首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of age of ascospores (0–18 days after discharge), photon flux density (0–494 mol m–2 s–1 PAR), temperature (4–30 °C), frost (–15 °C for 30 min), relative humidity (RH; 0–100%), pH (2.5–6.5) and dryness (0 and 53% RH for up to 40 min) on the germination of the ascospores of the mycotoxin-producing fungus Gibberella zeae (anamorph Fusarium graminearum) were studied. Freshly discharged ascospores germinated within 4 h at 20 °C and 100% RH. The rate of germination and the percentage of viable ascospores decreased over time after the spores were discharged from perithecia. The time course of ascospore germination was not significantly affected by photon flux density. The period of time required to obtain 50% germinated ascospores at 100% RH was 26.90 h at 4 °C, 10.40 h at 14 °C, 3.44 h at 20 °C and 3.31 h at 30 °C. There was no significant effect of frost on the percentage of viable ascospores. A small percentage (6.6 ± 3.8%) of the ascospores germinated at 53% RH. At RH 84% and 20 °C almost 100% of the freshly discharged ascospores germinated. The time course of ascospore germination was affected by pH. The maximum rate of ascospore germination was estimated to be at pH 3.76. Ascospores lost their ability to germinate following exposure to 0% RH almost instantaneously. No germinating spores were detected after an incubation period of 1 min at 0% RH. Incubating the ascospores at 53% RH decreased the percentage of viable spores from 93 to 6% within 10 min. The data demonstrate that age of spores, relative humidity, temperature and pH, but not photon flux density, are key factors in germination of G. zeae ascospores.  相似文献   

2.
Mondal SN  Timmer LW 《Phytopathology》2002,92(12):1267-1275
ABSTRACT Mycosphaerella citri, the cause of citrus greasy spot, produces pseudothecia and ascospores in decomposing leaf litter on the grove floor. In laboratory studies, the effect of wetting and drying and temperature on the formation, maturation, and production of pseudothecia and ascospores was evaluated on mature, detached grapefruit leaves. Production of pseudothecia was most rapid when leaves were soaked five times per week for 2 h per day, but pseudothecial density and total ascospore production were greatest when leaves were soaked three times per week for 2 h per day. In duration of wetting studies, 3 h per day, 3 days per week brought about the most rapid production, but 10 to 30 min per day resulted in production of the most pseudothecia and ascospores. Pseudothecia and ascospore production were greatest at 28 degrees C and declined rapidly at lower and higher temperatures. Maturation of pseudothecia was slow at 20 and 24 degrees C, but production was high at 24 degrees C; at 32 degrees C, pseudothecia matured rapidly, but degenerated quickly. No mature pseudothecia were produced on leaves maintained continuously under wet conditions. In field studies, leaves were placed on the grove floor monthly from April 2000 to September 2001. Pseudothecia production was rapid during the summer rainy season from June to September. Pseudothecia produced on leaves placed in the grove from October to May developed and matured more slowly but were produced in much larger numbers than in summer. The number of days to first pseudothecial initials, 50% maturation, first discharge of ascospores, leaf decomposition, as well as pseudothecial density and incidence, were negatively related to average temperature. Total ascospore production was unrelated to temperature.  相似文献   

3.
Didymella rabiei grew saprophytically on pieces of artificially and naturally infected chickpea stem debris under artificial incubation conditions, and formed pseudothecia and pycnidia. The extent of growth was not significantly affected by temperature of incubation within the range 5–25°C, but was significantly reduced as relative humidity (RH) decreased from 100% to 86%, when no growth occurred. Pseudothecia matured at 10°C and constant 100% RH, or at 5 and 10°C and alternating 100%/34% RH. Under these conditions, pseudothecial maturation, assessed by a pseudothecia maturity index, increased over time according to the logistic model. For temperatures higher than 10°C or RH lower than 100%, pseudothecia either did not form ascospores, or ascopores did not mature and their content degenerated. When pseudothecia that initially developed to a given developmental stage were further incubated at a constant 100% RH, temperature became less limiting for complete pseudothecial development as the developmental stage was more advanced. Pycnidia of the fungus developed and formed viable conidia in all environmental conditions studied, except at 86% RH. However, the density of pycnidia formed and the number of viable conidia per pycnidium were significantly influenced by temperature, RH and the type of debris (artificially or naturally infected) used.  相似文献   

4.
ABSTRACT Ophiosphaerella agrostis, the causal agent of dead spot of creeping bentgrass (Agrostis stolonifera), can produce prodigious numbers of pseudothecia and ascospores throughout the summer. The environmental conditions and seasonal timings associated with O. agrostis ascospore release are unknown. The objectives of this research were to (i) determine the influence of light and relative humidity on ascospore release in a controlled environment, (ii) document the seasonal and daily discharge patterns of ascospores in the field, and (iii) elucidate environmental conditions that promote ascospore release under field conditions. In a growth chamber, a sharp decrease (100 to approximately 50%; 25 degrees C) in relative humidity resulted in a rapid (1- to 3-h) discharge of ascospores, regardless of whether pseudothecia were incubated in constant light or dark. In the field, daily ascospore release increased between 1900 and 2300 h and again between 0700 and 1000 h local time. The release of ascospores occurred primarily during the early morning hours when relative humidity was decreasing and the canopy began to dry, or during evening hours when relative humidity was low and dew began to form. Few ascospores were released between 1100 and 1800 h when the bentgrass canopy was dry. The release of ascospores also was triggered by precipitation. Of the ascospores collected during precipitation events, 87% occurred within 10 h of the beginning of each event.  相似文献   

5.
Pseudothecia containing abundant ascospores of Mycosphaerella brassicicola were produced in vitro on Brussels sprout decoction agar at 15°C under a 16-hour photoperiod of different light regimes. Spermogonia containing spermatia were also produced on the decoction agar. Ascospores were released when cultures were misted with SDW and placed under continuous light. Germination of ascospores was highest between 20°C and 25°C and spores remained viable at relative humidities above 93.5%. Exposure of ascospores to 55% relative humidity for 24 h reduced their germination to 75%. A polyclonal antiserum raised against whole ascospores was used to detect, by immunofluorescence, the ascospore and mycelial wall of M . brassicicola , following reaction with anti-rabbit IgG FITC conjugate. Autofluorescence of spore and mycelial components of other fungal species could be eliminated using the counterstains Evan's blue and eriochrome black at 0.2% and 0.5%, respectively, in phosphate buffered saline (pH 7.2). A procedure was developed to detect, by immunofluorescence, ascospores of M . brassicicola on artificially inoculated Melinex spore tape. Coating of the spore tape with bovine serum albumin provided a suitable support medium and blocking agent for detection of ascospores in the field. The potential use of the system for selective detection of ascospores of M . brassicicola in infected crops of vegetable brassicas in the presence of other ascosporic fungi is discussed. Keywords : ascospores, immunofluorescence, Mycosphaerella brassicicola , spore production, spore trapping .  相似文献   

6.
ABSTRACT The timing of maturation of pseudothecia and discharge of ascospores of the blackleg fungus (Leptosphaeria maculans) is critical in relation to infection early in the cropping season of canola. During 1998 to 2000, development of pseudothecia was investigated on residues of the previous year's canola crop collected from four agroclimatically different locations: Mount Barker (southern high rainfall), Wongan Hills (central medium rainfall), Merredin (central low rainfall), and East Chapman (northern low rainfall) in Western Australia. The pseudothecia matured on residues at different times after harvest in various regions. In general, pseudothecia maturity occurred earlier in the high-rainfall areas than in medium- and low-rainfall areas. An ascospore discharge pattern was investigated from residues of crop from the previous year (6-month-old residues) at three locations-Mount Barker, Wongan Hills, and East Chapman in Western Australia-and from 18-month-old residues that were burnt and raked in the previous year at Mount Barker and East Chapman. Ascospore discharge commenced earlier in high-rainfall (>450 mm) areas (Mount Barker) and late in northern low-rainfall (<325 mm) areas (East Chapman). The major ascospore showers took place during May (late autumn) and June (early winter) at Mount Barker and during July and August (mid- to late winter) at East Chapman. The number of ascospores discharged was extremely low at East Chapman compared with Mount Barker. At both locations, the number of ascospores discharged from 18-month-old residues that were raked and burnt in the previous year were only approximately 10% of those discharged from previous year's residues left undisturbed. The discharge of ascospores on any given day was negatively correlated with accumulated temperatures, maximum temperature, evaporation, minimum and maximum soil temperatures, and solar radiation and was positively correlated with the minimum temperature, rain, and minimum relative humidity. This is the first report describing how pseudothecia mature on residues in different rainfall areas in Western Australia, and it potentially can be used in developing a forecasting system to avoid the synchronization of major ascospore showers with the maximum susceptibility period of canola seedlings.  相似文献   

7.
Ascospores of both A-group and B-group Leptosphaeria maculans germinated at temperatures from 5 to 20°C on leaves of oilseed rape. Germination of ascospores of both groups started 2 h after inoculation and percentage germination reached its maximum about 14 h after inoculation at all temperatures. Both the percentage of A-/B-group ascospores that had germinated after 24 h incubation and germ tube length increased with increasing temperature from 5 to 20°C. Germ tubes from B-group ascospores were longer than those from A-group ascospores at all temperatures, with the greatest difference at 20°C. Hyphae from ascospores of both groups penetrated the leaves predominantly through stomata, at temperatures from 5 to 20°C. A-group ascospores produced highly branched hyphae that grew tortuously, whereas B-group ascospores produced long, straight hyphae. The percentage of germinated ascospores that penetrated stomata increased with increasing temperature from 5 to 20°C and was greater for A-group than for B-group L. maculans after 40 h incubation.  相似文献   

8.
Leptosphaeria maculans and L. biglobosa are damaging pathogens of oilseed rape. The infection of plants occurs predominantly in early autumn or spring by spores produced in pseudothecia. The aim of this study was to investigate whether pseudothecia formed in the autumn are still viable in the spring and to what extend they are destroyed by winter frosts. The studies presented here demonstrated that winter frosts can render pseudothecia unable to release spores. Nevertheless, ascospores present in pseudothecia unable to discharge ascospores, were fully capable of germination, regardless of the incubation temperature. No significant differences were found between the studied Leptosphaeria species in their response to frost. A multiple regression equation has been elaborated to forecast the ability of pseudothecia to release ascospores, based on winter temperatures. Considerable correlation was found between the ascospore release in the autumn and the ability of pseudothecia to release ascospores over the winter period and the subsequent symptoms of stem canker before harvest. We have demonstrated that the potential and the survival of inoculum can have a large impact on the success of the pathogen. This may be particularly important in the light of forecasted climate change. Higher winter temperatures may increase the ability of pseudothecia to release ascospores and the discharge of ascospores of L. maculans and L. biglobosa into the air, and cause early plant infections. This in turn will increase the number of infected plants, the disease incidence at harvest, and reduce the yield of oilseed rape.  相似文献   

9.
ABSTRACT Studies were performed to compare the germination and infection of ascospores and conidia of Didymella rabiei under different temperature and moisture conditions. Germination of ascospores and conidia on cover glasses coated with water agar began after 2 h, with maximum germination (>95%) occurring in 6 h at 20 degrees C. No germination occurred at 0 and 35 degrees C. Ascospores germinated more rapidly than conidia at all temperatures. Germination declined rapidly as the water potential varied from 0 to -4 MPa, although some germination occurred at -6 MPa at 20 and 25 degrees C. Ascospores germinated over a wider range of water potentials than conidia and their germ tubes were longer than those of conidia at most water potentials and temperatures. The optimum temperature for infection and disease development by both ascospores and conidia was around 20 degrees C. Disease severity was higher when ascospores were discharged directly onto plant surfaces from naturally infested chickpea debris compared with aqueous suspensions of ascospores and conidia sprayed onto plants Disease severity increased as the length of the wetness period increased. When dry periods of 6 to 48 h occurred immediately after inoculation, disease severity decreased, except for the shorter periods which had the opposite effect. Disease severity was higher with ascospore inoculum when no dry periods occurred after inoculation.  相似文献   

10.
We investigated the diurnal pattern of ascospore discharge of the Japanese pear scab fungus (Venturia nashicola Tanaka & Yamamoto) in an orchard. Ascospores of V. nashicola were mainly discharged during the day. Most ascospores were discharged from 7:00 to 19:00: 99.6% in 2001, 99.3% in 2002, and 93.8% in 2005. Because the ascospores were discharged only when the fallen diseased leaves were wet from precipitation, the wetness of these leaves is probably imperative for spore discharge. Ascospore discharge began immediately after precipitation in the daytime. When it rained at night, however, ascospore discharge did not begin until the following morning and never began immediately after precipitation. We also investigated other meteorological factors. When fallen diseased leaves were wet, the percentage of ascospore discharge was positively correlated with the amount of solar radiation and atmospheric temperature and negatively correlated with relative humidity. Ascospore discharge was interrupted by a decrease in solar radiation and atmospheric temperature and by increased relative humidity at night. This report is the first that V. nashicola discharges ascospores primarily during the day.  相似文献   

11.
The incidence and severity of Ascochyta blight in potted chickpea trap plants exposed for 1-wk periods near infested chickpea debris in Córdoba, Spain, or in chickpea trap crops at least 100 m from infested chickpea debris in several locations in southern Spain were correlated with pseudothecial maturity and ascospore production ofDidymella rabiei from nearby chickpea debris. The period of ascospore availability varied from January to May and depended on rain and maturity of pseudothecia. The airborne concentration of ascospores ofD. rabiei was also monitored in 1988. Ascospores were trapped mostly from the beginning of January to late February; this period coincided with that of maturity of pseudothecia on the chickpea debris. Most ascospores were trapped on rainy days during daylight and 70% were trapped between 12.00 and 18.00 h. Autumn-winter sowings of chickpea were exposed longer to ascospore inoculum than the more traditional spring sowings because the autumn-winter sowings were exposed to the entire period of ascospore production on infested chickpea debris lying on the soil surface.  相似文献   

12.
A system was elaborated to estimate the dynamics of primary inoculum of Venturia inaequalis in apple orchards. It separates the primary inoculum season into five periods with different risks: absent (ascospores not yet mature); potential (ascospores mature but not yet ready to be discharged); actual (ascospores can be discharged when favourable conditions occur); present (ascospores are airborne); exhausted (all ascospores have been ejected). These periods were determined by two mathematical models, which use meteorological parameters as driving variables. The first model estimates the development stage of the overwintering pseudothecia and then determines when the first pseudothecia contain pigmented and mature ascospores. A threshold of mature ascospores inside pseudothecia defines when the ascospores become ready for discharge. The second model estimates the proportion of the season's ascospores that are airborne on each discharging event, using temperature and leaf wetness, expressed as the degrees accumulated daily in the hours when leaves are wet. Estimates of absent and potential risk were verified by collecting data on the first ascospore discharge in the period 1991/1998 at Bologna and Modena (northern Italy), and they were always found to be accurate. To verify the estimates of actual, present and exhausted risk, the model outputs were compared with data collected by spore samplers at Modena and Bologna in 1997 and 1998: they were sufficiently accurate because the greatest part of the records from the spore sampler fell inside the confidence limits of the model.  相似文献   

13.
ABSTRACT Greasy spot, caused by Mycosphaerella citri, produces a leaf spot disease affecting all citrus species in Florida and the Caribbean Basin. M. citri produces pseudothecia and ascospores, which are considered the principal source of inoculum, in decomposing leaves on the grove floor. In studies using a computer-controlled environmental chamber, a single rain event triggered release of most mature ascospores beginning 30 to 60 min after the rain event. Additional rain events did not bring about further release. High relative humidity without rain triggered release of low numbers of ascospores, but vibration and red/infrared irradiation had little or no effect on ascospore release. After three to four cycles of wetting and drying of leaves, all pseudothecia had matured and released their ascospores. In the field, ascospores were detectable starting about 2 h after the beginning of a rain or irrigation and most ascospores were released within 16 h. Ascospore release was greatest following rain events and somewhat less following irrigations, and low numbers of ascospores were detectable on days without precipitation. Ascospore numbers declined linearly with horizontal distance from the source and as a function of the logarithm of ascospore numbers with vertical distance. Low numbers of ascospores were detected 7.5 m above the ground and 90 m downwind from the grove. Ascospore release can be advanced by irrigating frequently during dry, nonconducive conditions to stimulate ascospore release when environmental conditions are unfavorable for infection, but the eventual effects on disease severity are uncertain.  相似文献   

14.
Despite differences in climate and in timing of light leaf spot epidemics between Poland and the UK, experiments provided no evidence that there are epidemiological differences between populations of Pyrenopeziza brassicae in the two countries. Ascospores of Polish or UK P. brassicae isolates germinated on water agar at temperatures from 8 to 24°C. After 12 h of incubation, percentages of ascospores that germinated were greatest at 16°C: 85% (Polish isolates) and 86% (UK isolates). The percentage germination reached 100% after 80 h of incubation at all temperatures tested. The rate of increase in germ tube length increased with increasing temperature from 8 to 20°C but decreased from 20 to 24°C, for both Polish and UK isolates. Percentage germination and germ tube lengths of UK P. brassicae ascospores were less affected by temperature than those of conidia. P. brassicae produced conidia on oilseed rape leaves inoculated with ascospores or conidia of Polish or UK isolates at 16°C with leaf wetness durations from 6 to 72 h, with most sporulation after 48 or 72 h wetness. Detection of both mating types of P. brassicae and production of mature apothecia on leaves inoculated with mixed Polish populations suggest that sexual reproduction does occur in Poland, as in the UK.  相似文献   

15.
Trials were carried out to investigate the effects of light and temperature on germination of Rumex obtusifolius L. After several months of storage, seeds gradually lost dormancy and became photosensitive. Thermal optima for germination were between 20 °C and 25 °C in light or in darkness. At lower temperatures there was a greater demand for light, so that the greatest differences in germination percentage (between low and high temperatures) were found within the 10–15 °C temperature range. The calculated thermal minima ( x -intercept method) in light and darkness were 8.3 °C and 6.1 °C respectively. Daily temperature fluctuation increased germination even after seed irradiation with far-red light, suggesting a lower demand for the far-red-absorbing form of phytochrome. Seed burial inhibited germination in proportion to depth; however, germination inhibition was independent of seed phytochrome photo-equilibrium, which had been diversified by seed pretreatment with light. Seedlings did not emerge when seeds were buried >8 cm deep. Recovery of ungerminated seeds showed that excessive burial did not impede seedling emergence but rather prevented seed germination. However, this induction of dormancy was lost once germination processes were activated (24–48 h at 20 °C) that made germination irreversible. Temperature was also involved in inhibition, and low temperature (<15 °C) induced the least inhibition. This is discussed in terms of processes of respiration and fermentation in buried seeds.  相似文献   

16.
The environmental factors that influence infection of lettuce by ascospores of Sclerotinia sclerotiorum , and subsequent disease development, were investigated in controlled environment and field conditions. When lettuce plants were inoculated with a suspension of ascospores in water or with dry ascospores and exposed to a range of wetness durations or relative humidities at different temperatures, all plants developed disease but there was no relationship between leaf wetness duration or humidity and percentage of diseased plants. Ascospores started to germinate on lettuce leaves after 2–4 h of continuous leaf wetness at optimum temperatures of 15–25°C. The rate of development of sclerotinia disease and the final percentage of plants affected after 50 days were greatest at 16–27°C, with disease symptoms first observed 7–9 days after inoculation, and maximum final disease levels of 96%. At lower temperatures, 8–11°C, disease was first observed 20–26 days after inoculation, with maximum final disease levels of 10%. Disease symptoms were always observed first at the stem base. In field-grown lettuce in Norfolk, 2000 and 2001, inoculated with ascospore suspensions, disease occurred only in lettuce planted in May and June, with a range of 20–49% of plants with disease by 8 weeks after inoculation. In naturally infected field-grown lettuce in Cheshire, 2000, disease occurred mainly in lettuce planted throughout May, with a maximum of 31% lettuce diseased within one planting, but subsequent plantings had little (≤ 4%) or no disease. Lack of disease in the later plantings in both Norfolk and Cheshire could not be attributed to differences in weather factors.  相似文献   

17.
In controlled environment experiments, sporulation of Pyrenopeziza brassicae was observed on leaves of oilseed rape inoculated with ascospores or conidia at temperatures from 8 to 20°C at all leaf wetness durations from 6 to 72 h, except after 6 h leaf wetness duration at 8°C. The shortest times from inoculation to first observed sporulation ( l 0), for both ascospore and conidial inoculum, were 11–12 days at 16°C after 48 h wetness duration. For both ascospore and conidial inoculum (48 h wetness duration), the number of conidia produced per cm2 leaf area with sporulation was seven to eight times less at 20°C than at 8, 12 or 16°C. Values of Gompertz parameters c (maximum percentage leaf area with sporulation), r (maximum rate of increase in percentage leaf area with sporulation) and l 37 (days from inoculation to 37% of maximum sporulation), estimated by fitting the equation to the observed data, were linearly related to values predicted by inserting temperature and wetness duration treatment values into existing equations. The observed data were fitted better by logistic equations than by Gompertz equations (which overestimated at low temperatures). For both ascospore and conidial inoculum, the latent period derived from the logistic equation (days from inoculation to 50% of maximum sporulation, l 50) of P. brassicae was generally shortest at 16°C, and increased as temperature increased to 20°C or decreased to 8°C. Minimum numbers of spores needed to produce sporulation on leaves were ≈25 ascospores per leaf and ≈700 conidia per leaf, at 16°C after 48 h leaf wetness duration.  相似文献   

18.
The effects of temperature, wetness and darkness on formation of pseudothecia and the effect of temperature on the release of ascospores of L. maculans on oilseed rape stubble were studied in a controlled environment in South Australia. Pseudothecia of L. maculans developed at 5–20°C and the time taken to reach maturity and discharge ascospores decreased from 58 days at 5°C to 22.2 days at 15°C. The optimum temperature of those tested for pseudothecium maturation was between 15°C and 20°C but fewer pseudothecia were observed at 20°C than at 15°C. Exposure to a 12 h photoperiod enhanced pseudothecium formation on the stubble compared with continuous darkness. No pseudothecia formed on stubble moistened once a day at 15°C, whereas three sprays of water per day decreased maturation time in comparison with two sprays per day. More ascospores were released for a longer duration at 20°C than at 5–15°C, although peak sporulation occurred earlier at 5–10°C than at 20°C. These findings highlight the importance of moisture, temperature and light for production and release of inoculum from stubble. This information, combined with field data, may help to predict the onset of inoculum release.  相似文献   

19.
ABSTRACT The development of Didymella rabiei on debris of naturally infected chickpea was investigated in four chickpea-growing areas with different climatic conditions in Spain during 1987 to 1992. D. rabiei extensively colonized chickpea debris and formed pseudothecia and pycnidia. Differentiation of pseudothecial initials occurred regularly across experimental locations by November, 1 month after placement of debris on the soil. Ascospore maturation occurred mainly from late January to late March, depending on location and year. Maximum ascospore discharge from sampled debris pieces placed under suitable environmental conditions occurred 2 to 4 weeks after ascospore maturation, after which ascospore release decreased sharply. Pseudothecia were exhausted, due to ascospore discharge, by the beginning of summer. New asci did not develop in empty pseudothecia and no pseudothecia formed in tissues after the first season. Ascospore maturation and liberation in cooler locations were more uniform and occurred later compared to maturation in warmer locations. Also, production of asci and ascospores per pseudothecium was much higher in cooler than in warmer locations. A similar relationship was found for density of pseudothecia and pycnidia and conidia production per pycnidium. The percentage of mature pseudothecia increased according to the logistic model, with the cumulative number of Celsius degree days calculated by computing the mean of the maximum and minimum daily air temperatures on rainy days from the date of debris placement on the soil. There were significant differences among model parameter estimates between cooler and warmer locations, but minor differences were found among parameters for locations with similar environmental conditions. There was an inverse linear relationship between the average temperature during the period of pseudothecia maturation and the number of asci produced per pseudothecium.  相似文献   

20.
Microbe-Mediated Germination of Ascospores of Monosporascus cannonballus   总被引:1,自引:0,他引:1  
ABSTRACT Ascospores of Monosporascus cannonballus germinated readily in the rhizosphere of cantaloupe plants growing in field soil. However, little or no germination occurred in the rhizosphere of melon plants growing in field soil that was autoclaved prior to infestation with ascospores. The latter data suggested that root exudates alone do not stimulate ascospore germination and that the soil microflora may be involved in the induction of ascospore germination. Amending field soil with streptomycin (which inhibits gram-negative microorganisms) did not suppress ascospore germination in the rhizosphere of cantaloupe plants. However, amending the soil with penicillin (which inhibits gram-positive microorganisms) did suppress ascospore germination. Pentachloronitrobenzene (PCNB), which inhibits the gram-positive actinomycetes but does not inhibit gram-positive or gram-negative bacteria, also suppressed ascospore germination. These results suggest that actinomycetes, either directly or indirectly, are involved in the induction of ascospore germination in field soil in the presence of exudates from cantaloupe roots. Optimum germination occurred at temperatures ranging from 25 to 35 degrees C, and data indicate that a high percentage (>/=72%) of the ascospore population within 500 mum of a root are capable of germination and subsequent penetration of cantaloupe roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号