首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Summary Studies of the effects of different forms of N on urease production in soils amended with organic C showed that although microbial activity, as measured by CO2 production, was stimulated by the addition of NH4 + or NO3 - to C-amended soils (200 mol glucose-C g–1 soil), urease production was repressed by these forms of N. The addition of L-methionine sulfoximine, an inhibitor of inorganic N assimilation by microorganisms, relieved the NH4 + and NO3 - repression of urease production in C-amended soil. The addition of sodium chlorate, an inhibitor of NO3 - reduction to NH4 + by microorganisms, relieved the NO3 - repression of urease production, but did not eliminate the repression associated with NH4 +. These observations indicate that microbial production of urease in C-amended soils is not directly repressed by NH4 + or NO3 -, but by products formed by microbial assimilation of these forms of N. This conclusion is supported by our finding that the biologically active L-isomers of alanine, arginine, asparagine, aspartate, and glutamine, repressed urease production in C-amended soil, whereas the D-isomers of these amino acids had little or no influence on urease production. This work suggests that urease synthesis by soil microorganisms is controlled by the global N regulon.  相似文献   

2.
Zeolite minerals may improve nitrogen availability to plants in soil and reduce losses to the environment. A study was conducted to determine the influence of clinoptilolite (CL) on nitrogen (N) mineralization from solid dairy manure (224 kg N ha?1) in a sandy soil. Clinoptilolite was added to soil at six rates (0 to 44.8 Mg CL ha?1), each sampled during 11 sampling dates over a year. Over time, nitrate (NO3)-N increased, ammonium (NH4)-N decreased, but total inorganic N increased. Clinoptilolite did not influence the nitrification rates of initial manure NH4-N or mineralization of organic N (ON) over time. It is possible that adsorption of manure-derived potassium (K) outcompeted the NH4-N for CL exchange sites. The ON concentration was constant up to 84 days and then decreased by approximately 18% over the remaining time of the study across all treatments. Clinoptilolite use in this sandy soil did not alter mineralization of N from dairy manure.  相似文献   

3.
Abstract. Gross N mineralization and nitrification rates were measured in soils treated with dairy shed effluent (DSE) (i.e. effluent from the dairy milking shed, comprising dung, urine and water) or ammonium fertilizer (NH4Cl) under field conditions, by injecting 15N-solution into intact soil cores. The relationships between gross mineralization rate, microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) as affected by the application of DSE and NH4Cl were also determined. During the first 16 days, gross mineralization rate in the DSE treated soil (4.3–6.1 μg N g?1 soil day?1) were significantly (P 14;< 14;0.05) higher than those in the NH4Cl treated soil (2.6–3.4 μg N g?1 soil day?1). The higher mineralization rate was probably due to the presence of readily mineralizable organic substrates in the DSE, accompanied by stimulated microbial and extracellular enzyme activities. The stable organic N compounds in the DSE were slow to mineralize and contributed little to the mineral N pool during the period of the experiment. Nitrification rates during the first 16 days were higher in the NH4Cl treated soil (1.7–1.2 μg N g?1 soil day?1) compared to the DSE treated soil (0.97–1.5 μg N g?1 soil day?1). Soil microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) increased after the application of the DSE due to the organic substrates and nutrients applied, but declined with time, probably because of the exhaustion of the readily available substrates. The NH4Cl application did not result in any significant increases in microbial biomass C, protease or urease activities due to the lack of carbonaceous materials in the ammonium fertilizer. However, it did increase microbial biomass N and deaminase activity. Significant positive correlations were found between gross N mineralization rate and soil microbial biomass, protease, deaminase and urease activities. Nitrification rate was significantly correlated to biomass N but not to the microbial biomass C or the enzyme activities. Stepwise regression analysis showed that the variations of gross N mineralization rate was best described by the microbial biomass C and N.  相似文献   

4.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

5.
 Gross N mineralization and nitrification rates and their relationships to microbial biomass C and N and enzyme (protease, deaminase and urease) activities were determined in soils treated with dairy shed effluent (DSE) or NH4 + fertilizer (NH4Cl) at a rate equivalent to 200 kg N ha–1 at three water potentials (0, –10 and –80 kPa) at 20  °C using a closed incubation technique. After 8, 16, 30, 45, 60 and 90 days of incubation, sub-samples of soil were removed to determine gross N mineralization and nitrification rates, enzyme activities, microbial biomass C and N, and NH4 + and NO3 concentrations. The addition of DSE to the soil resulted in significantly higher gross N mineralization rates (7.0–1.7 μg N g–1 soil day–1) than in the control (3.8–1.2 μg N g–1 soil day–1), particularly during the first 16 days of incubation. This increase in gross mineralization rate occurred because of the presence of readily mineralizable organic substrates with low C : N ratios, and stimulated soil microbial and enzymatic activities by the organic C and nutrients in the DSE. The addition of NH4Cl did not increase the gross N mineralization rate, probably because of the lack of readily available organic C and/or a possible adverse effect of the high NH4 + concentration on microbial activity. However, nitrification rates were highest in the NH4Cl-treated soil, followed by DSE-treated soil and then the control. Soil microbial biomass, protease, deaminase and urease activities were significantly increased immediately after the addition of DSE and then declined gradually with time. The increased soil microbial biomass was probably due to the increased available C substrate and nutrients stimulating soil microbial growth, and this in turn resulted in higher enzyme activities. NH4Cl had a minimal impact on the soil microbial biomass and enzyme activities, possibly because of the lack of readily available C substrates. The optimum soil water potential for gross N mineralization and nitrification rates, microbial and enzyme activities was –10 kPa compared with –80 kPa and 0 kPa. Gross N mineralization rates were positively correlated with soil microbial biomass N and protease and urease activities in the DSE-treated soil, but no such correlations were found in the NH4Cl-treated soil. The enzyme activities were also positively correlated with each other and with soil microbial biomass C and N. The forms of N and the different water potentials had a significant effect on the correlation coefficients. Stepwise regression analysis showed that protease was the variable that most frequently accounted for the variations of gross N mineralization rate when included in the equation, and has the potential to be used as one of the predictors for N mineralization. Received: 10 March 1998  相似文献   

6.
Leaching of nutrients in soil can change the surface and groundwater quality. The present study aimed at investigating the effects of raw and ammonium (NH4+)-enriched zeolite on nitrogen leaching and wheat yields in sandy loam and clay loam soils. The treatments were one level of nitrogen; Z0: (100 kg (N) ha?1) as urea, two levels of raw zeolite; Z1:(0.5 g kg?1 + 100 kg ha?1) and Z2: (1 g kg?1 + 100 kg ha?1), and two levels of NH4+-enriched zeolite; Z3: (0.5 g kg?1 + 80 kg ha?1) and Z4: (1 g kg?1 + 60 kg ha?1). Wheat grains were sown in pots and, after each irrigation event, the leachates were collected and their nitrate (NO3?) and NH4+ contents were determined. The grain yield and the total N in plants were measured after four months of wheat growth. The results indicated that the amounts of NH4+ and NO3? leached from the sandy loam soil were more than those from the clay loam soil in all irrigation events. The maximum and minimum concentrations of nitrogen in the drainage water for both soils were observed at control and NH4+-zeolite treatments, respectively. Total N in the plants grown in the sandy loam was higher compared to plants grown in clay loam soil. Also, nitrogen uptake by plants in control and NH4+-zeolite was higher than that of raw-zeolite treatments. The decrease in the amount of N leaching in the presence of NH4+-zeolite caused more N availability for plants and increased the efficiency of nitrogen fertilizers and the plants yield.  相似文献   

7.
Dissolved organic nitrogen (DON) represents a significant pool of soluble N in many soils and freshwaters. Further, the low molecular weight (LMW) component of DON represents an important source of N for microorganisms and can also be utilized directly by some plants. Our purpose was to determine which of the pathways in the decomposition and subsequent ammonification and nitrification of organic N represented a significant block in soil N supply in three agricultural grassland soils. The results indicate that the conversion of insoluble organic N to LMW-DON and not LMW-DON to NH4+ or NH4+ to NO3 represents a major constraint to N supply. We hypothesize that there are two distinct DON pools in soil. The first pool comprises mainly free amino acids and proteins and is turned over very rapidly by the microbial community, so it does not accumulate in soil. The second pool is a high molecular weight pool rich in humic substances, which turns over slowly and represents the major DON loss to freshwaters. The results also suggest that in NO3 rich soils the uptake of LMW-DON by soil microorganisms may primarily provide them with C to fuel respiration, rather than to satisfy their internal N demand.  相似文献   

8.
Fertilizer N can be conserved through immobilization by microorganisms (biotic process) and fixation by soil clay minerals (abiotic process), and then subsequently remineralized and released. These processes are significantly affected by inhibitors, and available C application. In this study, a 96-day incubation experiment was conducted to assess the effects of microbial immobilization and ammonium fixation on conservation and supply of urea-N with the nitrification inhibitor (DMPP: 3,4-dimethylpyrazole phosphate), urease inhibitor (NBPT: N-(n-butyl) thiophosphoric triamide), and glucose additions. The results showed that urea-derived soil microbial biomass nitrogen (SMBN) consistently increased with DMPP input, whereas NBPT increased urea-derived SMBN in the absence of glucose but decreased it in the presence of glucose. Both inhibitors enhanced the effects of fixed NH4+ on conservation and supply of urea-N in all cases, and retarded the release of fixed NH4+. Glucose addition intensified the competition for NH4+ between microbial immobilization and mineral fixation, as well as reduced the availability of urea-N and native soil N, resulting in a negative added N interaction at the initial incubation stage. From 12 to 96 days, the release of fixed NH4+ was 2.6-fold greater than the mineralization of organic N (including SMBN and non-microbial organic N) in the non-glucose treatments, whereas the latter was 2.7-fold greater than the former in the glucose treatments. Taken together, our study indicates both microbial immobilization and mineral fixation are important processes by which N is stabilized in soil. Clarification of fertilizer N transformation induced by these biotic and abiotic processes can provide helpful implications for quantifying N cycle and optimizing agricultural nutrient management.  相似文献   

9.
A crop rotation field study with manure application was established at Tartu in 1985. Biological and chemical properties were evaluated on fine sandy loam Podzoluvisol in May 1989. The treatments included unmanured (No and N80) controls, two peat based composts and five manures of different origin. The procedures of the most probable number (MPN) and spread plate counts were used for microbiological investigation, but also enzymatic activities, nitrogen forms, total‐C and pH were simultaneously estimated in plough layer soil. The most variable i.e. the most clearly differentiated physiological groups within manures were cellulolytic and ammonifying bacteria followed by Azotobacter spp. together with actinomycetes. Abundance of aerobic cellulolytic and ammonifying bacteria correlated positively with the number of soil algae and fungi, and negatively with nitrate‐ and nitrite‐reductase. The number of actinomycetes correlated positively with urease and catalase activity. Soil enzymatic activity was mainly modified by nitrite‐reductase. Peat composts had the highest C‐content and highest pH value compared with other soils. Pig slurry and NH4NO3 (N80) treatment had the highest level of fixed NH+ 4 ‐ions in soil. Nine months after manure application no differences were found in the unstable NO 3content of soil. Variation in the number of the studied microbial physiological groups between treatments remained insignificant.  相似文献   

10.
A laboratory experiment was designed to challenge the idea that the C/N ratio of forest soils may control gross N immobilization, mineralization, and nitrification rates. Soils were collected from three deciduous forests sites varying in C/N ratio between 15 and 27. They were air-dried and rewetted to induce a burst of microbial activity. The N transformation rates were calculated from an isotope dilution and enrichment procedure, in which 15NH4Cl or Na15NO3 was repeatedly added to the soils during 7 days of incubation. The experiments suggested that differences in gross nitrogen immobilization and mineralization rates between the soils were more related to the respiration rate and ATP content than to the C/N ratio. Peaks of respiration and ATP content were followed by high rates of mineralization and immobilization, with 1-2 days of delay. The gross immobilization of NH4+ was dependent on the gross mineralization and one to two orders of magnitude larger than the gross NO3 immobilization. The gross nitrification rates were negatively related to the ATP content and the C/N ratio and greatly exceeding the net nitrification rates. Taken together, the observations suggest that leaching of nitrate from forest soils may be largely dependent on the density and activity of the microbial community.  相似文献   

11.
为了研究氮沉降对次生林土壤碳氮组分和酶活性的影响,以华西雨屏区湿性常绿阔叶次生林为对象,从2014年1月起进行野外定位模拟氮沉降试验,分别设置对照(CK,+0 g/(m^2·a))、低氮(LN,+5 g/(m^2·a))和高氮(HN,+15 g/(m^2·a))3个氮添加水平。在氮沉降进行27个月后,按照腐殖质层和淋溶层表层进行取样,测定不同土层土壤总有机碳(TOC)、可浸提溶解性有机碳(EDOC)、易氧化碳(ROC)、全氮(TN)、硝态氮(NO_3^-—N)和铵态氮(NH_4^+—N)含量以及蔗糖酶、脲酶、酸性磷酸酶和多酚氧化酶活性。结果表明:模拟氮沉降显著增加该次生林腐殖质层土壤的TOC和NH_4^+—N含量,显著增加腐殖质层和淋溶层表层土壤的NO_3^-—N含量,腐殖质层土壤C/N显著升高。淋溶层表层土壤TOC、NH_4^+—N、C/N以及2层土壤的EDOC、ROC、TN和NH_4^+—N/NO_3^-—N均无显著影响。2层土壤的多酚氧化酶活性均随着氮添加量的升高而降低,其中淋溶层表层达到显著差异。模拟氮沉降对蔗糖酶、脲酶和酸性磷酸酶活性均无显著影响。腐殖质层中,NH_4^+—N和NO_3^-—N含量与TOC含量存在极显著正相关关系。2层土壤的多酚氧化酶活性均与NO_3^-—N含量呈极显著负相关。结果说明,模拟氮沉降使该次生林中原本较高的腐殖质层土壤TOC含量进一步显著增加,并且促进土壤无机氮的积累,而模拟氮沉降对多酚氧化酶的抑制作用更加有利于土壤有机质的积累。  相似文献   

12.
We tested how amendments of different forms of nitrogen (N) affect microbial respiration rates by adding six different forms of N (NH4NO3, (NH2)2CO (urea), KNO3, NH4Cl, (NH4)2SO4, Ca(NO3)2) to three distinct soils. All inorganic N forms led to a net reduction in microbial respiration, and the magnitude of the observed response (up to 60 % reduction) was consistent across all soils and negatively correlated with N concentration. Urea also reduced respiration rates in nearly all cases, but the effect was attenuated by the associated input of labile organic carbon. We observed decreases in respiration regardless of soil type, the specific N counter ion, N added as NH4+ or NO3, or the effects of N form on soil pH, suggesting that decreases in respiration rates were mainly a direct result of the increase in soil N availability, rather than indirect effects caused by the form of N added.  相似文献   

13.
One of the challenges in organic farming systems is to match nitrogen (N) mineralization from organic fertilizers and crop demand for N. The mineralization rate of organic N is mainly determined by the chemical composition of the organic matter being decomposed and the activity of the soil microflora. It has been shown that long-term organic fertilization can affect soil microbial biomass (MB), the microbial community structure, and the activity of enzymes involved in the decomposition of organic matter, but whether this has an impact on short-term N mineralization from recently applied organic substances is not yet clear. Here, we sampled soils from a long-term field experiment, which had either not been fertilized, or fertilized with 30 or 60 t ha−1 year−1 of farmyard manure (FYM) since 1989. These soil samples were used in a 10-week pot experiment with or without addition of FYM before starting (recent fertilization). At the start and end of this experiment, soil MB, microbial basal respiration, total plant N, and mineral soil N content were measured, and a simplified N balance was calculated. Although the different treatments used in the long-term experiment induced significant differences in soil MB, as well as total soil C and N contents, the total N mineralization from FYM was not significantly affected by soil fertilization history. The amount of N released from FYM and not immobilized by soil microflora was about twice as high in the soil that had been fertilized with 60 t ha−1 year−1 of FYM as compared with the non-fertilized soil (p < 0.05).  相似文献   

14.
Drip‐fertigated systems have variable distributions of water and nutrients in the soil, which influence soil microbial activity. Because there is a lack of data on greenhouse gas (GHG) fluxes for these systems, a field experiment comparing drip irrigation systems (fertigated and non‐fertigated) was carried out in a melon crop. For the fertigated treatment, nitrogen (N) as NH4NO3 was dissolved in irrigation water and split into six applications (Fertigation treatment). In the non‐fertigated soil (ANS treatment), granular NH4NO3 was incorporated homogeneously into the upper part of soil surface at planting. A control treatment without N fertilizer was also included. In order to evaluate the pattern of nitrous oxide (N2O) and methane (CH4), measurements were made at six different distances from the irrigation distributor point (dripper). An additional field experiment with 15N‐labelled N fertilizer was carried out in parallel, with the aim of evaluating the contribution of nitrification and denitrification to the total N2O flux. Two different sources of 15N were applied: 15NH4NO3 (20 at% excess 15N) (15NH4+ treatment, TR1) and NH415NO3 (20 at% excess15N) (15NO3? treatment, TR2). Results indicated that both treatments (ANS and Fertigation) had small emission fluxes of N2O (< 0.1% of N applied). However, Fertigation produced larger emissions (175.3 g N2O‐N ha?1) than ANS (90.1 g N2O N ha?1), with the pattern of N2O emission being strongly influenced by nitrification in both systems. Denitrification also contributed to emissions of 15N2O but mainly on the day after fertilizer application in the Fertigation treatment. Methane fluxes were also affected by N fertilizer, with a decrease in the sink effect for CH4 when NH4+ was present in the soil.  相似文献   

15.
Nutrient addition has a significant impact on plant growth and nutrient cycling. Yet, the understanding of how the addition of nitrogen (N) or phosphorus (P) significantly affects soil gross N transformations and N availability in temperate desert steppes is still limited. Therefore, a 15N tracing experiment was conducted to study these processes and their underlying mechanism in a desert steppe soil that had been supplemented with N and P for 4 years in northwestern China. Soil N mineralization was increased significantly by P addition, and N and P additions significantly promoted soil autotrophic nitrification, rather than NH4+-N immobilization. The addition of N promoted dissimilatory NO3 reduction to NH4+, while that of P inhibited it. Soil NO3-N production was greatly increased by N added alone and by that of N and P combined, while net NH4+-N production was decreased by these treatments. Soil N mineralization was primarily mediated by pH, P content or organic carbon, while soil NH4+-N content regulated autotrophic nitrification mainly, and this process was mainly controlled by ammonia-oxidizing bacteria rather than archaea and comammox. NH4+-N immobilization was mainly affected by functional microorganisms, the abundance of narG gene and comammox Ntsp-amoA. In conclusion, gross N transformations in the temperate desert steppe largely depended on soil inorganic N, P contents and related functional microorganisms. Soil acidification plays a more key role in N mineralization than other environmental factors or functional microorganisms.  相似文献   

16.
Silver nanoparticles (AgNPs) are effective antimicrobial compounds that are used in a myriad of applications. Soil microorganisms play crucial roles in nitrogen cycling, but there is a lack of comprehensive understanding of the effects of AgNPs on enzymatic activity in the nitrogen cycle, nitrifying bacteria, and nitrogen transformation in soil. Herein, enzyme activities were determined following the addition of different forms of nitrogen, ammonium nitrogen ((NH4)2SO4), nitrate nitrogen (KNO3), and amide nitrogen (urea, CO(NH2)2) at 200 mg N kg-1, into the soil amended with AgNPs at 0, 10, 50, and 100 mg kg-1. After 7 d of incubation with 10 mg kg-1 AgNPs, the activities of urease, nitrite reductase (NiR), nitrate reductase (NaR), and hydroxylamine reductase (HyR) were reduced by 12.5%, 25.0%, 12.2%, and 24.2%, respectively. Of particular note, more than 53.5%, 61.7%, and 34.7% of NaR, NiR, and HyR activities, respectively, were inhibited at 100 mg kg-1AgNPs. The abundance (most probable number) of ammonia- and nitrite-oxidizing bacteria (AOB and NOB, respectively) was measured using real-time quantitative polymerase chain reaction (qPCR) and the Cochran method. The abundance of AOB and NOB decreased when AgNPs were present in the soil. The NH4NO3 amendment increased copy numbers of bacterial and archaeal amoA nitrification functional genes, by 38.3% and 12.4%, respectively, but AgNPs at 50 mg kg-1 decreased these values by 70% and 56.4%, respectively. The results of 15N enrichment (atom% excess) of NH4+ and NO3- experiments illustrated the influence of AgNPs on soil nitrogen transformation. According to the 15N atom% excess detected, the conversion of 15N-labeled NH4+ to NO3- was significantly inhibited by the different levels of AgNPs in soil. The reduced gross nitrification rate further confirmed this finding. Overall, this study revealed considerable evidence that AgNPs inhibited nitrogen cycle enzyme activity, the number of nitrifying bacteria, the abundance of the amoA gene, and the gross nitrification rate. Silver nanoparticles inhibited nitrogen transformation, and the rate of nitrification was also negatively correlated with AgNP levels.  相似文献   

17.
Field experiments were conducted to determine the effect of nitrogen (N) fertilizer forms and doses on wheat (Triticum aestivum L.) on three soils differing in their ammonium (NH4) fixation capacity [high = 161 mg fixed NH4-N kg?1 soil, medium = 31.5 mg fixed NH4-N kg?1 soil and no = nearly no fixed NH4-N kg?1 soil]. On high NH4+ fixing soil, 80 kg N ha?1 Urea+ ammonium nitrate [NH4NO3] or 240 kg N ha?1 ammonium sulfate [(NH4)2SO4]+(NH4)2SO4, was required to obtain the maximum yield. Urea + NH4NO3 generally showed the highest significance in respect to the agronomic efficiency of N fertilizers. In the non NH4+ fixing soil, 80 kg N ha?1 urea+NH4NO3 was enough to obtain high grain yield. The agronomic efficiency of N fertilizers was generally higher in the non NH4+ fixing soil than in the others. Grain protein was highly affected by NH4+ fixation capacities and N doses. Harvest index was affected by the NH4+ fixation capacity at the 1% significance level.  相似文献   

18.
不同形态氮素对种植大豆土壤中微生物数量及酶活性的影响   总被引:12,自引:2,他引:10  
采用框栽试验方法,研究6种不同形态氮素[生物固氮(N0)、硝态氮(N1)、铵态氮(N2)、氨基酸态氮(N3)、蛋白态氮(N4)和酰胺态氮(N5)]对种植大豆土壤中微生物数量及土壤酶活性动态变化的影响。结果表明:各大豆生育期内真菌、细菌、放线菌数量和土壤脲酶、蔗糖酶活性对不同形态氮素的反应不同;三大菌群在组成上以细菌数量占绝对优势,数量上均在花期时达到峰值,即均随着大豆生育期的推进呈单峰曲线变化;花期不同形态氮处理下的土壤微生物总数量有差异,具体表现为N5N3N2N1N4N0。土壤多样性指数的变化趋势随着生育期的推进呈缓慢下降趋势,与土壤微生物数量的变化趋势不一致,因此,评价土壤生物多样性指数应将两者结合起来。土壤脲酶和蔗糖酶活性随着生育期的推进亦为单峰曲线变化趋势,但脲酶与蔗糖酶活性的变化趋势不同,其高峰期出现在鼓粒期。  相似文献   

19.
Nitrogen (N) fertilizer use in cotton (Gossypium hirsutum L.) production is a potential source of nitrate (NO3 ?) contamination of soils, groundwater, and streams. The McConnell–Mitchell plots, a long-term study of cotton responses to N-fertilization and irrigation methods, were utilized to determine the NO3 ?-N in soil cropped to continuous cotton. The McConnell–Mitchell plots had a split-block experiential design. The main blocks of this test were irrigation methods. Each block of plots was irrigated using a single irrigation method for the entirety of the testing. Nitrogen fertilization rates were tested within each irrigation block. The soil NO3 ?-N content of two irrigation blocks, furrow flow (FI) and center pivot (CP), were compared to the dryland (DL) control block. Nitrogen treatments tested within each irrigation block ranged from 0 to 168.0 kg N ha?1 in 33.6-kg N ha?1 increments. Nitrogen treatments were tested for 18 years (1982 through 1999), discontinued for 4 years (2000 through 2003), and resumed in 2004. Soil samples were taken in the early spring (2000 and 2004) to a depth of 1.50 m in 0.15 m increments and analyzed for NO3 ?-N. Soil samples taken in 2004 were prior to any fertilization treatment. Irrigation method was found to influence the distribution of soil NO3 ?-N. Little accumulation of soil NO3 ?-N was observed in either irrigation block or under dryland production when N rates were less than 67.2 kg N ha?1. Distribution of soil NO3 ?-N in the FI block was significantly different with sample depth and N treatment but not the interaction of depth and treatment in both 2000 and 2004. Presumably, the small and close values of the means and the greater variability of interactions compared to main effects precluded significant interactions. Differences in soil NO3 ?-N in the FI block after suspending N treatments for 4 years were similar to those found in 2000, although the soil NO3 ?-N was generally depleted in 2004 compared to 2000. The distribution of soil NO3 ?-N in the CP-irrigated block was dependent on the interaction of sample depth with N treatment in both 2000 and 2004. Soil NO3 ?-N values and differences tended to be too small to be of discernable or practical importance under CP irrigation. The distribution of soil NO3 ?-N in the DL block was dependent on the interaction of sample depth with N treatment in 2000 and 2004. Soil NO3 ?-N was minimal in the three lowest N treatments (0, 33.6, and 67.2 kg N ha?1) in 2000. Greatest amounts of soil NO3 ?-N were found in conjunction with the 134.4 and 168.0 kg N ha?1 treatments both years. Depletion of soil NO3 ?-N was evident in the surface 0.45 m of the 100.8, 134.4, and 168.0 kg N ha?1 treatments under DL conditions in 2004.  相似文献   

20.
We studied the influence of various chemical compounds, i.e., azobenzene (an insecticide and acaricide), nitrification inhibitors (DCD, dicyandiamide and DMPP, and 3,4-dimetylpyrazolphosphate), and inhibitors of urease activity (HQ-hydroquinone), on the agrochemical and microbiological parameters of a soddy-podzolic soil. It is proved that these xenobiotics are able to influence the agrochemical parameters (the pH and the content of NO3 and NH4+, the microbial activity (the basal respiration, the microbial mass carbon, and the microbial quotient), and the number of bacteria of different physiological groups in soddypodzolic soil. The influence of the xenobiotics was preserved for some time, which testified to their persistence in the soil. Upon cultivating the soil microorganisms in different media, the growth of the heterotrophic bacteria was inhibited, the radial growth velocity was slowed down, and the sporogenesis of the micromycetes was retarded. The toxic effect of the xenobiotics was higher with their increasing concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号