首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 534 毫秒
1.
Although morel mushrooms are widely used as tasty ingredients in savory dishes, knowledge of the key compounds evoking their attractive taste is still very fragmentary. In the present study, taste activity-guided fractionation of an aqueous morel extract by means of the recently developed taste dilution analysis (TDA) enabled the localization of several umami-like-tasting fractions as well as a fraction imparting an intense mouth-drying sensation to the oral cavity. Hydrophilic interaction liquid chromatography (HILIC), LC-MS, and amino acid analysis led to the successful identification of gamma-aminobutyric acid as the chemical inducer of the mouth-drying and mouth-coating oral sensations imparted by the morel extract. Besides the well-known umami-like taste contributors L-glutamic acid, L-aspartic acid, and succinic acid, an additional HILIC fraction was isolated and evaluated as tasting umami-like. LC-MS and NMR studies revealed that this fraction consisted of a mixture of (S)-malic acid 1-O-alpha-D-glucopyranoside and (S)-malic acid 1-O-beta-D-glucopyranoside, the structure of which could be successfully confirmed by independent synthesis. To the best of our knowledge, this morel-derived glycoside, which we named (S)-morelid, has previously not been reported in any food products. Sensory analysis of aqueous solutions of the compounds identified revealed threshold concentrations of 0.02 mmol/L for the mouth-drying effect of gamma-aminobutyric acid and 6.0 mmol/L for the umami-like, slightly sour taste of (S)-morelid.  相似文献   

2.
Sensory-guided decomposition of roasted cocoa nibs revealed that, besides theobromine and caffeine, a series of bitter-tasting 2,5-diketopiperazines and flavan-3-ols were the key inducers of the bitter taste as well as the astringent mouthfeel imparted upon consumption of roasted cocoa. In addition, a number of polyphenol glycopyranosides as well as a series of N-phenylpropenoyl-l-amino acids have been identified as key astringent compounds of roasted cocoa. In the present investigation, a total of 84 putative taste compounds were quantified in roasted cocoa beans and then rated for the taste contribution on the basis of dose-over-threshold (DoT) factors to bridge the gap between pure structural chemistry and human taste perception. To verify these quantitative results, an aqueous taste reconstitute was prepared by blending aqueous solutions of the individual taste compounds in their "natural" concentrations. Sensory analyses revealed that the taste profile of this artificial cocktail was very close to the taste profile of an aqueous suspension of roasted cocoa nibs. To further narrow down the number of key taste compounds, finally, taste omission experiments and human dose/response functions were performed, demonstrating that the bitter-tasting alkaloids theobromine and caffeine, seven bitter-tasting diketopiperazines, seven bitter- and astringent-tasting flavan-3-ols, six puckering astringent N-phenylpropenoyl-l-amino acids, four velvety astringent flavonol glycosides, gamma-aminobutyric acid, beta-aminoisobutyric acid, and six organic acids are the key organoleptics of the roasted cocoa nibs.  相似文献   

3.
Recently, bioresponse-guided fractionation of black tea infusions indicated that neither the high molecular weight thearubigens nor the theaflavins, but a series of 14 flavon-3-ol glycopyranosides besides some catechins, might be important contributors to black tea taste. To further bridge the gap between pure structural chemistry and human taste perception, in the present investigation 51 putative taste compounds have been quantified in a black tea infusion, and their dose-over-threshold (Dot) factors have been calculated on the basis of a dose/threshold relationship. To confirm these quantitative results, an aqueous taste model was prepared by blending aqueous solutions of 15 amino acids, 14 flavonol-glycosides, 8 flavan-3-ols, 5 theaflavins, 5 organic acids, 3 sugars, and caffeine in their "natural" concentrations. Sensory analyses revealed that the taste profile of this artificial cocktail did not differ significantly from the taste profile of the authentic tea infusion. To further narrow the number of key taste compounds, finally, taste omission experiments have been performed, on the basis of which a reduced recombinate was prepared containing the bitter-tasting caffeine, nine velvety astringent flavonol-3-glycosides, and the puckering astringent catechin as well as the astringent and bitter epigallocatechin-3-gallate. The taste profile of this reduced recombinate differed not significantly from that of the complete taste recombinate, thus confirming these 12 compounds as the key taste compounds of the tea infusion. Additional sensory studies demonstrated for the first time that the flavanol-3-glycosides not only impart a velvety astringent taste sensation to the oral cavity but also contribute to the bitter taste of tea infusions by amplifying the bitterness of caffeine.  相似文献   

4.
5.
Addition of a nearly tasteless aqueous extract isolated from beans (Phaseolus vulgaris L.) to a model chicken broth enhanced its mouthfulness and complexity and induced a much more long-lasting savory taste sensation on the tongue. Gel permeation chromatography and hydrophilic interaction liquid chromatography/comparative taste dilution analysis (HILIC/cTDA), followed by LC-MS/MS and 1D/2D-NMR experiments, led to the identification of gamma-L-glutamyl-L-leucine, gamma-L-glutamyl-L-valine, and gamma-L-glutamyl-L-cysteinyl-beta-alanine as key molecules inducing this taste-modifying effect. Sensory analysis of aqueous solutions of these peptides showed threshold concentrations between 3.3 and 9.4 mmol/L for an unspecific, slightly astringent sensation. More interestingly, when added to a savory matrix such as sodium chloride and monosodium glutamate solutions or chicken broth, the detection thresholds of these gamma-glutamyl peptides decreased significantly and remarkably enhanced mouthfulness, complexity, and long-lastingness of the savory taste were observed; for example, the threshold of gamma-glutamyl-cysteinyl-beta-alanine decreased by a factor of 32 in a binary mixture of glutamic acid and sodium chloride. As tasteless molecules inducing mouthfulness, thickness, and increasing continuity of savory foods were coined about 10 years ago as "kokumi" flavor compounds, the peptides identified in raw as well as thermally treated beans have to be considered as kokumi compounds.  相似文献   

6.
Thermal treatment of aqueous solutions of xylose and primary amino acids led to rapid development of a bitter taste of the reaction mixture. To characterize the key compound causing this bitter taste, a novel bioassay, which is based on the determination of the taste threshold of reaction products in serial dilutions of HPLC fractions, was developed to select the most intense taste compounds in the complex mixture of Maillard reaction products. By application of this so-called taste dilution analysis (TDA) 21 fractions were obtained, among which 1 fraction was evaluated with by far the highest taste impact. Carefully planned LC-MS as well as 1D and 2D NMR experiments were, therefore, focused on the compound contributing the most to the intense bitter taste of the Maillard mixture and led to its unequivocal identification as the previously unknown 3-(2-furyl)-8-[(2-furyl)methyl]-4-hydroxymethyl-1-oxo-1H,4H-quinolizinium-7-olate. This novel compound, which we name quinizolate, exhibited an intense bitter taste at an extraordinarily low detection threshold of 0.00025 mmol/kg of water. As this novel taste compound was found to have 2000- and 28-fold lower threshold concentrations than the standard bitter compounds caffeine and quinine hydrochloride, respectively, quinizolate might be one of the most intense bitter compounds reported so far.  相似文献   

7.
Aimed at increasing our knowledge on the sensory-active nonvolatiles migrating from oak wood into alcoholic beverages upon cooperaging, an aqueous ethanolic extract prepared from oak wood chips (Quercus alba L.) was screened for its key taste compounds by application of the taste dilution analysis. Purification of the compounds perceived with the highest sensory impacts, followed by liquid chromatography/mass spectrometry as well as one-dimensional and two-dimensional NMR experiments, revealed the ellagitannins vescalagin, castalagin, and grandinin, the roburins A-E, and 33-deoxy-33-carboxyvescalagin as the key molecules imparting an astringent oral sensation. To the best of our knowledge, 33-deoxy-33-carboxyvescalagin has as yet not been reported as a phytochemical in Q. alba L. In addition, the sensory activity of these ellagitannins was determined for the first time on the basis of their human threshold concentrations and dose/response functions. Furthermore, the ellagitannins have been quantitatively determined in extracts prepared from Q. alba L. and Quercus robur L., respectively, as well as in bourbon whiskey and oak-matured red wines, and the sensory contribution of the individual compounds has been evaluated for the first time on the basis of dose/activity considerations.  相似文献   

8.
A method for evaluating the umami taste intensity of green tea by a taste sensor system was established. Interference in the measurement from catechins was solved by removing the catechins from sample solutions with poly(vinylpolypyrrolidone). A 5.00 mM aqueous solution of glutamic acid monosodium salt was used as the standard solution. Sensor outputs were converted into EIT uma (estimated intensity of taste concerning umami) values. One unit on the EIT uma scale was defined as the amount of the sensor output corresponding to a difference in 1.2 times the concentration of the standard substance (glutamic acid monosodium salt). The umami taste intensity of green tea was classified into six grades on the EIT uma scale. Sensory tests proved that the EIT uma value had a high correlation to the human gustatory sense.  相似文献   

9.
Aimed at defining the key drivers for the quality-determining umami taste of a high-grade powdered green tea, called mat-cha, a bioactivity-guided fractionation using solvent extraction, solvent precipitation, preparative chromatographic separations, and human psychophysical experiments was applied on freshly prepared mat-cha. Liquid chromatography-tandem mass spectrometry and one-/two-dimensional nuclear magnetic resonance studies on isolated fractions led to the identification of l-theanine, succinic acid, 3,4,5-trihydroxybenzoic acid (gallic acid), and (1R,2R,3R,5S)-5-carboxy-2,3,5-trihydroxycyclohexyl-3,4,5-trihydroxybenzoate (theogallin) as umami-enhancing compounds in the green tea beverage, and it can be shown by sensory studies that these compounds are able to raise the umami intensity of sodium l-glutamate proportionally.  相似文献   

10.
The aim of this work was to determine the relative impact of water-soluble compounds on the gustatory properties of a goat cheese water-soluble extract (WSE). Using a semisynthetic model mixture (MWSE) previously elaborated in physicochemical and gustatory accordance with the cheese WSE (see part 1, Engel et al. J. Agric. Food Chem. 2000, 48, 4252-4259), omission tests were performed. Among the main taste characteristics of the WSE (salty, sour, and bitter), saltiness was explained by an additive contribution of sodium, potassium, calcium, and magnesium cations, whereas sourness was mainly due to a synergistic effect involving sodium chloride, phosphates, and lactic acid and bitterness was found to result from calcium and magnesium chlorides, the impact of which was partially masked by sodium chloride. In contrast, amino acids, lactose, and peptides did not have any significant impact on WSE taste properties. To quantify the contribution of the taste active compounds to bitterness and saltiness, stepwise multiple linear regressions were performed. Those contributions were expressed as a percentage of the considered taste characteristic intensity in the WSE. The model obtained allowed up to 97.4% of the perceived saltiness to be described and approximately 85% of the bitterness.  相似文献   

11.
In a greenhouse experiment, tomato plants were grown in sand culture to test whether different fertilization regimes (mineral or organic fertilizers) at low (500 mg N plant–1 week–1) and high (750 mg N plant–1 week–1) nitrogen levels affected yield, nutritional quality, and taste of the fruits. In the mineral‐fertilizer treatments, nitrate‐ or ammonium‐dominated nutrient solutions were used. Organic fertilizer was supplied as fresh cut grass‐clover mulch (a total of 2.4 kg and 3.6 kg were given per plant at low and high N level, respectively) without (orgN) and with additional sulfur fertilization (orgN+S). Yields of red tomatoes from the organically fertilized plants were significantly lower (1.3–1.8 kg plant–1) than yields from plants that received mineral fertilizer (2.2–2.8 kg plant–1). At the final harvest, yields of green tomatoes in the organic treatment with extra sulfur were similar (1.1–1.2 kg plant–1) to the NO ‐dominated treatments at both nutrient levels and the NH ‐dominated treatment at high nutrient level. Organic fertilizers released nutrients more slowly than mineral fertilizers, resulting in decreased S and P concentrations in the leaves, which limited growth and yield in the orgN treatments. Analysis of tomato fruits and plants as well as taste‐test results gave no conclusive answer on the relationship between sugar or acid contents in the fruits, macronutrient content of plant leaves and fruits, and perceived taste. Sugar contents were higher in the fruits given mineral fertilizer, whereas acid contents were higher in the fruits given organic fertilizer. Preference in taste was given to the tomatoes from plants fertilized with the nitrate‐dominated nutrient solution and to those given organic fertilizer with extra sulfur. Thus, a reduction in growth, which was expected to lead to a higher concentration of compounds like sugars and acids, did not result in better taste. Overall, it can be concluded that an appropriate nutrient supply is crucial to reach high yields and good taste.  相似文献   

12.
Application of chromatographic separation and taste dilution analyses recently revealed besides procyanidins a series of N-phenylpropenoyl amino acids as the key contributors to the astringent taste of nonfermented cocoa beans as well as roasted cocoa nibs. Because these amides have as yet not been reported as key taste compounds, this paper presents the isolation, structure determination, and sensory activity of these amino acid amides. Besides the previously reported (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-3-hydroxy-L-tyrosine (clovamide), (-)-N-[4'-hydroxy-(E)-cinnamoyl]-L-tyrosine (deoxyclovamide), and (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-tyrosine, seven additional amides, namely, (+)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-aspartic acid, (+)-N-[4'-hydroxy-(E)-cinnamoyl]-L-aspartic acid, (-)-N-[3',4'-dihydroxy-(E)-cinnamoyl]-L-glutamic acid, (-)-N-[4'-hydroxy-(E)-cinnamoyl]-L-glutamic acid, (-)-N-[4'-hydroxy-(E)-cinnamoyl]-3-hydroxy-L-tyrosine, (+)-N-[4'-hydroxy-3'-methoxy-(E)-cinnamoyl]-L-aspartic acid, and (+)-N-[(E)-cinnamoyl]-L-aspartic acid, were identified for the first time in cocoa products by means of LC-MS/MS, 1D/2D-NMR, UV-vis, CD spectroscopy, and polarimetry, as well as independent enantiopure synthesis. Using the recently developed half-tongue test, human recognition thresholds for the astringent and mouth-drying oral sensation were determined to be between 26 and 220 micromol/L (water) depending on the amino acid moiety. In addition, exposure to light rapidly converted these [E]-configured N-phenylpropenoyl amino acids into the corresponding [Z]-isomers, thus indicating that analysis of these compounds in food and plant materials needs to be performed very carefully in the absence of light to prevent artifact formation.  相似文献   

13.
Increased intensity of train oil taste, bitterness, and metal taste are the most pronounced sensory changes during frozen storage of salmon (Refsgaard, H. H. F.; Brockhoff, P. B.; Jensen, B. Sensory and Chemical Changes in Farmed Atlantic Salmon (Salmo salar) during Frozen Storage. J. Agric. Food Chem. 1998a, 46, 3473-3479). Addition of each of the unsaturated fatty acids: palmitoleic acid (16:1, n - 7), linoleic acid (C18:2, n - 6), eicosapentaenoic acid (EPA; C20:5, n - 3) and docosahexaenoic acid (DHA; C22:6, n - 3) to fresh minced salmon changed the sensory perception and increased the intensity of train oil taste, bitterness, and metal taste. The added level of each fatty acid ( approximately 1 mg/g salmon meat) was equivalent to the concentration of the fatty acids determined in salmon stored as fillet at -10 degrees C for 6 months. The effect of addition of the fatty acids on the intensity of train oil taste, bitterness and metal taste was in the order: DHA > palmitoleic acid > linoleic acid > EPA. Formation of free fatty acids was inhibited by cooking the salmon meat before storage. Furthermore, no changes in phospholipid level were observed during frozen storage. The results suggest that enzymatic hydrolysis of neutral lipids plays a major role in the sensory deterioration of salmon during frozen storage.  相似文献   

14.
The first comprehensive quantitative determination of 49 putative taste-active metabolites and mineral salts in 4- and 44-week-ripened Gouda cheese, respectively, has been performed; the ranking of these compounds in their sensory impact based on dose-over-threshold (DoT) factors, followed by the confirmation of their sensory relevance by taste reconstruction and omission experiments enabled the decoding of the nonvolatile sensometabolome of Gouda cheese. The bitterness of the cheese matured for 44 weeks was found to be induced by CaCl2 and MgCl2, as well as various bitter-tasting free amino acids, whereas bitter peptides were found to influence more the bitterness quality rather than the bitter intensity of the cheese. The DoT factors determined for the individual bitter peptides gave strong evidence that their sensory contribution is mainly due to the decapeptide YPFPGPIHNS and the nonapeptides YPFPGPIPN and YPFPGPIHN, assigned to the casein sequences beta-CN(60-69) and beta-CN(60-68), respectively, as well as the tetrapeptide LPQE released from alphas1-CN(11-14). Lactic acid and hydrogen phosphate were identified to play the key role for the sourness of Gouda cheese, whereas umami taste was found to be due to monosodium L-glutamate and sodium lactate. Moreover, saltiness was induced by sodium chloride and sodium phosphate and was demonstrated to be significantly enhanced by L-arginine.  相似文献   

15.
Activity-directed fractionation of heated carbohydrate/alanine solutions recently led to the discovery of (+)-(S)-1-(1-carboxyethyl)-5-hydroxy-2-(hydroxymethyl)pyridinium inner salt (1, alapyridaine), and it has been shown that this compound lowers the detection thresholds of sugars, glutamate, and NaCl solutions, whereas no influence on bitter perception was observed. As this class of Maillard-derived pyridinium betaines seemed to be promising targets for further research on their taste modulatory activity, the objective of the present investigation was to screen for bitter taste-suppressing target molecules in combinatorial libraries of pyridinium betaines prepared from 5-(hydroxymethyl)furan-2-aldehyde and amino acid mixtures by use of Maillard-type reaction chemistry instead of synthesizing and purifying each derivative individually. By application of hydrophilic interaction liquid chromatography in combination with the recently developed comparative taste dilution analysis, followed by structure determination, synthesis, and sensory studies, we have now succeeded in identifying 1-carboxymethyl-5-hydroxy-2-hydroxymethylpyridinium inner salt (2) as a potential bitter-suppressing candidate. While tasteless on its own, 2 was found to reduce the bitterness of various bitter tastants such as the amino acid L-phenylalanine, the peptide Gly-Leu, the alkaloid caffeine, and the bitter glycosides salicin and naringin.  相似文献   

16.
Thermal treatment of aqueous solutions of xylose, rhamnose, and l-alanine led to a rapid development of a bitter taste of the reaction mixture. To characterize the key compounds causing this bitter taste, the recently developed taste dilution analysis (TDA), which is based on the determination of the taste threshold of reaction products in serial dilutions of HPLC fractions, was performed to locate the most intense taste compounds in the complex mixture of Maillard reaction products. By application of this TDA, 26 fractions were obtained, among which seven fractions were evaluated with a high taste impact. LC/MS and NMR spectroscopy as well as synthetic experiments revealed the 1-oxo-2,3-dihydro-1H-indolizinium-6-olates 1-5 as the key compounds contributing the most to the intense bitter taste of the Maillard mixture. Calculation of the taste impact of these compounds based on a dose/activity relationship indicated that these five compounds already accounted for 56.8% of the overall bitterness of the Maillard mixture, thus demonstrating this class of 1-oxo-2,3-dihydro-1H-indolizinium-6-olates as the key bitter compounds. First synthetic studies on the relationship between the chemical structure and the human psychobiological activity of 1-oxo-2,3-dihydro-1H-indolizinium-6-olates revealed that substitution of the furan rings of 1 by 5-methylfuryl moieties (compounds 3-5) or by 5-(hydroxymethyl)furyl groups (compound 6) led to a significant increase of the bitter threshold. In contrast, the substitution of the oxygen atoms in the furan rings of 1 by sulfur atoms induced a significant decrease of the detection threshold of the 1-oxo-2,3-dihydro-1H-indolizinium-6-olate; for example, the thiophene derivative 7 showed the extraordinarily low bitter detection threshold of 6.3 x 10(-5) mmol/kg (water).  相似文献   

17.
Angiotensin-converting enzyme (ACE), playing a crucial role in the renin angiotensin aldosterone system, is well-known to catalyze the conversion of the decapeptide angiotensin I into the physiologically active octapeptide angiotensin II, triggering blood pressure increasing mechanisms. To meet the demand for natural phytochemicals as antihypertensive agents in functional food development, extracts prepared from a series of vegetables were screened for their ACE-inhibitory activity by means of a LC-MS/MS-based in vitro assay. By far the highest ACE inhibition was found for a lettuce extract, in which the most active compound was located by means of activity-guided fractionation. LC-MS, NMR spectroscopy, and hydrolysis experiments followed by ion chromatography led to the unequivocal identification of the ACE inhibitor as the previously not reported (S)-malic acid 1'-O-β-gentiobioside. This glycoside represents a novel class of ACE-inhibiting phytochemicals with a low IC(50) value of 27.8 μM. First incubation experiments in saliva and aqueous hydrochloric acid demonstrated the stability of (S)-malic acid 1'-O-β-gentiobioside against salivary glycosidases and stomach acid.  相似文献   

18.
Targeted metabolite analysis of aqueous extract of Rumex induratus leaves, in terms of phenolic compounds and organic acids, and the study of its antioxidant activity against the DPPH(*) radical, a reactive oxygen species, hypochlorous acid, and a reactive nitrogen species, nitric oxide ((*)NO), were performed. The samples were collected in several locations, spontaneously occurring or from greenhouse culture, at different stages of development and seasons. The phenolic composition was achieved by high-performance liquid chromatography (HPLC)-diode array detection, and four hydroxycinnamic acid derivatives and 10 flavonoid glycosides (C- and O-heterosides) were determined. Organic acids composition was established by HPLC-UV, revealing five compounds. The total amount of phenolic compounds and organic acids were affected by growing conditions and developmental phase. The aqueous extract exhibited a dose-related activity against all tested reactive species.  相似文献   

19.
Indonesian soy sauce is made using only soybeans as the nitrogenous source. Moromi obtained from fermentation of yellow soybeans using Aspergillus sojae as the starter was investigated. The fraction with molecular weights of less than 500 Da obtained by stepwise ultrafiltration was then fractionated by several chromatographic procedures, including gel filtration chromatography and RP-HPLC. Several chemical analyses, CE profiles, and taste profiles were performed to obtain the most intense umami fraction. The main components eliciting or enhancing the umami taste present in the fraction were purified and identified by protein sequencing, ESI-MS, and (1)H NMR at 400 MHz. Besides free l-glutamic acid and aspartic acid, free aromatic amino acids such as l-phenylalanine and l-tyrosine may also play an important role in impressing savory or umami taste of Indonesian soy sauce at their subthreshold concentrations and in the presence of salt and free acidic amino acids. This is reported as a new phenomenon of the so-called bitter amino acids.  相似文献   

20.
Major active compounds from essential oils are well-known to possess antimicrobial activity against both pathogen and spoilage microorganisms. The aim of this work was to determine the alteration of the membrane fatty acid profile as an adaptive mechanism of the cells in the presence of a sublethal concentration of antimicrobial compound in response to a stress condition. Methanolic solutions of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol were added into growth media of Escherichia coli O157:H7, Salmonella enterica serovar typhimurium, Pseudomonas fluorescens, Brochothrix thermosphacta, and Staphylococcus aureus strains. Fatty acid extraction and gas chromatographic analysis were performed to assess changes in membrane fatty acid composition. Substantial changes were observed on the long chain unsaturated fatty acids when the E. coli and Salmonella strains grew in the presence of limonene and cinnamaldehyde and carvacrol and eugenol, respectively. All compounds influenced the fatty acid profile of B. thermosphacta, while Pseudomonas and S. aureus strains did not show substantial changes in their fatty acid compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号