首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Single-walled carbon nanotubes are ideal systems for investigating fundamental properties and applications of one-dimensional electronic systems. The interaction of magnetic impurities with electrons confined in one dimension has been studied by spatially resolving the local electronic density of states of small cobalt clusters on metallic single-walled nanotubes with a low-temperature scanning tunneling microscope. Spectroscopic measurements performed on and near these clusters exhibit a narrow peak near the Fermi level that has been identified as a Kondo resonance. Using the scanning tunneling microscope to fabricate ultrasmall magnetic nanostructures consisting of small cobalt clusters on short nanotube pieces, spectroscopic studies of this quantum box structure exhibited features characteristic of the bulk Kondo resonance, but also new features due to finite size.  相似文献   

2.
Closed-shell carbon nanostructures, such as carbon onions, have been shown to act as self-contracting high-pressure cells under electron irradiation. We report that controlled irradiation of multiwalled carbon nanotubes can cause large pressure buildup within the nanotube cores that can plastically deform, extrude, and break solid materials that are encapsulated inside the core. We further showed by atomistic simulations that the internal pressure inside nanotubes can reach values higher than 40 gigapascals. Nanotubes can thus be used as robust nanoscale jigs for extruding and deforming hard nanomaterials and for modifying their properties, as well as templates for the study of individual nanometer-sized crystals under high pressure.  相似文献   

3.
Carbon nanotubes display either metallic or semiconducting properties. Both large, multiwalled nanotubes (MWNTs), with many concentric carbon shells, and bundles or "ropes" of aligned single-walled nanotubes (SWNTs), are complex composite conductors that incorporate many weakly coupled nanotubes that each have a different electronic structure. Here we demonstrate a simple and reliable method for selectively removing single carbon shells from MWNTs and SWNT ropes to tailor the properties of these composite nanotubes. We can remove shells of MWNTs stepwise and individually characterize the different shells. By choosing among the shells, we can convert a MWNT into either a metallic or a semiconducting conductor, as well as directly address the issue of multiple-shell transport. With SWNT ropes, similar selectivity allows us to generate entire arrays of nanoscale field-effect transistors based solely on the fraction of semiconducting SWNTs.  相似文献   

4.
Single-molecule fluorescence spectroscopy was used to determine the electronic properties of individual single-walled carbon nanotubes. Carbon nanotube structure was determined simultaneously from Raman spectroscopy. Fluorescence spectra from individual nanotubes with identical structures have different emission energies and linewidths that likely arise from defects or the local environment. Unlike most other molecules studied to date, the fluorescence intensity or spectrum from a single nanotube unexpectedly did not fluctuate.  相似文献   

5.
Metallic single-walled carbon nanotubes have been proposed to be good one-dimensional conductors. However, the finite curvature of the graphene sheet that forms the nanotubes and the broken symmetry due to the local environment may modify their electronic properties. We used low-temperature atomically resolved scanning tunneling microscopy to investigate zigzag and armchair nanotubes, both thought to be metallic. "Metallic" zigzag nanotubes were found to have energy gaps with magnitudes that depend inversely on the square of the tube radius, whereas isolated armchair tubes do not have energy gaps. Additionally, armchair nanotubes packed in bundles have pseudogaps, which exhibit an inverse dependence on tube radius. These observed energy gaps suggest that most "metallic" single-walled nanotubes are not true metals, and they have implications for our understanding of the electronic properties and potential applications of carbon nanotubes.  相似文献   

6.
We simultaneously determined the physical structure and optical transition energies of individual single-walled carbon nanotubes by combining electron diffraction with Rayleigh scattering spectroscopy. These results test fundamental features of the excited electronic states of carbon nanotubes. We directly verified the systematic changes in transition energies of semiconducting nanotubes as a function of their chirality and observed predicted energy splittings of optical transitions in metallic nanotubes.  相似文献   

7.
The electronic properties of single-walled carbon nanotubes are shown here to be extremely sensitive to the chemical environment. Exposure to air or oxygen dramatically influences the nanotubes' electrical resistance, thermoelectric power, and local density of states, as determined by transport measurements and scanning tunneling spectroscopy. These electronic parameters can be reversibly "tuned" by surprisingly small concentrations of adsorbed gases, and an apparently semiconducting nanotube can be converted into an apparent metal through such exposure. These results, although demonstrating that nanotubes could find use as sensitive chemical gas sensors, likewise indicate that many supposedly intrinsic properties measured on as-prepared nanotubes may be severely compromised by extrinsic air exposure effects.  相似文献   

8.
The electronic spectra of carbon nanotubes and other nanoscale systems are quantized because of their small radii. Similar quantization in the phonon spectra has been difficult to observe because of the far smaller energy scale. We probed this regime by measuring the temperature-dependent specific heat of purified single-wall nanotubes. The data show direct evidence of one-dimensional quantized phonon subbands. Above 4 kelvin, they are in excellent agreement with model calculations of individual nanotubes and differ markedly from the specific heat of two-dimensional graphene or three-dimensional graphite. Detailed modeling yields an energy of 4.3 millielectron volts for the lowest quantized phonon subband and a tube-tube (or "lattice") Debye energy of 1.1 millielectron volts, implying a small intertube coupling in bundles.  相似文献   

9.
Elemental carbon can be synthesized in a variety of geometrical forms, from three-dimensional extended structures (diamond) to finite molecules (C(60) fullerite). Results are presented here on the magnetic susceptibility of the least well-understood members of this family, nanotubes and C(60) fullerite. (i) Nanotubes represent the cylindrical form of carbon, intermediate between graphite and fullerite. They are found to have significantly larger orientation-averaged susceptibility, on a per carbon basis, than any other form of elemental carbon. This susceptibility implies an average band structure among nanotubes similar to that of graphite. (ii) High-resolution magnetic susceptibility data on C(60) fullerite near the molecular orientational-ordering transition at 259 K show a sharp jump corresponding to 2.5 centimeter-gram-second parts per million per mole of C(60). This jump directly demonstrates the effect of an intermolecular cooperative transition on an intramolecular electronic property, where the susceptibility jump may be ascribed to a change in the shape of the molecule due to lattice forces.  相似文献   

10.
Kim P  Lieber CM 《Science (New York, N.Y.)》1999,286(5447):2148-2150
Nanoscale electromechanical systems-nanotweezers-based on carbon nanotubes have been developed for manipulation and interrogation of nanostructures. Electrically conducting and mechanically robust carbon nanotubes were attached to independent electrodes fabricated on pulled glass micropipettes. Voltages applied to the electrodes closed and opened the free ends of the nanotubes, and this electromechanical response was simulated quantitatively using known nanotweezer structure and nanotube properties. The mechanical capabilities of the nanotweezers were demonstrated by grabbing and manipulating submicron clusters and nanowires. The conducting nanotube arms of the tweezers were also used for measuring the electrical properties of silicon carbide nanoclusters and gallium arsenide nanowires.  相似文献   

11.
Nilius N  Wallis TM  Ho W 《Science (New York, N.Y.)》2002,297(5588):1853-1856
The ability of a scanning tunneling microscope to manipulate single atoms is used to build well-defined gold chains on NiAl(110). The electronic properties of the one-dimensional chains are dominated by an unoccupied electron band, gradually developing from a single atomic orbital present in a gold atom. Spatially resolved conductance measurements along a 20-atom chain provide the dispersion relation, effective mass, and density of states of the free electron-like band. These experiments demonstrate a strategy for probing the interrelation between geometric structure, elemental composition, and electronic properties in metallic nanostructures.  相似文献   

12.
Wrapping of carbon nanotubes (CNTs) by single-stranded DNA (ssDNA) was found to be sequence-dependent. A systematic search of the ssDNA library selected a sequence d(GT)n, n = 10 to 45 that self-assembles into a helical structure around individual nanotubes in such a way that the electrostatics of the DNA-CNT hybrid depends on tube diameter and electronic properties, enabling nanotube separation by anion exchange chromatography. Optical absorption and Raman spectroscopy show that early fractions are enriched in the smaller diameter and metallic tubes, whereas late fractions are enriched in the larger diameter and semiconducting tubes.  相似文献   

13.
Carbon nanotube material can now be produced in macroscopic quantities. However, the raw material has a disordered structure, which restricts investigations of both the properties and applications of the nanotubes. A method has been developed to produce thin films of aligned carbon nanotubes. The tubes can be aligned either parallel or perpendicular to the surface, as verified by scanning electron microscopy. The parallel aligned surfaces are birefringent, reflecting differences in the dielectric function along and normal to the tubes. The electrical resistivities are anisotropic as well, being smaller along the tubes than perpendicular to them, because of corresponding differences in the electronic transport properties.  相似文献   

14.
Quantum phase is not directly observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures with matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these "quantum drums"-degenerate two-dimensional electron states on the copper(111) surface confined by individually positioned carbon monoxide molecules-reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.  相似文献   

15.
综述了近年来碳纳米管的振动特性的理论数值方法研究进展,着重介绍了基于经典连续体理论、分子结构力学/原子有限元以及基于原子研究的分子动力学等方法研究单、多壁碳纳米管振动特性的现状。  相似文献   

16.
A simple technique is described here that produces aligned arrays of carbon nanotubes. The alignment method is based on cutting thin slices (50 to 200 nanometers) of a nanotube-polymer composite. With this parallel and well-separated configuration of nanotubes it should be possible to measure individual tube properties and to demonstrate applications. The results demonstrate the nature of rheology, on nanometer scales, in composite media and flow-induced anisotropy produced by the cutting process. The fact that nanotubes do not break and are straightened after the cutting process also suggests that they have excellent mechanical properties.  相似文献   

17.
Composite sheets and nanotubes of different morphologies containing carbon, boron, and nitrogen were grown in the electric arc discharge between graphite cathodes and amorphous boron-filled graphite anodes in a nitrogen atmosphere. Concentration profiles derived from electron energy-loss line spectra show that boron and nitrogen are correlated in a one-to-one ratio; core energy-loss fine structures reveal small differences compared to pure hexagonal boron nitride. Boron and carbon are anticorrelated, suggesting the substitution of boron and nitrogen into the carbon network. Results indicate that singlephaase CyBxNx as well as separated domains (nanosize) of boron nitride in carbon networks may exist.  相似文献   

18.
Polyhedral nano- and microstructures with shapes of faceted needles, rods, rings, barrels, and double-tipped pyramids, which we call graphite polyhedral crystals (GPCs), have been discovered. They were found in pores of glassy carbon. They have nanotube cores and graphite faces, and they can exhibit unusual sevenfold, ninefold, or more complex axial symmetry. Although some are giant radially extended nanotubes, Raman spectroscopy and transmission electron microscopy suggest GPCs have a degree of perfection higher than in multiwall nanotubes of similar size. The crystals are up to 1 micrometer in cross section and 5 micrometers in length, and they can probably be grown in much larger sizes. Preliminary results suggest a high electrical conductivity, strength, and chemical stability of GPC.  相似文献   

19.
The electrical properties of individual bundles, or "ropes," of single-walled carbon nanotubes have been measured. Below about 10 kelvin, the low-bias conductance was suppressed for voltages less than a few millivolts. In addition, dramatic peaks were observed in the conductance as a function of a gate voltage that modulated the number of electrons in the rope. These results are interpreted in terms of single-electron charging and resonant tunneling through the quantized energy levels of the nanotubes composing the rope.  相似文献   

20.
We report the characterization of defects in individual metallic single-walled carbon nanotubes by transport measurements and scanned gate microscopy. A sizable fraction of metallic nanotubes grown by chemical vapor deposition exhibits strongly gate voltage-dependent resistance at room temperature. Scanned gate measurements reveal that this behavior originates from resonant electron scattering by defects in the nanotube as the Fermi level is varied by the gate voltage. The reflection coefficient at the peak of a scattering resonance was determined to be about 0.5 at room temperature. An intratube quantum dot device formed by two defects is demonstrated by low-temperature transport measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号