首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Short-term competition between soil microbes and seedlings of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and silver birch (Betula pendula Roth) for N was assessed in a pot study using (15NH4)2SO4 as a tracer. Seedlings were grown in organic and mineral soil, collected from a podsol soil; 3.18 mg (15NH4)2SO4 per pot were injected into the soil, corresponding to 4 µg 15N g-1 d.m. (dry matter) mineral soil and 17 µg 15N g-1 d.m. organic soil. The amounts of N and 15N in the seedlings and in microbial biomass derived from fumigation-extraction were measured 48 h after addition of 15N. In the mineral soil, 19–30% of the added 15N was found in the plants and 14–20% in the microbial biomass. There were no statistically significant differences between the tree species. In the organic soil, 74% of the added 15N was recovered in the microbial biomass in birch soil, compared to 26% and 17% in pine and spruce soils, respectively. Correspondingly, about 70% of the 15N was recovered in pine and spruce seedlings, and only 23% in birch seedlings. In conclusion, plants generally competed more successfully for added 15NH4 + than soil microbes did. An exception was birch growing in organic soil, where the greater amount of available C from birch root exudates perhaps enabled micro-organisms to utilise more N.  相似文献   

2.
Background, aim, and scope  Hoop pine (Araucaria cunninghamii) is a nitrogen (N) demanding indigenous Australia softwood species with plantations in Southeast Queensland, Australia. Soil fertility has declined with increasing rotations and comparison study of N cycling between hoop pine plantations, and adjacent native forest (NF) is required to develop effective forest management for enhancing sustainable forest production and promoting environmental benefits. Field in situ mineral 15N transformations in these two forest ecosystems have not been studied. Hence, the present study was to compare the differences in soil nutrients, N transformations, 15N fluxes, and fate between the hoop pine plantation and the adjacent native forest. Materials and methods  The study sites were in Yarraman State Forest (26°52′ S, 151°51′ E), Southeastern Queensland, Australia. The in situ core incubation method was used in the field experiments. Mineral N was determined using a LACHAT Quickchem Automated Ion Analyzer. 15N were performed using an isotope ratio mass spectrometer with a Eurovector elemental analyzer. All statistical tests were carried out by the SPSS 11.0 for Windows statistical software package. Results  Soil total C and N were significantly higher in the NF than in the 53-year-old hoop pine plantation. Concentrations of NO3 were significantly higher in the NF soil than in the plantation soil. The plantation soil had significantly higher 15N and 13C natural abundances than the NF soil. The NF soil had significantly lower C/N ratios than the plantation soil. NO3 –N was dominated in mineral N pools in both NF and plantation soils, accounting for 91.6% and 70.3% of the total mineral N pools, respectively. Rates of net nitrification and net N mineralization were, respectively, four and three times higher in the NF soil than in the plantation soil. The 15NO3 –N and mineral 15N were significantly higher in the NF soil than in the plantation soil. Significant difference in 15NH4 +–N was found in the NF soil before and after the incubation. Discussion  The NF soil had significantly higher NO3 –N, mineral N, total N and C but lower δ15N, δ13C, and C/N ratios than the plantation soil. Moreover, the rates of soil net N mineralization and nitrification were significantly higher, but ammonification rate was lower in the NF than in the plantation. The NF soil had many more dynamic N transformations than the plantation soil due to the combination of multiple species and layers and, thus, stimulation of microbial activity and alteration of C and N pool sizes in favor of the N transformations by soil microbes. The net rate of N and 15N transformation demonstrated differences in N dynamic related to the variation in tree species between the two ecosystems. Conclusions  The change of land use and trees species had significant impacts on soil nutrients and N cycling processes. The plantation had larger losses of N than the NF. The NO3 –N and 15NO3 –N dominated in the mineral N and 15N pools in both forest ecosystems. Recommendations and perspectives  Native forest soil had strong N dynamic compared with the plantation soil. Composition of multiple tree species with different ecological niches in the plantation could promote the soil ecosystem sustainability. The 15N isotope dilution technique in the field can be quite useful for studying in situ mineral 15N transformations and fate to further understand actual N dynamics in natural forest soils.  相似文献   

3.
Abstract

Grazing animal excrement plays an important role in nutrient cycling and redistribution in grazing ecosystems, due to grazing in large areas and return in small areas. To elucidate the changes to the soil and pasture caused by sheep urine, fresh dung, and compost patches, a short‐term field experiment using artificially placed pats was set up in the autumn of 2003 in the Inner Mongolian steppe. Urine application significantly increased soil pH during the first 32 days in soil layers at depths of both 0–5 cm and 5–15 cm. Rapid hydrolysis of urea gave large amounts of urine‐nitrogen (N) as ammonium (NH4 +) in soil extracts and was followed by apparent nitrification from day 2. Higher inorganic N content in the urine‐treated soil was found throughout the experiment compared with the control. No significant effects of sheep excrement on soil microbial carbon (C) and soil microbial N was found, but microbial activities significantly increased compared with the control after application of sheep excrement. Forty‐six percent of dung‐N and 27% of compost‐N were transferred into vegetation after the experiment. The results from this study suggest that large amounts of nutrients have been lost from the returned excrement patches in the degraded grassland of Inner Mongolia, especially from sheep urine‐N.  相似文献   

4.
Grazing animals highly influence the nutrient cycle by a direct return of 80% of the consumed N in form of dung and urine. In the autumn‐winter period, N uptake by the sward is low and rates of seepage water in sandy soils are high, hence high mineral‐N contents in soil and in seepage water as well as large losses of N2O are expected after cattle grazing in autumn. The objective of this study was the quanitfication of N loss deriving from urine and dung leaching and by N2O emission. Therefore the deposition of urine and dung patches was simulated in maximum rates excreted by cows by application of 15N‐labeled cow urine and dung (equivalent to 1030 kg N ha–1 and 1052 kg N ha–1, respectively) on a sandy pasture soil in N Germany. Leachate was collected in weekly intervals from free‐draining lysimeters, and 15N‐NO , 15N‐NH , and 15N‐DON (dissolved organic N) were monitored over 171 d. Furthermore, the 15N‐N2O emission rates and the dynamics of inorganic 15N in the upper soil layer were monitored in a field trial, adjacent to the lysimeters. After 10 d following the urine application, the urea was completely hydrolyzed, shown by a 100% recovery of urine‐N in the soil NH . The following decrease of 15N‐NH in the soil was higher than the increase of 15N‐NO , and some N loss was explained by leaching. Amounts of 51% and 2.5% of the applied 15N were found in leachate as inorganic N, 2.4% and 0.7% as DON derived from urine and dung, respectively. Release of N2O from urine and dung patches applied to the pasture was low, with losses of 0.05% and 0.33% of the applied 15N, respectively. Overall loss of dung‐derived N was very low, but as the bulk dung N remained in the soil, N loss after mineralization of the dung needs to be investigated.  相似文献   

5.
In the mountain rainforest region of the South Ecuadorian Andes natural forests have often been converted to pastures by slash-and-burn practice. With advanced pasture age the pasture grasses are increasingly replaced by the tropical bracken leading to the abandonment of the sites. To improve pasture productivity a fertilisation experiment with urea was established. The effects of urea on soil organic matter (SOM) mineralisation and microbial community structure in top soil (0–5 cm depth) of an active and abandoned pasture site have been investigated in laboratory incubation experiments. Either 14C- or 15N-labelled urea (74 mg urea-N kg−1 dw soil) was added to track the fate of 14C into CO2 or microbial biomass and that of 15N into the KCl-extractable NH4-N or NO3-N or microbial biomass pool. The soil microbial community structure was assessed using phospholipid fatty acid analysis (PLFA). In a second experiment two levels of 14C-labelled urea (74 and 110 mg urea-N kg−1 dw soil) were added to soil from 5 to 10 cm depth of the respective sites. Urea fertilisation accelerated the mineralisation of SOC directly after addition up to 17% compared to the non-fertilised control after 14 days of incubation. The larger the amount of N potentially available per unit of microbial biomass N the larger was the positive priming effect. Since in average 80% of the urea-C had been mineralised already 1 day after amendment, the priming effect was strong enough to cause a net loss of soil C. Although the structure of the microbial community was significantly different between sites, urea fertilisation induced the same alteration in microbial community composition: towards a relative lower abundance of PLFA marker characteristic of Gram-positive bacteria and a higher one of those typical of Gram-negative bacteria and fungi. This change was positively correlated with the increase in NH4, NO3 and DON availability. In addition to the activation of different microbial groups the abolishment of energy limitation of the microbes seemed to be an important mechanism for the enhanced mineralisation of SOM.  相似文献   

6.
In this study, we investigated the effects of lanthanum (La), one of the rare earth elements (REEs), on microbial biomass C as well as the decomposition of 14C-labelled glucose in a fluvo-aquic soil in 28 days. The soil was collected from the field plots under maize/wheat rotation in Fengqiu Ecological Experimental Station of Chinese Academy of Sciences, Henan Province, China. Application of La decreased soil microbial biomass C during the experimental period, and there was a negative correlation (P < 0.01) between microbial biomass and application rate of La. La increased microbial biomass 14C after 14C glucose addition, and the increase was significant (P < 0.05) at the rates of more than 160 mg kg−1 soil. La slightly increased 14CO2 evolution at lower rates of application but decreased it at higher rates 1 day after 14C glucose addition, while there was no significant effect from days 2 to 28. For the cumulative 14CO2 evolution during the incubation of 28 days, La slightly increased it at the rates of less than 120 mg kg−1 soil, while significantly decreased (P < 0.05) it at the rate of 200 mg kg−1 soil. The results indicated that agricultural use of REEs such as La in soil could decrease the amount of soil microbial biomass and change the pattern of microbial utilization on glucose C source in a short period.  相似文献   

7.
Nitrogen (N) losses via nitrate (NO3) leaching, ammonia (NH3) volatilization and nitrous oxide (N2O) emissions from grazed pastures in New Zealand are one of the major contributors to environmental degradation. The use of N inhibitors (urease and nitrification inhibitors) may have a role in mitigating these N losses. A one-year field experiment was conducted on a permanent dairy-grazed pasture site at Massey University, Palmerston North, New Zealand to quantify these N losses and to assess the effect of N inhibitors in reducing such losses during May 2005-2006. Cow urine at 600 kg N ha−1 rate with or without urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) or (trade name “Agrotain”) (3 L ha−1), nitrification inhibitor dicyandiamide (DCD) (7 kg ha−1) and the use of double inhibitor (DI) containing a combination of both Agrotain and DCD (3:7) were applied to field plots in autumn, spring and summer. Pasture production, NH3 and N2O fluxes, soil mineral N concentrations, microbial biomass C and N, and soil pH were measured following the application of treatments during each season. All measured parameters, except soil microbial biomass C and N, were influenced by the added inhibitors during the three seasons. Agrotain reduced NH3 emissions over urine alone by 29%, 93% and 31% in autumn, spring and summer respectively but had little effect on N2O emission. DCD reduced N2O emission over urine alone by 52%, 39% and 16% in autumn, spring and summer respectively but increased NH3 emission by 56%, 9% and 17% over urine alone during those three seasons. The double inhibitor reduced NH3 by 14%, 78% and 9% and N2O emissions by 37%, 67% and 28% over urine alone in autumn, spring and summer respectively. The double inhibitor also increased pasture dry matter by 10%, 11% and 8% and N uptake by the 17%, 28% and 10% over urine alone during autumn, spring and summer respectively. Changes in soil mineral N and pH suggested a delay in urine-N hydrolysis with Agrotain, and reduced nitrification with DCD. The combination of Agrotain and DCD was more effective in reducing both NH3 and N2O emissions, improving pasture production, controlling urea hydrolysis and retaining N in NH4+ form. These results suggest that the combination of both urease and nitrification inhibitors may have the most potential to reduce N losses if losses are associated with urine and improve pasture production in intensively grazed systems.  相似文献   

8.
 Gross rates of soil processes and microbial activity were measured in two grazed permanent pasture soils which had recently been amended with N fertilizer or dung. 15N studies of rates of soil organic matter turnover showed gross N mineralization was higher, and gross N immobilization was lower, in a long-term fertilized soil than in a soil which had never received fertilizer N. Net mineralization was also found to be higher in the fertilized soil: a consequence of the difference between the opposing N turnover processes of N mineralization and immobilization. In both soils without amendments the soil microbial biomass contents were similar, but biomass activity (specific respiration) was higher in the fertilized soil. Short-term manipulation of fertilizer N input, i.e. adding N to unfertilized soil, or witholding N from previously fertilized soil, for one growing season, did not affect gross mineralization, immobilization or biomass size and activity. Amendments of dung had little effect on gross mineralization, but there was an increase in immobilization in both soils. Total biomass also increased under dung in the unfertilized soil, but specific respiration was reduced, suggesting changes in the composition of the biomass. Dung had a direct effect on the microbial biomass by temporarily increasing available soil C. Prolonged input of fertilizer N increases soil C indirectly as a result of enhanced plant growth, the effect of which may not become evident within one seasonal cycle. Received: 18 December 1998  相似文献   

9.
In order to investigate the effect of soil water and texture on C and N mineralisation of applied organic matter, sheep manure was sandwiched between two halves of intact soil cores and incubated at 20°C. The soils contained 10.8% (L1), 22.4% (L3) and 33.7% (L5) clay, respectively, and were drained to seven different matric potentials in the range -15 to -1,500 hPa. Evolution of CO2-C was determined during 4 weeks of incubation. Contents of NO3--N, 15N and microbial biomass N were determined at the end of the incubation. The net release of CO2-C from the manure (estimated as the difference between soils with and without manure) and the total CO2-C evolution from soils with manure was not related to soil water content. Most CO2-C evolved from manure-amended soils in the least clayey L1 soil. The manure caused immobilisation of soil NO3--N but the soil matric potential had no major effects on the net NO3--N production. Less than 1% of the manure 15N was found as NO3--N at the end of the incubation. When unamended, the sandy L1 soil held the least N in microbial biomass but the largest increases in biomass N caused by manure application were found in this soil. Despite the higher increases in microbial biomass N in the L1 soil, the total content of microbial biomass N in soils with manure application peaked in the most clayey soil (L5). The recovery of manure 15N at the end of the incubation ranged from 89% to 102%. The variation in 15N recovery was not related to soil clay content nor to soil matric potential. The experimental set-up was designed to mimic field conditions where manure is left as a discrete layer surrounded by structurally intact soil. In this situation the soil clay content and the soil water level appeared to have little influence on the C and N turnover in the manure layer.  相似文献   

10.
The aim of this work was to obtain pure extracellular DNA molecules so as to estimate their longevity in soil by an isotope-based approach. Extracellular DNA molecules were extracted from all horizons of a forest soil and purified by the procedure of Davis (Purification and precipitation of genomic DNA with phenol–chloroform and ethanol. In: Davis LG, Dibner MD, Battey JF (eds) Basic methods in molecular biology. Appleton & Lange, Norwalk, 16–22, 1986) without (DNA1) or with (DNA2) a successive treatment with binding resins followed by elution. The two differently purified DNA samples were compared for their A260/A280 ratio, polymerase chain reaction (PCR) amplification and natural abundance of stable (13C and 15N) and radioactive (14C) isotopes. The purity index and the PCR amplification did not differentiate the efficiency of the two purification procedures. The isotopic signature of DNA was more sensitive and was strongly affected by the purification procedures. The isotopic measurements showed that the major contaminant of extracellular DNA1 was the soil organic matter (SOM), even if it is not possible to exclude that the similar δ 13C, δ 15N and Δ14C values of DNA and SOM could be due to the use of SOM-deriving C and N atoms for the microbial synthesis of DNA. For extracellular DNA2, extremely low values of Δ14C were obtained, and this was ascribed to the presence of fossil fuel-derived substances used during the purification, although in amounts not revealed by gas chromatography-mass spectrometry analysis. The fact that it is not possible to obtain contaminant-free DNA molecules and the potential use of soil native organic compounds during the microbial synthesis of DNA make it not achievable to estimate the age of soil extracellular DNA by radiocarbon dating.  相似文献   

11.
 This study examines the effect of soil P status and N addition on the decomposition of 14C-labelled glucose to assess the consequences of reduced fertilizer inputs on the functioning of pastoral systems. A contrast in soil P fertility was obtained by selecting two hill pasture soils with different fertilizer history. At the two selected sites, representing low (LF) and high (HF) fertility status, total P concentrations were 640 and 820 mg kg–1 and annual pasture production was 4,868 and 14,120 kg DM ha–1 respectively. Soils were amended with 14C-labelled glucose (2,076 mg C kg–1 soil), with and without the addition of N (207 mg kg–1 soil), and incubated for 168 days. During incubation, the amounts of 14CO2 respired, microbial biomass C and 14C, microbial biomass P, extractable inorganic P (Pi) and net N mineralization were determined periodically. Carbon turnover was greatly influenced by nutrient P availability. The amount of glucose-derived 14CO2 production was high (72%) in the HF and low (67%) in the LF soil, as were microbial biomass C and P concentrations. The 14C that remained in the microbial biomass at the end of the 6-month incubation was higher in the LF soil (15%) than in the HF soil (11%). Fluctuations in Pi in the LF soil during incubation were small compared with those in HF soil, suggesting that P was cycling through microbial biomass. The concentrations of Pi were significantly greater in the HF samples throughout the incubation than in the LF samples. Net N mineralization and nitrification rates were also low in the LF soils, indicating a slow turnover of microorganisms under limited nutrient supply. Addition of N had little effect on biomass 14C and glucose utilization. This suggests that, at limiting P fertility, C turnover is retarded because microbial biomass becomes less efficient in the utilization of substrates. Received: 18 October 1999  相似文献   

12.
Altered soil nutrient cycling under future climate scenarios may affect pasture production and fertilizer management. We conducted a controlled-environment study to test the hypothesis that long-term exposure of pasture to enriched carbon dioxide (CO2) would lower soil nutrient availability. Perennial ryegrass was grown for 9 weeks under ambient and enriched (ambient + 120 ppm) CO2 concentrations in soil collected from an 11.5-year free air CO2 enrichment experiment in a grazed pasture in New Zealand. Nitrogen (N) and phosphorus (P) fertilizers were applied in a full factorial design at rates of 0, 12.5, 25 or 50 kg N ha−1 and 0, 17.5 or 35 kg P ha−1. Compared to ambient CO2, under enriched CO2 without P fertilizer, total plant biomass did not respond to N fertilizer, and tissue N/P ratio was increased indicating that P was co-limiting. This limitation was alleviated with the lowest rate of P fertilizer (17.5 kg P ha−1). Plant biomass in both CO2 treatments increased with increasing N fertilizer when sufficient P was available. Greater inputs of P fertilizer may be required to prevent yield suppression under enriched CO2 and to stimulate any response to N.  相似文献   

13.
Purpose

The aim of this research was to quantify the effect of plantain (Plantago lanceolata L.) on soil nitrification rate, functional gene abundance of soil ammonia oxidisers, and the concomitant effect on nitrous oxide emissions from urine patches in a shallow, free-draining soil in Canterbury during late autumn/winter season.

Materials and methods

Urine was collected from dairy cows grazing either ryegrass/white clover (RGWC), 30% plantain (P30) mixed in with RGWC or 100% plantain (P100) pasture, and applied at two rates (700 or 450 kg N ha?1) to intact soil blocks growing either RGWC, P30 or P100 pasture.

Results and discussion

Results showed that increased plantain content reduced N-concentration in urine from 7.2 in RGWC urine to 4.5 and 3.7 g N L?1 in P30 and P100 urine, respectively. Total N2O emissions and emission factors (EF3) from urine-treated pastures were low, <?2 kg N ha?1 and <?0.22%, respectively. Urine application at the lower urine N-loading rate of 450 kg N ha?1 (i.e. representative of that in a P30 urine patch) resulted in 30% lower N2O emissions (P?<?0.01) and 35% lower soil nitrate concentrations (P?<?0.001) compared to those at the higher urine loading rate of 700 kg N ha?1 (i.e. representative of that in a RGWC urine patch). Increasing plantain content in the pasture sward from 0 to 30% and 100% with urine N applied at the same loading rate did not reduce N2O emissions or nitrification compared to the standard ryegrass-white clover pasture. Cow urine derived from the different pasture diets had no effect on N2O emissions, N transformation or ammonia-oxidiser abundance in soil compared to the RGWC urine applied at the same rate.

Conclusions

The main effect of plantain in this study appears to be related to the reduction in urine N-loading rate, rather than factors related to urine properties or plantain-soil interactions.

  相似文献   

14.
The input of labeled C into the pool of soil organic matter, the CO2 fluxes from the soil, and the contribution of root and microbial respiration to the CO2 emission were studied in a greenhouse experiment with continuous labeling of oat plants with 13CO2 using the method of the natural 13C abundance in the air. The carbon of the microbial biomass composed 56 and 39% of the total amounts of 13C photoassimilates in the rhizosphere and in the bulk soil, respectively. The contribution of root respiration to the CO2 emission from the soil reached 61–92%, including 4–23% of the rhizomicrobial respiration. The contribution of the microbial respiration to the total CO2 emission from the soil varied from 8 to 39%. The soil organic matter served as the major carbon-containing substrate for microorganisms in the bulk soil and in the rhizosphere: 81–91% of the total amount of carbon involved in the microbial metabolism was derived from the soil organic matter.  相似文献   

15.
The effect of soil aeration status on carbon partitioning of a labelled organic substrate (14C-[U]-glucose) into CO2, microbial biomass, and extra-cellular metabolites is described. The soil was incubated in a continuous flow incubation apparatus under four different aeration conditions: (1) permanently aerobic, (2) permanently anaerobic, (3) shifted from anaerobic to aerobic, and (4) shifted from aerobic to anaerobic. The soil was pre-incubated for 10 days either under aerobic or under anaerobic conditions. Afterwards, glucose was added (315 g C g–1) and the soils were incubated for 72 h according to four treatments: aerobic or anaerobic conditions maintained, aerobic conditions shifted to anaerobic conditions and anaerobic conditions shifted to aerobic conditions. Carbon partitioning was measured 0, 8, 16, 24, 48 and 72 h after the glucose addition. In permanently aerobic conditions, the largest part of the consumed glucose was built into microbial biomass (72%), much less was mineralised to CO2 (27%), and only a negligible portion was transformed to soluble extra-cellular metabolites. Microbial metabolism was strongly inhibited when aeration conditions were changed from aerobic to anaerobic, with only about 35% of the added glucose consumed during the incubation. The consumed glucose was transformed proportionally to microbial biomass and CO2. In permanently anaerobic conditions, 42% of the consumed glucose was transformed into microbial biomass, 30% to CO2, and 28% to extra-cellular metabolites. After a shift of anaerobic to aerobic conditions, microbial metabolism was not suppressed and the consumed glucose was transformed mainly to microbial biomass (75%) and CO2 (23%). Concomitant mineralisation of soil organic carbon was always lower in anaerobic than in aerobic conditions.  相似文献   

16.
Abstract. Gross N mineralization and nitrification rates were measured in soils treated with dairy shed effluent (DSE) (i.e. effluent from the dairy milking shed, comprising dung, urine and water) or ammonium fertilizer (NH4Cl) under field conditions, by injecting 15N-solution into intact soil cores. The relationships between gross mineralization rate, microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) as affected by the application of DSE and NH4Cl were also determined. During the first 16 days, gross mineralization rate in the DSE treated soil (4.3–6.1 μg N g?1 soil day?1) were significantly (P 14;< 14;0.05) higher than those in the NH4Cl treated soil (2.6–3.4 μg N g?1 soil day?1). The higher mineralization rate was probably due to the presence of readily mineralizable organic substrates in the DSE, accompanied by stimulated microbial and extracellular enzyme activities. The stable organic N compounds in the DSE were slow to mineralize and contributed little to the mineral N pool during the period of the experiment. Nitrification rates during the first 16 days were higher in the NH4Cl treated soil (1.7–1.2 μg N g?1 soil day?1) compared to the DSE treated soil (0.97–1.5 μg N g?1 soil day?1). Soil microbial biomass C and N and extracellular enzyme activities (protease, deaminase and urease) increased after the application of the DSE due to the organic substrates and nutrients applied, but declined with time, probably because of the exhaustion of the readily available substrates. The NH4Cl application did not result in any significant increases in microbial biomass C, protease or urease activities due to the lack of carbonaceous materials in the ammonium fertilizer. However, it did increase microbial biomass N and deaminase activity. Significant positive correlations were found between gross N mineralization rate and soil microbial biomass, protease, deaminase and urease activities. Nitrification rate was significantly correlated to biomass N but not to the microbial biomass C or the enzyme activities. Stepwise regression analysis showed that the variations of gross N mineralization rate was best described by the microbial biomass C and N.  相似文献   

17.
Soil microbial organisms are central to carbon (C) and nitrogen (N) transformations in soils, yet not much is known about the stable isotope composition of these essential regulators of element cycles. We investigated the relationship between C and N availability and stable C and N isotope composition of soil microbial biomass across a three million year old semiarid substrate age gradient in northern Arizona. The δ15N of soil microbial biomass was on average 7.2‰ higher than that of soil total N for all substrate ages and 1.6‰ higher than that of extractable N, but not significantly different for the youngest and oldest sites. Microbial 15N enrichment relative to soil extractable and total N was low at the youngest site, increased to a maximum after 55,000 years, and then decreased slightly with age. The degree of 15N enrichment of microbial biomass correlated negatively with the C:N mass ratio of the soil extractable pool. The δ13C signature of soil microbial biomass was 1.4‰ and 4.6‰ enriched relative to that of soil total and extractable pools respectively and showed significant differences between sites. However, microbial 13C enrichment was unrelated to measures of C and N availability. Our results confirm that 15N, but not 13C enrichment of soil microbial biomass reflects changes in C and N availability and N processing during long-term ecosystem development.  相似文献   

18.
Lumbricus terrestris is a deep-burrowing anecic earthworm that builds permanent, vertical burrows with linings (e.g., drilosphere) that are stable and long-lived microhabitats for bacteria, fungi, micro- and mesofauna. We conducted the first non-culture based field study to assess simultaneously the drilosphere (here sampled as 0–2 mm burrow lining) composition of microbial and micro/mesofaunal communities relative to bulk soil. Our study also included a treatment of surface-applied 13C- and 15N-labeled plant residue to trace the short-term (40 d) translocation of residue C and N into the drilosphere, and potentially the assimilation of residue C into drilosphere microbial phospholipid fatty acids (PLFAs). Total C concentration was 23%, microbial PLFA biomass was 58%, and PLFAs associated with protozoa, nematodes, Collembola and other fauna were 200-to-300% greater in the drilosphere than in nearby bulk soil. Principal components analysis of community PLFAs revealed that distributions of Gram-negative bacteria and actinomycetes and other Gram-positive bacteria were highly variable among drilosphere samples, and that drilosphere communities were distinct from bulk soil communities due to the atypical distribution of PLFA biomarkers for micro- and mesofauna. The degree of microbial PLFA 13C enrichment in drilosphere soils receiving 13C-labeled residue was highly variable, and only one PLFA, 18:1ω9c, was significantly enriched. In contrast, 11 PLFAs from diverse microbial groups where enriched in response to residue amendment in bulk soil 0–5 cm deep. Among control soils, however, a significant δ13C shift between drilosphere and bulk soil at the same depth (5–15 cm) revealed the importance of L. terrestris for translocating perennial ryegrass-derived C into the soil at depth, where we estimated the contribution of the recent grass C (8 years) to be at least 26% of the drilosphere soil C. We conclude that L. terrestris facilitates the translocation of plant C into soil at depth and promotes the maintenance of distinct soil microbial and faunal communities that are unlike those found in the bulk soil.  相似文献   

19.
Nitrogen losses from agricultural grasslands cause eutrophication of ground- and surface water and contribute to global warming and atmospheric pollution. It is widely assumed that soils with a higher fungal biomass have lower N losses, but this relationship has never been experimentally confirmed. With the increased interest in soil-based ecosystem services and sustainable management of soils, such a relationship would be relevant for agricultural management. Here we present a first attempt to test this relationship experimentally. We used intact soil columns from two plots from a field experiment that had consistent differences in fungal biomass (68 ± 8 vs. 111 ± 9 μg C g−1) as a result of different fertilizer history (80 vs. 40 kg N ha−1 y−1 as farm yard manure), while other soil properties were very similar. We performed two greenhouse experiments: in the main experiment the columns received either mineral fertilizer N or no N (control). We measured N leaching, N2O emission and denitrification from the columns during 4 weeks, after which we analyzed fungal and bacterial biomass and soil N pools. In the additional 15N experiment we traced added N in leachates, soil, plants and microbial biomass. We found that in the main experiment, N2O emission and denitrification were lower in the high fungal biomass soil, irrespective of the addition of fertilizer N. Higher 15N recovery in the high fungal biomass soil also indicated lower N losses through dentrification. In the main experiment, N leaching after fertilizer addition showed a 3-fold increase compared to the control in low fungal biomass soil (11.9 ± 1.0 and 3.9 ± 1.0 kg N ha−1, respectively), but did not increase in high fungal biomass soil (6.4 ± 0.9 after N addition vs. 4.5 ± 0.8 kg N ha−1 in the control). Thus, in the high fungal biomass soil more N was immobilized. However, the 15N experiment did not confirm these results; N leaching was higher in high fungal biomass soil, even though this soil showed higher immobilization of 15N into microbial biomass. However, only 3% of total 15N was found in the microbial biomass 2 weeks after the mineral fertilization. Most of the recovered 15N was found in plants (approximately 25%) and soil organic matter (approximately 15%), and these amounts did not differ between the high and the low fungal biomass soil. Our main experiment confirmed the assumption of lower N losses in a soil with higher fungal biomass. The additional 15N experiment showed that higher fungal biomass is probably not the direct cause of higher N retention, but rather the result of low nitrogen availability. Both experiments confirmed that higher fungal biomass can be considered as an indicator of higher nitrogen retention in soils.  相似文献   

20.
A laboratory incubation experiment was set up to determine the effects of atrazine herbicide on the size and activity of the soil microbial biomass. This experiment was of a factorial design (0, 5, and 50 g g–1 soil of non-labelled atrazine and 6.6×103 Bq g–1 soil of 14C-labelled atrazine) x (0, 20, and 100 g g–1 soil of urea-N) x (pasture or arable soil with a previous history of atrazine application). Microbial biomass, measured by substrate-induced respiration and the fumigation-incubation method, basal respiration, incorporation of 14C into the microbial biomass, degradation of atrazine, and 14C remaining in soil were monitored over 81 days. The amount of microbial biomass was unaffected by atrazine although atrazine caused a significant enhancement of CO2 release in the non-fumigated controls. Generally, the amounts of atrazine incorporated into the microbial biomass were negligible, indicating that microbial incorporation of C from atrazine is not an important mechanism of herbicide breakdown. Depending on the type of soil and the rate of atrazine application, 18–65% of atrazine was degraded by the end of the experiment. Although the pasture soil had twice the amount of microbial biomass as the arable soil, and the addition of urea approximately doubled the microbial biomass, this did not significantly enhance the degradation of atrazine. This suggests that degradation of atrazine is largely independent of the size of the microbial biomass and suggests that other factors (e.g., solubility, chemical hydrolysis) regulate atrazine breakdown. A separate experiment conducted to determine total amounts of 14C-labelled atrazine converted into CO2 by pasture and arable soils showed that less than 25% of the added 14C-labelled atrazine was oxidised to 14CO2 during a 15-week period. The rate of degradation was significantly greater in the arable soil at 24%, compared to 18% in the pasture soil. This indicates that soil microbes with previous exposure to atrazine can degrade the applied atrazine at a faster rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号