首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 669 毫秒
1.
花生联合收获机智能测产系统研究   总被引:2,自引:0,他引:2  
为解决花生收获过程中产量监测问题,结合4HBLZ-2型自走式花生联合收获机设计了一种智能测产系统。硬件部分包括北斗导航车载接收系统、单片微处理器及重量传感器、德国麦希欧接触式在线水分传感器,通过CAN总线接口与上位机连接。将定量称重与网格细分技术相结合应用于收获机测产领域,相较于冲量式测产系统,极大地降低了收获机振动引起的产量累积误差。软件采用跨平台应用程序Qt完成了各传感器数据的实时接收、存储,以及对任意划定地块产量数据的查询,并且能够实现查询产量数据的平面及3D立体渐变色显示。在5种不同工况下对该测产系统进行试验,测试花生收获机工作状态下测产系统的稳定性。在发动机大油门、开动夹持输送装置工况下,产量相对误差绝对值小于2%,在田间试验情况下产量相对误差绝对值小于5%。  相似文献   

2.
穗状玉米测产系统设计与试验   总被引:5,自引:0,他引:5       下载免费PDF全文
设计了由产量监视器、速度传感器、产量传感器、差分全球定位系统(DGPS)、割台高度传感器、升运器转速传感器和玉米果穗导向装置组成的穗状玉米测产系统,并应用该系统进行田间测产试验。收获作业前抽样测量玉米果穗的粒穗比和含水率;玉米收获机工作时,以割台高度传感器作为逻辑开关,割台收获玉米果穗,通过导向装置使玉米果穗以相同速度冲击产量传感器;产量传感器将冲量转化为电信号,并传给产量监视器;产量监视器融合产量、速度、升运器转速及DGPS信息计算出当前小区产量并存储在扩展名为.vld的文件中,应用自行研制的农业空间信息采集与应用系统(DCAS)可绘制收获产量图。2009年秋季应用该系统进行田间玉米收获实时测产,田间试验数据表明该系统测产平均相对误差为18.11%。  相似文献   

3.
谷物联合收获机测产系统性能试验   总被引:1,自引:0,他引:1  
引进Ag Leader谷物测产系统,在国产中小型谷物联合收获机平台上开展了测产系统性能试验.谷物测产系统主要由包括流量传感器等在内的多路传感装置、终端显示及控制平台和GPS系统构成.首先进行了系统传感器的标定试验,然后进行了田间小麦的收获试验.将试验获得的产量数据进一步进行了处理,通过产量数据点的空间自相关性分析发现,产量值采样点在20 m范围内的的相互依赖程度较高;半方差分析表明,测产区域的产量分布空间变异明显,呈现空间聚集分布的特点.克里格插值后的产量分布图呈现斑状分布的趋势,也直观反映了聚集分布的特征,可以为精细农业的实施提供必要的理论依据.  相似文献   

4.
设计了一种快速、便捷的小区测产系统,包括结构设计和软件控制两部分。系统结构部分采用旋转桶与铜箔相结合成测量桶的方式,软件控制部分采用STM32F103RCT6单片机为控制核心。所设计的含水率测量装置采用电容式水分传感器,将两片薄铜箔作为测量电极分别镶嵌到测量桶桶身和中轴预留的槽间隙中,电容式水分传感器与卸料桶相结合,既能实现测产系统含水率的测量,又能将粮箱中样品作物卸出,是一种新型的电容式水分传感器结构。所设计的测产系统能够“一键式”完成对物料样品质量、水分、容重、单位产量数据的采集和存贮,可以多次测量物料水分等信息,并通过USB接口和蓝牙实现信息的导出方便信息的获取和整理,实现了育种的高效、快捷,提高了工作效率。  相似文献   

5.
为了解决花生收获过程中的实时自动测产及远程数据监测存储问题,设计了基于智能传感器的花生收割机实时测产远程监测存储系统,提出了一种新的测产机械结构和方法,并利用智能路由器加密通道建立了一套API框架体系,实现了测量数据的远程传输与实时共享。试验结果表明:收割机终端测产值与智能路由器传回至服务器的数据相对误差绝对值小于5%,数据传输速度快,具备较大的扩展性,验证了测产系统的可行性、可靠性和准确性,应用前景宽广。  相似文献   

6.
联合收获机测产系统数据采集与处理的误差分析   总被引:3,自引:2,他引:3  
张漫  汪懋华 《农业机械学报》2004,35(2):172-174,171
介绍了联合收获机产量数据自动采集系统,总结了美国CASE IH公司2366联合收获机测产系统的田间使用和试验经验,对测产系统中谷物流量传感器、谷物含水率传感器、车速传感器和割幅设置中可能引起的误差进行了分析。  相似文献   

7.
联合收获机称量式测产系统软件设计   总被引:5,自引:0,他引:5  
运用VB 6.0编程语言设计了应用于谷物联合收获机称量式测产系统平台的测产软件。该软件能实时接收、显示和保存测产系统所采集的数据,计算得到实时收获总质量、收获面积等田间信息。软件对谷物流量数据计算处理作出谷物流量图;将GPS接收到的经纬度转换为高斯坐标,在平面直角坐标系中作出GPS轨迹图;最终将流量数据与GPS轨迹数据结合运算生成产量图。作图过程中当曲线即将到达界面边界时,曲线图会自动平移远离边界以保证实时图像的正常显示,在作图结束后可拖拽图像查看完整图形。经测试,软件在室内测产相对误差小于2%,在田间测产相对误差小于3%。  相似文献   

8.
为了进一步提高小麦联合收获机谷物测产系统的准确性与稳定性,本文在第1代基于光电漫反射原理的小麦联合收获机测产装置基础上,结合定量螺旋输送原理,设计了一套联合收获机测产误差动态自校准系统,提出了一种在联合收获机动态条件下,测产误差自动进行反馈校准的方法。该系统由谷物体积传感器、卸粮转速传感器、粮仓粮位传感器、数据采集与处理模块、显示终端和误差反馈校准软件组成。2020年6月在北京市小汤山国家精准农业研究示范基地分别进行了卸粮转速传感器性能试验、室内螺旋输送台架试验和室外田间动态自校准性能验证试验。卸粮转速传感器性能试验结果表明卸粮转速传感器相对误差小于2%。台架试验结果表明,在不同的卸粮转速下,系统监测值与实际输出值误差不大于2.5%,定量螺旋输送谷物瞬时流量与转速呈线性关系,R2达到0.9937。田间试验表明,采用测产误差动态自校准方法的测量误差在-2.95%~3.13%,比未使用该方法的测产装置测量结果降低了0.45个百分点,同时系统的误差波动减小。测产误差动态自校准方法为小麦田间产量信息的准确获取提供了一种新的测量手段。  相似文献   

9.
杨春华  杨玲 《农机化研究》2016,(12):232-236
为了使联合收割机具有自动测产功能,提出了一种基于变权分层激活扩散的产量预测误差剔除模型,并使用单片机设计了联合收获机测产系统。测产系统的主要功能是:在田间进行作业时,收割机可以测出当前的运行速度、收获面积及谷物的总体产量。数据的采集使用霍尔传感器和电容压力传感器,具有较高的精度。模拟信号的处理选用了ADC0804差分式A/D转换芯片,可以有效地克服系统误差,数据传送到单片机处理中心,对每一次转换都进行一次判断,利用变权分层激活扩散模型剔除误差较大的数据,通过计算将数据最终在LCD显示屏进行显示。将系统应用在了收割机上,通过测试得到了谷物产量的测量值,并与真实值进行比较,验证了系统的可靠性。  相似文献   

10.
阐述了谷物测产系统的基本组成以及GPS技术在测产系统中的应用,包括差分DGPS技术定位原理、NMEA—0183语句格式、差分定位精度分析等;并利用Ag Leader公司的AFS测产系统和CASE IH2366谷物联合收获机得到的产量数据,利用SMSbasic3.0系统生成了一块具有GPS位置信息的小麦产量分布图。  相似文献   

11.
设施农业精准灌溉监控系统的研究与开发   总被引:5,自引:0,他引:5  
该系统是针对近年我国设施农业快速发展,但缺乏先进实用的设施农业节水技术与设备而研制开发的.通过土壤水分传感器、植物营养检测系统、精准灌水机、PLC智能控制器、计算机监控等手段,充分合理利用有效水资源,从而使设施农业灌水效率和水的利用率达到最佳。系统应用高精度传感技术、通信技术、数据库存储和处理等技术,将计量系统、灌水设备、植物生长、土壤水分与作物生长规律及需水规律有机结合在一起,使调控手段更加合理,可在线提供实时作物灌溉数据,从而提高产量节省水源,实现精准灌溉,在国内设施农业领域具有创新性。系统具有经济节能、操作容易、自动化程度高的优点,可在异地随时掌握作物灌水情况,大大方便了用户。可广泛应用于温室大棚、精细农业、草地牧场、城市绿化等领域,对节水农业的实施具有重要的现实意义。  相似文献   

12.
收获机作为农业生产的重要生产工具,其喂入量控制一直是自动控制领域研究的热点问题。本文通过分析收获机工作方式,建立收获时收获机喂入量变化模型。设计开发收获机作业参数监测系统,以小麦作为实验对象,在我国华北地区开展田间实验,验证系统喂入量监测精度并同步采集产量、含水率和作业速度等参数,系统喂入量监测平均相对误差为8.55%。以收获机在割台高度不变条件下保持额定喂入量为控制目标状态,收获机作业速度作为控制量,采用模型预测的方法对收获机喂入量进行仿真控制。采用灰狼优化算法优化二次规划的权值矩阵,仿真结果表明,权值矩阵优化后,喂入量控制平均绝对误差小于0.1 kg/s,平均降低38.1%。喂入量控制误差与收获区域的产量成反比,与含水率成正比。在相邻时域内产量、含水率变化较小的收获区域效果更好。  相似文献   

13.
为了降低灌溉自动控制系统的成本,增强其实用性,研究设计了一种基于Mega16的灌溉自动控制系统.在3种质地不同的土壤中,对自制的基于电导原理的土壤水分传感器进行了标定试验.结果表明,在同一土壤类型和同样的耕作条件下,土壤的含盐量保持基本不变,土壤的电导率和土壤的体积含水率之间近似成线性关系.该灌溉自动控制系统能实时监测土壤水分,并进行及时和足量的灌溉.  相似文献   

14.
针对油菜直播地表农田土壤物理机械特性参数室内测量费时费力、田间测量仪器功能单一等问题,设计了一种油菜直播地表土壤物理机械特性参数测量装置,实现集成测量土壤含水率、坚实度、粘聚力和内摩擦角4种土壤物理机械特性参数且测量结果可以通过手机APP实时储存显示。装置基于自走式移动平台实现行走控制,以STM32单片机为核心控制器,利用FDR传感器获取土壤含水率,通过圆锥贯入部件测量土壤坚实度和抗剪切强度参数(包括粘聚力和内摩擦角)。分析了装置的圆锥贯入部件和土壤含水率检测部件测量原理,设计了装置测量控制系统硬件电路及软件,开展了传感器标定试验,确定了柱式压力传感器、薄膜压力传感器和土壤水分传感器的输入输出响应关系。选取71个土壤样本,融合土壤含水率和基于圆锥受力平衡关系获取的摩擦因数,运用最小二乘法建立了土壤粘聚力和内摩擦角数学测量模型,模型决定系数R2分别为0.932和0.956。开展了装置田间测量试验,对土壤含水率、坚实度、粘聚力和内摩擦角进行集成测量,结果表明:相较于AYD-2型土壤坚实度仪、干燥箱干燥法和ZJ-D型直剪仪测量结果,油菜直播地表土壤物理机械特性参数测量装...  相似文献   

15.
简述了微波干燥法测量物料含水率的原理,进行了微波水分测量仪的整体设计,设计了微波干燥装置、高精度质量传感器及调理电路,同时进行了仪器单片机控制电路的软硬件设计,并制作了仪器实体.从试验结果可以看出,微波水分测量仪对物料含水率的测量时间为4min左右,测量误差小于0.05%.与常规微波衰减法含水率测量仪相比,采用微波干燥法测量物料含水率具有速度快、精度高的优点.  相似文献   

16.
毛敏 《农业工程》2021,11(2):56-58
为了实时监测土壤湿度,通过Wi-Fi技术、土壤湿度传感器、Arduino Uno微处理器和Web服务器设计出基于物联网技术的智能灌溉系统,搭建了以土壤湿度传感器和Arduino Uno微处理器为核心的硬件体系,并通过Java语言编写JSP程序完成软件设计。通过试验,该系统可实时监测土壤水分,当测量数据小于设定的阈值时,自动开启浇灌设备,对土壤水分进行智能调节。采用此方法,可使用简单的电路完成复杂的功能,大大降低设计成本,适用于需要实时监测土壤水分的场合。   相似文献   

17.
针对农田灌区范围广、数据量大和实时传输难的特点,设计了一种基于无线传感器网络的农田自动节水灌溉系统;综合运用无线传感器智能信息处理技术和无线数据通信技术,全面提升系统的自动化与监测水平。该系统采用星型拓扑结构组网,通过在监测区域部署ZigBee网络节点,将监测数据汇集到嵌入式测控系统,实现统一的数据管理和网络路由监测功能;以微处理器芯片为核心控制器件,由无线传感器网络节点实时采集和处理土壤温湿度数据,并将其发送到接收端,在接收端对数据进行存储和显示,实时监测土壤温湿变化,实现节水灌溉的自动化控制及水资源的高效利用。试验证明,该系统稳定性好,数据传输可靠性高,通过增加数据采集频率,减少了数据丢包率,使用灵活,适用于不便直接连线的一般监测场合应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号