首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Khurana  Ekta  Singh  J.S. 《New Forests》2004,27(2):139-157
The impact of seed size and successional status on seedling growth under elevated CO2 was studied for five dry tropical tree species viz. Albizia procera, Acacia nilotica, Phyllanthus emblica, Terminalia arjuna and Terminalia chebula. Seedlings from large (LS) and small seeds (SS) were grown at two CO2 levels (ambient and elevated, 700–750 ppm). CO2 assimilation rate, stomatal conductance, water use efficiency and foliar N were determined after 30 d exposure to elevated CO2. Seedlings were harvested after 30 d and 60 d exposure periods. Height, diameter, leaf area, biomass and other growth traits (RGR, NAR, SLA, R:S) were determined. Seedling biomass across species was positively related with seed mass. Within species, LS seedlings exhibited greater biomass than SS seedlings. Elevated CO2 enhanced plant biomass for all the species. The relative growth rate (RGR), net assimilation rate (NAR), CO2 assimilation rate, R:S ratio and water use efficiency increased under elevated CO2. However, the positive impact of elevated CO2 was down regulated beyond 30 d exposure. Specific leaf area (SLA), transpiration rate, stomatal conductance declined due to exposure to elevated CO2. Fast growing, early successional species exhibited greater RGR, NAR and CO2 assimilation rate. Per cent enhancement in such traits was greater for slow growing species. The responses of individual species did not follow functional types (viz. legumes, non-legumes). The enhancement in biomass and RGR was greater for large-seeded species and LS seedlings within species. This study revealed that elevated CO2 could cause large seeded, slow growing and late successional species to grow more vigorously.  相似文献   

2.

Improving drought tolerance of container seedlings of Japanese larch is of high importance to afforestation. We hypothesized that adequate nitrogen (N) and limited water supply would increase the tolerance of container seedlings to water-deficit stress, circumventing photoinhibition, by means of (i) enhanced photosynthetic capacity with higher leaf N and (ii) decreased water loss from leaves with lower biomass allocation into aboveground parts. Container seedlings of Japanese larch were grown under the treatment combinations of adequate (+?N: 300 mg N container?1) or limited (??N: 150 mg N container?1) N and adequate (+?W: daily irrigation) or limited (??W: twice-a-week irrigation) water. Then, seedlings were subjected to a progressive drought treatment. Higher leaf N was observed in container seedlings grown under?+?N and???W. During progressive drought, lower stomatal conductance and net photosynthetic rate were observed in leaves with higher leaf N at a given predawn leaf water potential. Furthermore, the maximum efficiency of PSII photochemistry (Fv/Fm) was lower in leaves with higher leaf N, suggesting that higher leaf N might impair intrinsic tolerance to drought at the leaf level contrary to expectations. Conversely,???N and???W seedlings with lower shoot biomass delayed soil drying as a whole-plant response via a reduction in leaf transpiration, leading to delayed photoinhibition as indicated by a decline in Fv/Fm. To circumvent stress at the initial stage of water deficit, lower leaf N via limited N regime and smaller shoot biomass driven by limited N and water regimes would be important.

  相似文献   

3.
Production of quality seedlings is an important aspect of successful tree planting. No information is available on the effect of nutrients and water on the growth and development of the seedlings of neem (Azadirachta indica A. Juss), an important component of many tropical agroforestry systems. In an experiment in central India, the growth and nutrient-use efficiency of neem seedlings grown at various levels of light, nutrients (N and P), and water stress were determined. Seedlings were given light (diffused and complete) and nutrient (N and P) treatments comprising either high N-high P, high N-low P, low N-high P, or low N-low P. Seedlings grown in complete light (800 mol/m2/s) had four times more biomass than those grown in diffused light (200 mol/m2/s). Significant increase in seedling biomass was observed with nitrogen application, while phosphorus had no effect on biomass. Leaves contributed maximum biomass, followed by roots and stem. Nutrient use efficiency decreased with an increase in the supply of nutrients. In another experiment, containerized and bare-root seedlings were subjected to five watering treatments, viz., watering twice a week, watering weekly, watering every alternate week, watering every third week, and natural precipitation. Plant moisture stress affected both growth and survival of neem seedlings. Only 50 per cent of seedlings survived in severe drought treatment (no. 4) whereas 90 to 95 per cent seedlings showed growth in all other treatments. Plant moisture stress in severe drought treatment averaged –21 bar while in other treatments it ranged from –9 to –12 bar. Shoot-root ratio was high in bare-root seedlings as compared to containerized seedlings. Containerized seedlings had shown better endurance against drought than the bare-root seedlings. The results suggest that neem seedlings adjust their nutrient use efficiency and can be grown even under limited available resources. It is also inferred that the species can tolerate soil resource depletion caused by competitor species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
The investigation of the mechanisms of plant adaptation to stressor action is one of the leading directions of current biological studies. To understand the mechanism of salt tolerance of seabuckthorn (Hippophae rhamnoides L.) and identify its ability to cope with the salinity effect in the saline and extremely cold region of Qinghai, China, a test was conducted with two-year-old seedlings subjected to 0, 200, 400 and 600 mmol·L–1 NaCl solutions for 30 d. The results show that with an increase in salinity, the biomass of H. rhamnoides seedlings clearly decreased. Leaf water potential (Ψw) and relative water content (RWC) were significantly reduced under salinity, with severe water shortages appearing in leaves. At the same time, the total chlorophyll content declined markedly. When salinity increased and stress time prolonged, the net CO2 assimilation rate (A) significantly declined. Intercellular CO2 concentration (Ci) declined at first and was then followed by an increase over the stress time. We conclude that H. rhamnoides grown in the extremely cold and saline region of Qinghai has a certain resistance to salt, which can be planted at appropriate salinity levels.  相似文献   

5.
Gleason SM  Ares A 《Tree physiology》2004,24(10):1087-1097
Fraxinus uhdei (Wenz.) Lingelsh (tropical ash), a species introduced to Hawaii from Mexico, invades forests of the endemic tree Acacia koa A.Gray (koa). We examined physiological and morphological characteristics of koa and tropical ash to explore possible mechanisms that may facilitate invasion of koa forests by tropical ash. Seedlings of both species were grown in a greenhouse in three light treatments: 100% photosynthetic photon flux (PPF); 18% PPF; and 2% PPF inside the greenhouse. Light compensation point, maximum CO2 assimilation rate and dark respiration rate of seedlings differed significantly among light treatments, but were similar between species. A defoliation experiment indicated that tropical ash was better able to survive defoliation than koa, especially under high-light conditions. Tropical ash seedlings allocated more carbon (C) and nitrogen (N) to storage per unit PPF than koa seedlings. Total nonstructural carbohydrates were positively correlated with plant survival in both species. The patterns of C and N allocation associated with tropical ash seedlings favor their survival in high light, under intense herbivory and on sites where N availability is seasonal or highly variable. Variation in carbohydrate storage between koa and tropical ash greatly exceeded variation in photosynthetic performance at the leaf level.  相似文献   

6.
The effect of herbaceous vegetation on growth and survival was assessed in planted eucalyptus saplings grown under four levels of weed cover. Seedlings of Eucalyptus globulus subsp. maidenii were planted with 0 (W0), 25 (W25), 50 (W50) and 100% (W100) weed cover. Weed species composition and aboveground biomass was determined. Soil water content was evaluated by the gravimetric method. Seedling leaf area, diameter and height were evaluated at planting and during the 3 months following establishment. Tree height, diameter and stem volume was estimated at 12, 24 and 36 months. First year tree survival was recorded. The ratio of cumulative stem growth under W100: cumulative stem growth under W0 was used to measure competitive performance. Regression analysis was used to determine competition thresholds. Weeds seriously threaten the growth of E. globulus subsp. maidenii. Early negative effects of competition on growth were evident as from the second month after establishment, and both seedlings and 1-year-old saplings were more affected than 2- and 3-year-old ones. A “minimum-response threshold” was determined near 500 kg/ha (corresponding to W25 cover). No clear effect was found between sapling survival and weed biomass.  相似文献   

7.
Growth and physiological performance of multipurpose tree species can be severely constrained by low phosphorus (P) availability in highly weathered soils. Limitations to plant growth are accentuated by seasonal dry periods. The overall objective of this study was to examine P fertilization and irrigation effects on survival, growth, biomass partitioning, foliar nutrients, intrinsic water-use efficiency (WUE) indexed by δ13C, Rhizobium nodulation, and carbohydrate content as an indicator of resprouting potential, of mimosa (Albizia julibrissin Durz.), a N2-fixing tree species being tested for browse in agroforestry practices in south-central USA. In a field experiment carried out during two growing seasons near Booneville, Arkansas, USA, mimosa had a strong growth response to irrigation. The trial was arranged in a split plot design with three replications with irrigation as main plot treatment and P as sub-plot treatment. Mean total plant aboveground biomass at the end of the second growing season was 9.8 and 44.1 g plant−1 for the rainfed treatment without and with 300 mm of irrigation water, respectively. Placed P fertilization increased mean total aboveground biomass from 19 g plant−1 for the 0-P treatment to 69 g plant−1 for the treatment with 90 kg P ha−1 year−1. Similarly, irrigation consistently increased stem basal diameter, total height, survival, root, stem, foliar and total aboveground biomass, and number of nodules per plant. Phosphorus fertilization increased basal diameter, and root and stem biomass in both irrigation treatments, survival and nodulation in the rainfed treatment, and foliar and total aboveground biomass in the rainfed +300 mm irrigation treatment. There was a decrease of foliar δ13C suggesting that WUE decreased with P fertilization. In a pot experiment, seedlings were subjected to a factorial combination of two irrigation treatments and six P levels in a randomized complete block design. Irrigation increased basal diameter, root, stem, foliar and total biomass, leaf area and nodulation, whereas P fertilization (i.e., levels from 0 to 3.68 g P kg−1 soil) had similar effect in all the above variables except foliar biomass. Foliar P concentration to obtain 90% of the maximum total plant biomass (critical level) was estimated at 0.157%. Total nonstructural and water soluble carbohydrate, and starch concentrations increased non-linearly with irrigation and P addition suggesting impaired re-growth potential after defoliation of seedlings with reduced water supply and at low soil P availability. Results of this study indicated strong limitations for growth and regrowth potential of mimosa on a highly weathered soil with very low P availability and seasonal water content shortages. Placed (i.e., near the plant base) application of P appeared to be a good strategy to fertilize perennial woody plants.  相似文献   

8.
The water relation and leaf gas exchange of saxoul (Haloxylon Ammodendron Bge, a C4 shrub) seedlings were studied under water stress in 2001. Saxoul seedlings maintained high transpiration when the soil moisture was above 11%. The seedlings were able to take up water from soil with above 6 % soil water content, which was the threshold level of soil moisture for seedlings. The relationship between transpiration and potential evaporation was linear for well-watered seedlings. The decrease of soil water availability led to different degrees of down-regulation of stomatal conductance, leaf transpiration and net CO2 assimilation rate. The stomata played a relatively small part in determining the net CO2 assimilation rate for the same seedling. The relationship between net CO2 assimilation rate and transpiration was linear diurnally, and reduction scale of leaf transpiration was much bigger than that of net CO2 assimilation rate by waters tress treatments, therefore intrinsic water-use-efficiency increased. High evaporative demand increased the leaf transpiration but inhibited net CO2 assimilation rate.Because of the effect of VPD on transpiration in this region, the transpiration of well-watered and mild water stress seedlings becomes responsive to change in stomatal conductance over a wider range.  相似文献   

9.
Johnsen  Kurt H.  Major  John E. 《New Forests》1998,15(3):271-281
Seedlings from 20 families of black spruce (Picea mariana (Mill.) B.S.P.), representing a large range in field productivity, were subjected to a greenhouse retrospective test under ambient (409 ppm – year 1, 384 ppm – year 2) and high (686 ppm – year 1, 711 ppm – year 2) atmospheric CO2 environments. After one and two growth cycles, seedling height and diameter growth significantly increased under elevated CO2. At the end of the experiment, seedlings grown under high CO2 had a mean above-ground dry weight of 48.77 g as compared to 26.36 g for seedlings grown under ambient atmospheric CO2. Families were a significant source of variation for all growth parameters. Although the family × CO2 environment interaction was not a statistically significant source of variation in the analysis of variance, the correlation between greenhouse and 15-year field height growth was weaker (r = 0.29, p = 0.2177) under elevated CO2 compared to ambient CO2 (r = 0.51, p = 0.0223) following the first growth cycle. However, following the second growth cycle, greenhouse-field correlations were similar between the two CO2 environments (ambient CO2: r = 0.55, p = 0.0115; elevated CO2: r = 0.56, p = 0.0101). Thus, with this set of families, growth performance ranking after two years appears relatively stable under ambient and elevated CO2.  相似文献   

10.
G. Singh  Bilas Singh 《林业研究》2009,20(4):307-313
1998年7月,利用非称重式蒸渗池种植单一种源的一年生黄檀种苗,研究在印度沙漠地区培养黄檀种苗的合理灌水技术参数。当各处理(W1、W2、W3、W4)的土壤水分含量分别降低到7.56%、5.79%、4.44%和3.23%时,通过灌溉使苗木生长保持在一定的土壤的水分状况,如36.2mm(W1)、26.5mm(W2)、20.2mm(W3)和18.1mm(W4)。结果表明,在36.2mm(W1)水平时,种苗的株高、冠径、叶数和叶面积达到最大值(p〈0.01)。在W1和W2处理中,虽然上述参数没有明显差异,但在W2处理中,种苗的每升水分利用率的生物量最大。在W3、W4和W5灌溉水平下,不利于提高种苗的株高、生物量和营养积累。在W2水平以下(5.79%),土壤水分有效率能提高根系生物量占总生物量的百分比。但在W3和W4处理中,叶干生物量百分比下降,同时在W5处理中,茎干生物量百分比下降。在W5处理中,土壤水势达到-196Mpa,种苗才可以成活。在W3和W4处理中,土壤水分有效率的限额影响黄檀种苗的生长和生物量。在W2处理中,土壤水分有效利用率最高,种苗的生长和生物量达到最高值。因此,在壤砂土条件下,通过灌溉维持幼苗土壤水分含量在5.79%以上时,可获得较好的黄檀种苗的生长和生物量产量。  相似文献   

11.
Bareroot Changbai larch (Larix olgensis Henry.) seedlings were reared with inorganic fertilizer (nitrogen (N):phosphorus (P) = 1:1, W/W) applied at a rate of 100 (F100) or 200 kg N ha−1 (F200) with (+) or without (−) chicken manure as a soil amendment (O) in north-eastern China. An unfertilized control treatment was included. Inorganic and organic fertilizer treatments tended to increase soil ammonium, nitrate, available P, total P, organic carbon content and electrical conductivity, and biomass and N concentration in seedlings. Organic amendment improved first order lateral root number, tap root length, fine root morphology (length, surface area, volume) in seedlings, while the F100 treatment increased N accumulation in needles and stems compared to the F200 treatment, on average. Most fertilizer treatments tended to increase P content in combined stems and roots, but F200 − O and F100 + O treatments diluted P in needles. Organic amendment combined with inorganic fertilizer at a rate of 100 kg N and P ha−1 is recommended to improve seedling growth and N reserves in woody tissues.  相似文献   

12.
Cold hardiness and timing of bud set and bud break are important processes that provide protection of nursery seedlings against low temperatures. Seedlings of 9 provenances of Pinus greggii from two different regions of Mexico were tested to determine cold hardiness, bud set, and bud break timing differences. Needle sections were exposed to freezing temperatures to determine an injury index of each provenance. In addition, bud set and bud break timing were recorded through the fall, winter and spring. There were significant differences in cold hardiness between seedlings from northern and southern provenances. At the maximum cold hardiness, the index of injury (LT50) for northern provenances was LT50 = −18 °C, compared to −12 °C for southern provenances. There was a considerable variation among the provenances in the proportion of seedlings that set terminal buds. Seedlings from northern provenances had greater proportions of seedlings that set a terminal bud than seedlings from southern provenances. There were also significant differences in the bud break timing in the following spring among the 9 provenances. Seedlings from northern provenances broke bud earlier than southern provenances. Cold hardiness, bud set, and bud break timing results may be useful to determine how far a specific seed source can be moved from its natural environment.  相似文献   

13.
The net CO2 assimilation rate, stomatal conductance, RuBPcase (ribulose 1,5-biphosphate carboxylose) activity, dry weight of aboveground and belowgroud part, plant height, the length and diameter of taproot ofPinus koraiensis seedlings were measured and analyzed after six-week exposure to elevated CO2 in an open-top chamber in Changbai Mountain of China from May to Oct. 1999. Seedlings were planted in four different conditions: on an open site, control chamber, 500 μL·L−1 and 700 μL·L−1 CO2 chambers. The results showed that the total biomass of the seedlings increased whereas stomatal conductance decreased. The physiological responses and growth to 500 μL·L−1 and 700 μL·L−1 CO2 varied greatly. The acclimation of photosynthesis was downward to 700 μL·L−1 CO2 but upward to 500 μL·L−1 CO2. The RuBPcase activity, chlorophyll and soluble sugar contents of the seedlings grown at 500 μL·L−1 CO2 were higher than that at 700 μL·L−1 CO2. The concentration 500 μL·L−1 CO2 enhanced the growth of aboveground part whereas 700 μL·L−1 CO2 allocated more carbon to belowground part. Elevated CO2 changed the carbon distribution pattern. The ecophysiological responses were significantly different between plants grown under 500 μL·L−1 CO2 and 700 μL·L−1 CO2. Foundation Item: This paper was supported by Chinese Academy of Sciences. Biography: HAN Shi-jie (1956-), male, Ph. Doctor, Professor in Laboratory of Ecological Process of Trace Substance in Terrestrial Ecosystem, Institute of Applied Ecology, Chinese Academy of Sciences. Responsible editor: Chai Ruihai  相似文献   

14.
To investigate the interactive effects of CO2 concentration ([CO2]) and nitrogen supply on the growth and biomass of boreal trees, white birch seedlings (Betula papyrifera) were grown under ambient (360 μmol mol−1) and elevated [CO2] (720 μmol mol−1) with five nitrogen supply regimes (10, 80, 150, 220, and 290 μmol mol−1) in greenhouses. After 90 days of treatment, seedling height, root-collar diameter, biomass of different organs, leaf N concentration, and specific leaf area (SLA) were measured. Significant interactive effects of [CO2] and N supply were found on height, root-collar diameter, leaf biomass, stem biomass and total biomass, stem mass ratio (SMR), and root mass ratio (RMR), but not on root mass, leaf mass ratio (LMR), leaf to root ratio (LRR), or leaf N concentration. The CO2 elevation generally increased all the growth and biomass parameters and the increases were generally greater at higher levels of N supply or higher leaf N concentration. However, the CO2 elevation significantly reduced SLA (13.4%) and mass-based leaf N concentration but did not affect area-based leaf N concentration. Increases in N supply generally increased the growth and biomass parameters, but the relationships were generally curvilinear. Based on a second order polynomial model, the optimal leaf N concentration was 1.33 g m−2 for height growth under ambient [CO2] and 1.52 g m−2 under doubled [CO2]; 1.48 g m−2 for diameter under ambient [CO2] and 1.64 g m−2 under doubled [CO2]; 1.29 g m−2 for stem biomass under ambient [CO2] and 1.43 g m−2 under doubled [CO2]. The general trend is that the optimal leaf N was higher at doubled than ambient [CO2]. However, [CO2] did not affect the optimal leaf N for leaf and total biomass. The CO2 elevation significantly increased RMR and SMR but decreased LMR and LRR. LMR increased and RMR decreased with the increasing N supply. SMR increased with increase N supply up to 80 μmol mol−1 and then leveled off (under elevated [CO2]) or stated to decline (under ambient [CO2]) with further increases in N supply. The results suggest that the CO2 elevation increased biomass accumulation, particularly stem biomass and at higher N supply. The results also suggest that while modest N fertilization will increase seedling growth and biomass accumulation, excessive application of N may not stimulate further growth or even result in growth decline.  相似文献   

15.
Storms can turn a great proportion of forests’ assimilation capacity into dead organic matter because of windthrow and thus its role as a carbon sink will be diminished for some time. However, little is known about the magnitude or extent to which storms affect carbon efflux. We compared soil CO2 fluxes in wind-thrown forest stands with different time periods since a storm event, and with different management practices (deadwood cleared or left on-site). This study examined changes in soil CO2 efflux in two windthrow areas in north-eastern Estonia and one area in north-western Latvia, which experienced severe wind storms in the summers of 2001, 2002 and 1967, respectively. We measured soil CO2 fluxes in stands formerly dominated by Norway spruce (Picea abies L. Karst.) with total and partial canopy destruction (all trees or roughly half of the trees in stand damaged by storm), in harvested areas (material removed after the wind storm) and in control areas (no damage by wind). Removal of wind-damaged material decreased instantaneous CO2 flux from the soil surface. The highest instantaneous fluxes were measured in areas with total and partial canopy destruction (0.67 g CO2 m−2 h−1 in both cases) compared with fluxes in the control areas (0.51 g CO2 m−2 h−1), in the new storm-damaged areas where the material was removed (0.57 g CO2 m−2 h−1) and in the old storm-damaged area where wood was left on site (0.55 g CO2 m−2 h−1). The only factor affecting soil CO2 flux was location of the measuring collar (plastic collar with diameter 100 mm, height 50 mm) - either on undamaged forest ground or on the uprooted tree pit, where the mineral soil was exposed after disturbance. New wind-thrown stands where residues are left on site would most likely turn to sources of CO2 for several years until forest regeneration reaches to substantial assimilation rates. New wind-thrown stands where residues are left on site would most likely tend to have elevated CO2 fluxes for several years until forest regeneration reaches to substantial assimilation rates. However, forest managers might be concerned about the amounts of CO2 immediately released into the atmosphere if the harvested logs are burned.  相似文献   

16.
Cortes  Pilar  Espelta  Josep Maria  Savé  Robert  Biel  Carme 《New Forests》2004,28(1):79-88
The use of an enriched CO2 atmosphere in tree nurseries has been envisaged as a promising technique to increase productivity and to obtain seedlings with a higher root/shoot ratio, an essential trait to respond to water stress in Mediterranean-type ecosystems. In that framework, we have analyzed the effects of three levels of atmospheric CO2 concentration (350, 500 and 700ppm) on the germination rate, growth and morphology of seedlings of two Mediterranean oaks used in reforestation programs: the evergreen Quercus ilex L. and the deciduous Quercus cerrioides Wilk. et Costa. CO2 enrichment increased the germination rate of Q. cerrioides (from 70±7 to 81±3%) while it decreased that of Q. ilex (from 71±10 to 41±12%). Seedlings of both species increased approximately 60% their total biomass in response to CO2 enrichment but at two different CO2 concentrations: 500ppm for Q. cerrioides and 700ppm for Q. ilex. This increase in seedlings biomass was entirely due to an augmentation of root biomass. Considering germination and biomass partitioning, an enriched CO2 atmosphere might not be appropriate for growing Mediterranean evergreen oaks, such as Q. ilex, since it reduces acorn germination and the only gains in root biomass occur at a high concentration (700ppm). On the other hand, a moderate CO2 enrichment (500ppm) appears as a promising nursery technique to stimulate the germination, growth and root/shoot ratio of deciduous oaks, such as Q. cerrioides.  相似文献   

17.
We assessed interactive effects of varying levels of applied phosphorus fertilizer and water stress on growth, productivity, and mineral accumulation in container-grown Dalbergia sissoo L. seedlings. Height, collar diameter, leaf size and area, root volume and total biomass were reduced, and dry matter allocation to root was increased with increasing levels of soil water stress. The reduction was >32% in growth, >50% in leaf, and >77% in biomass when seedlings were grown with <50% of soil field capacity. Phosphorus application at the level of 10 mg kg?1 soil enhanced stems and leaf biomass and nutrient accumulation at all irrigation levels, and thus tolerance to drought. Phosphorus responses to growth and biomass production increased with irrigation levels. Thus, 20 mg P kg?1 soil is beneficial at sufficient soil water availability and a lower dose (i.e., 10 mg P kg?1) is recommended under high soil water stress conditions to benefit growth and productivity of D. sissoo.  相似文献   

18.
The relationships between plant organs and root hydrological traits are not well known and the question arises whether elevated CO2 changes these relationships. This study attempted to answer this question. A pseudo-replicated experiment was conducted with two times 24 American elm (Ulmus americana L.) and 23 and 24 red oak (Quercus rubra L.) seedlings growing in ambient CO2 (around 360 μmol·L–1) and 540 ± 7.95 μmol·L–1 CO2 in a greenhouse. After 71 days of treatment for American elm and 77 days for red oak, 14 American elm and 12 red oak seedlings from each of the two CO2 levels were randomly selected in order to examine the flow rate of root xylem sap, root hydraulic conductance, total root hydraulic conductivity, fine root and coarse root hydraulic conductivity. All seedlings were harvested to investigate total plant biomass, stem biomass and leaf biomass, leaf area, height, basal diameter, total root biomass, coarse root biomass and fine root biomass. The following conclusions are reached: 1) plant organs respond to the elevated CO2 level earlier than hydraulic traits of roots and may gradually lead to changes in hydraulic traits; 2) plant organs have different relationships with hydraulic traits of roots and elevated CO2 changes these relationships; the changes may be of importance for plants as means to acclimatize to changing environments; 3) biomass of coarse roots increased rather more than that of fine roots; 4) Lorentzian and Caussian models are better in estimating the biomass of seedlings than single-variable models.  相似文献   

19.
D. S. Thomas 《New Forests》2009,38(3):245-259
Forestry requires low mortality of transplanted seedlings. Mortality shortly after planting is often associated with inadequate hydration of transplants. Seedlings can be hardened to the drought conditions they may experience after transplanting by exposing them to controlled drought conditions in the nursery. Eucalyptus pilularis Sm. seedlings were drought hardened by providing nil (severe treatment) or half (mild treatment) the daily irrigation routinely received (control treatment) for up to two non-consecutive days per week during the last 4 weeks of growth in the nursery. Drought hardening reduced stem diameter, seedling leaf area, leaf area per root biomass and seedling quality measured by the Dickson quality index, but increased root:shoot ratio. Hardened seedlings had lower stomatal conductance and leaf water potential on the days they received less irrigation that the control treatment. Hardened seedlings had greater stomatal conductance and were less water stressed than seedlings experiencing drought for the first time indicating hardened seedlings had adjusted physiologically to drought. Survival after transplanting in the controlled drought environment in a glasshouse was enhanced by the hardening treatments. Non hardened seedlings that had had their upper leaves manually removed immediately prior to transplanting to reduce leaf area (top-clipped) had similar survival to hardened seedlings. Stomatal conductance and leaf water potential after transplanting were higher in hardened and top-clipped seedlings than unhardened control seedlings or vegetative cuttings. Survival in the field trial was over 95% for all treatments, possibly as rain fell within 4 days of planting and follow-up rain occurred in the subsequent weeks. Neither the hardened or top-clipped seedlings planted in the field trial had reduced growth, increased propensity to form double leaders or worse stem form than control seedlings when measured at age 3 years.  相似文献   

20.
Global vegetation models (GVMs) simulate CO2, water and energy fluxes at large scales, typically no smaller than 10 × 10 km. GVM simulations are thus expected to simulate the average functioning, but not the local variability. The two main limiting factors in refining this scale are (1) the scale at which the pedo-climatic inputs - temperature, precipitation, soil water reserve, etc. - are available to drive models and (2) the lack of geospatial information on the vegetation type and the age of forest stands. This study assesses how remotely sensed biomass or stand height could help the new generation of GVMs, which explicitly represent forest age structure and management, to better simulate this local variability. For the ORCHIDEE-FM model, we find that a simple assimilation of biomass or height brings down the root mean square error (RMSE) of some simulated carbon fluxes by 30-50%. Current error levels of remote sensing estimates do not impact this improvement for large gross fluxes (e.g. terrestrial ecosystem respiration), but they reduce the improvement of simulated net ecosystem productivity, adding 13.5-21% of RMSE to assimilations using the in situ estimates. The data assimilation under study is more effective to improve the simulation of respiration than the simulation of photosynthesis. The assimilation of height or biomass in ORCHIDEE-FM enables the correct retrieval of variables that are more difficult to measure over large areas, such as stand age. A combined assimilation of biomass and net ecosystem productivity could possibly enable the new generation of GVMs to retrieve other variables that are seldom measured, such as soil carbon content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号