1 recruits RNF8 through phosphodependent interactions between the RNF8 forkhead-associated domain and motifs in MDC1 that are phosphorylated by the DNA-damage activated protein kinase ataxia telangiectasia mutated (ATM). We also show that depletion of the E2 enzyme UBC13 impairs 53BP1 recruitment to sites of damage, which suggests that it cooperates with RNF8. Finally, we reveal that RNF8 promotes the G2/M DNA damage checkpoint and resistance to ionizing radiation. These results demonstrate how the DNA-damage response is orchestrated by ATM-dependent phosphorylation of MDC1 and RNF8-mediated ubiquitination.  相似文献   

8.
Metastasis is a defining feature of malignant tumors and is the most common cause of cancer-related death, yet the genetics of metastasis are poorly understood. We used exome capture coupled with massively parallel sequencing to search for metastasis-related mutations in highly metastatic uveal melanomas of the eye. Inactivating somatic mutations were identified in the gene encoding BRCA1-associated protein 1 (BAP1) on chromosome 3p21.1 in 26 of 31 (84%) metastasizing tumors, including 15 mutations causing premature protein termination and 5 affecting its ubiquitin carboxyl-terminal hydrolase domain. One tumor harbored a frameshift mutation that was germline in origin, thus representing a susceptibility allele. These findings implicate loss of BAP1 in uveal melanoma metastasis and suggest that the BAP1 pathway may be a valuable therapeutic target.  相似文献   

9.
ATM activation by oxidative stress   总被引:2,自引:0,他引:2  
The ataxia-telangiectasia mutated (ATM) protein kinase is activated by DNA double-strand breaks (DSBs) through the Mre11-Rad50-Nbs1 (MRN) DNA repair complex and orchestrates signaling cascades that initiate the DNA damage response. Cells lacking ATM are also hypersensitive to insults other than DSBs, particularly oxidative stress. We show that oxidation of ATM directly induces ATM activation in the absence of DNA DSBs and the MRN complex. The oxidized form of ATM is a disulfide-cross-linked dimer, and mutation of a critical cysteine residue involved in disulfide bond formation specifically blocked activation through the oxidation pathway. Identification of this pathway explains observations of ATM activation under conditions of oxidative stress and shows that ATM is an important sensor of reactive oxygen species in human cells.  相似文献   

10.
Faithful chromosome segregation and repair of DNA double-strand breaks (DSBs) require cohesin, the protein complex that mediates sister-chromatid cohesion. Cohesion between sister chromatids is thought to be generated only during ongoing DNA replication by an obligate coupling between cohesion establishment factors such as Eco1 (Ctf7) and the replisome. Using budding yeast, we challenge this model by showing that cohesion is generated by an Eco1-dependent but replication-independent mechanism in response to DSBs in G(2)/M. Furthermore, our studies reveal that Eco1 has two functions: a cohesive activity and a conserved acetyltransferase activity, which triggers the generation of cohesion in response to the DSB and the DNA damage checkpoint. Finally, the DSB-induced cohesion is not limited to broken chromosomes but occurs also on unbroken chromosomes, suggesting that the DNA damage checkpoint through Eco1 provides genome-wide protection of chromosome integrity.  相似文献   

11.
DNA双链断裂(DSBs)是细胞最严重的损伤形式之一。高等动植物中主要通过非同源末端连接(NHEJ)途径进行DNA双链断裂修复。该途径不依赖DNA同源性,由一些修复因子如:Ku蛋白异二聚体、DNA-PKcs 、XRCC4、ligaseⅣ等,将断裂末端直接连接进行修复。综述了植物DNA双链断裂损伤修复的主要途径及其相关基因研究的进展,探讨了植物DNA损伤修复研究中存在的问题与发展方向。  相似文献   

12.
13.
Antibody class switching in activated B cells uses class switch recombination (CSR), which joins activation-induced cytidine deaminase (AID)-dependent double-strand breaks (DSBs) within two large immunoglobulin heavy chain (IgH) locus switch (S) regions that lie up to 200 kilobases apart. To test postulated roles of S regions and AID in CSR, we generated mutant B cells in which donor Smu and accepter Sgamma1 regions were replaced with yeast I-SceI endonuclease sites. We found that site-specific I-SceI DSBs mediate recombinational IgH locus class switching from IgM to IgG1 without S regions or AID. We propose that CSR evolved to exploit a general DNA repair process that promotes joining of widely separated DSBs within a chromosome.  相似文献   

14.
15.
Genetic disorders affecting cellular responses to DNA damage are characterized by high rates of translocations involving antigen receptor loci and increased susceptibility to lymphoid malignancies. We report that the Nijmegen breakage syndrome protein (NBS1) and histone gamma-H2AX, which associate with irradiation-induced DNA double-strand breaks (DSBs), are also found at sites of VDJ (variable, diversity, joining) recombination-induced DSBs. In developing thymocytes, NBS1 and gamma-H2AX form nuclear foci that colocalize with the T cell receptor alpha locus in response to recombination activating gene (RAG) protein-mediated VDJ cleavage. Our results suggest that surveillance of T cell receptor recombination intermediates by NBS1 and gamma-H2AX may be important for preventing oncogenic translocations.  相似文献   

16.
Poole AJ  Li Y  Kim Y  Lin SC  Lee WH  Lee EY 《Science (New York, N.Y.)》2006,314(5804):1467-1470
Women with mutations in the breast cancer susceptibility gene BRCA1 are predisposed to breast and ovarian cancers. Why the BRCA1 protein suppresses tumor development specifically in ovarian hormone-sensitive tissues remains unclear. We demonstrate that mammary glands of nulliparous Brca1/p53-deficient mice accumulate lateral branches and undergo extensive alveologenesis, a phenotype that occurs only during pregnancy in wild-type mice. Progesterone receptors, but not estrogen receptors, are overexpressed in the mutant mammary epithelial cells because of a defect in their degradation by the proteasome pathway. Treatment of Brca1/p53-deficient mice with the progesterone antagonist mifepristone (RU 486) prevented mammary tumorigenesis. These findings reveal a tissue-specific function for the BRCA1 protein and raise the possibility that antiprogesterone treatment may be useful for breast cancer prevention in individuals with BRCA1 mutations.  相似文献   

17.
Nonhomologous end joining (NHEJ) is a critical DNA double-strand break (DSB) repair pathway required to maintain genome stability. Many prokaryotes possess a minimalist NHEJ apparatus required to repair DSBs during stationary phase, composed of two conserved core proteins, Ku and ligase D (LigD). The crystal structure of Mycobacterium tuberculosis polymerase domain of LigD mediating the synapsis of two noncomplementary DNA ends revealed a variety of interactions, including microhomology base pairing, mismatched and flipped-out bases, and 3' termini forming hairpin-like ends. Biochemical and biophysical studies confirmed that polymerase-induced end synapsis also occurs in solution. We propose that this DNA synaptic structure reflects an intermediate bridging stage of the NHEJ process, before end processing and ligation, with both the polymerase and the DNA sequence playing pivotal roles in determining the sequential order of synapsis and remodeling before end joining.  相似文献   

18.
水稻DA1基因的生物信息学分析   总被引:1,自引:1,他引:0  
本文采用比较基因组学和生物信息学的方法,首次从水稻基因组中鉴定出一个与拟南芥控制种子和器官大小的基因DA1同源的基因,命名为OsDA1,并对这个基因的序列特征、编码蛋白的结构域、顺式元件以及遗传进化进行了分析。结果表明,OsDA1编码的蛋白具有LIM结构域、泛素互作位点和锌指结构域,与拟南芥DA1蛋白的结构一致,推测二者在控制器官发育上具有类似的功能。本研究还发现,在水稻OsDA1基因的启动子区存在多个响应不同激素和逆境信号的顺式元件,但这些元件的类型与拟南芥DA1基因的顺式元件有所不同,OsDA1与AtDA1可能在表达调控上有所不同;OsDA1基因不仅能够控制种子等器官的大小和发育,而且还可能与植物的激素信号转导和逆境响应有关。本文为下一步研究OsDA1在水稻生长发育和逆境响应中的功能以及与水稻杂种优势的关系奠定了基础。  相似文献   

19.
大白菜DA1基因的生物信息学解析   总被引:1,自引:0,他引:1  
运用比较基因组学的方法,首次从大白菜基因组中鉴定出一个与拟南芥中控制种子和器官大小的基因DA1同源的序列BrDA1,并对这个基因和编码蛋白的结构以及顺式反应元件进行了系统分析。结果表明,BrDA1具有LIM家族和锌指蛋白的结构特征,而且还有和泛素互作的位点,可能具有和AtDA1相似的功能。另外,本研究还发现,在大白菜和拟南芥DA1基因的启动子序列中存在多个能够响应不同激素和逆境信号的顺式反应元件。这说明,植物DA1基因不仅与种子和器官发育有关,而且与激素信号转导和逆境响应存在密切关系。本文为进一步研究DA1基因在大白菜生长发育和逆境响应中的功能以及与大白菜杂种优势的关系奠定了基础。  相似文献   

20.
SIRT6 promotes DNA repair under stress by activating PARP1   总被引:2,自引:0,他引:2  
Sirtuin 6 (SIRT6) is a mammalian homolog of the yeast Sir2 deacetylase. Mice deficient for SIRT6 exhibit genome instability. Here, we show that in mammalian cells subjected to oxidative stress SIRT6 is recruited to the sites of DNA double-strand breaks (DSBs) and stimulates DSB repair, through both nonhomologous end joining and homologous recombination. Our results indicate that SIRT6 physically associates with poly[adenosine diphosphate (ADP)-ribose] polymerase 1 (PARP1) and mono-ADP-ribosylates PARP1 on lysine residue 521, thereby stimulating PARP1 poly-ADP-ribosylase activity and enhancing DSB repair under oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号