首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 107 毫秒
1.
Fish oxygen requirement is a fundamental variable of aquaculture system design and management, as it is the basis for determining water flow rates for sustaining stock. A study on oxygen consumption of California halibut (Paralichthys californicus) between 3.2 and 165.6 g was conducted in small raceways (2.41 m long, 0.28 m wide, and 0.22 m high; operational water depth between 0.05 and 0.10 m with a quiescent zone 19 cm long in the effluent section) working as open respirometers in a recirculating system under farm-like conditions. The fish were fed commercial dry pelleted feeds at a ratio of ~0.70–3.00% of body weight (BW) and stocked at densities between 94% and 316% percent coverage area (PCA). Oxygen consumption rates were determined by mass balance calculations. The mean and maximum oxygen consumption rates (g O2/kg fish/day) for juvenile California halibut under the conditions tested can be expressed by Mday = 15.077W?0.2452 and Mday = 17.266W?0.2033, respectively, where W is fish weight in grams. The determination of oxygen consumption by California halibut in farm-like conditions provides valuable information on the oxygen requirement of these fish in an aquacultural setting. This information can be used for designing and sizing a rearing facility for the intensive culture of California halibut.  相似文献   

2.
Oxygen consumption rates (mg O2/kg fish/min; OC) of juvenile palm fish (average weight 420 g) were determined for temperatures of 14 and 18 °C. Three replicates of two tanks rearing fish at a density of 24 kg/m3 were used to measure OC at 34 ppt working as open respirometers in a recirculating system under farm-like conditions. The fish were fed commercial dry pelleted feeds at a ratio of 1% of total biomass. Oxygen consumption rates were determined by mass balance calculations. The OC increased from 1.6 to 2.4 g O2/kg fish/day as temperature increased from 14 to 18 °C. The determination of oxygen consumption by palm fish in farm-like conditions provides valuable information on the oxygen requirement of these fish in an aquacultural setting. This bioengineering information can be used for designing and sizing a rearing facility for the intensive culture of palm fish.  相似文献   

3.
《Fisheries Research》2007,83(1-3):56-64
The pelagic thresher shark, Alopias pelagicus, is a cosmopolitan species and abundant in Taiwan waters. Some of its biological information has been documented yet its population dynamics are poorly known. The purpose of this study is to assess the pelagic thresher shark stock status in the eastern Taiwan waters. The whole weights (W) of 51,748 individuals of the pelagic thresher shark landed at Nanfanao and Chengkung fish markets, eastern Taiwan from 1990 to 2004 were converted to precaudal length (PCL) based on the W–PCL relationship (W = 2.25 × 10−4 × PCL2.533, n = 2165). The sexes combined VBGE Lt = 189.5 × (1  e−0.10(t+6.47)) was used to estimate the age for each length group. Total mortality rates (Z) obtained with length-converted catch curves ranged from 0.208 to 0.277 year−1. Natural mortality rate (M) estimated from Hoenig method was 0.132 year−1, and exploitation rate (E) ranged from 0.069 to 0.127 for 1990–2004. Annual abundance was estimated to range from 97,551 in 2000 to 153,331 in 2003 from virtual population analysis, and the highest fishing mortality occurred in ages 8–18 years. There were four different scenarios being simulated in this study. Scenario 1 indicated that spawning per recruit (SPR) ranged from 23.07% in 2001 to 47.71% in 1990 with a mean of 36.41% for the period of 1990–2004. The mean SPR of pelagic thresher for 1990–2004 was below the BRP of SPR = 35% in scenarios 2–4 suggesting that this stock was slightly overexploited. Therefore, to ensure sustainable utilization of this stock, reduction of fishing effort and close monitoring on A. pelagicus are needed.  相似文献   

4.
5.
《Fisheries Research》2007,83(1-3):74-86
The life history of an increasingly important pelagic commercial and sport fish, the Talang queenfish, Scomberoides commersonnianus, was studied in northern Australia to investigate the stock status and assess current management of the species using minimum legal lengths (MLL). Estimated von Bertalanffy growth parameters were L = 1404 mm FL, K = 0.10 year−1 and t0 = −1.21 year−1. There was no significant difference in growth between sexes. Ages ranged from 1 to 11 years with age composition differing between the commercial (mainly 6–7 years) and sport fishery (mainly 2–4 years). Females matured (L50) at 635 mm FL and 4–5 years. Spawning occurred between August and March when mature females were estimated to produce 259,488–2,859,935 eggs per spawning. Natural mortality (M) was estimated as 0.16–0.26 year−1, while the combined fishing mortality (Fcurrent) from commercial and sport fisheries was 0.38–0.48 year−1. Yield-per-recruit analyses revealed that under current MLL limits (no MLL or 45 cm TL) and natural mortality (M = 0.16, 0.2 and 0.26 year−1), Fcurrent exceeded the reference points Fmax (0.15–0.22 year−1) and F0.1 (0.10–0.15 year−1), suggesting the stock may be growth overfished if the current situation remains unchanged. Although a stock–recruitment relationship is unknown, spawning stock biomass-per-recruit analysis indicates the stock may also be recruitment overfished since Fcurrent exceeded the reference points F25% (0.19–0.24 year−1) and F40% (0.11–0.15 year−1). Increasing the MLL corresponding to L50 of females (70 cm TL) will greatly improve the yield and long-term sustainability of the stock, and also enhance the sport fishery by increasing the number of larger trophy fish.  相似文献   

6.
Diel oxygen consumption patterns were determined in this study for California halibut (Paralichthys californicus) 3.2, 4.4, 6.2, 7.5, 9.2, 11.8, 12.8 and 14.2 g and between 110.5, 113.8, 115.7, 117.9, 120.1, 126.5, 132.4, 140.6, and 165.6 g held under farm-like conditions. The concept farm-like refers to a fish rearing condition as close as possible to a farming operation in terms of density, loading, and daily management. Open respirometries were performed in culture raceways during 24 h cycles while fish were growing from 3.2 g up to 165.6 g to determine hourly oxygen consumption rates by mass balance calculations. Fish were offered feed continuously during 12 h (within the 16 h light phase) resulting in maximum daily oxygen consumption rates that were between 1.2 and 1.5 times the mean daily values. A typical diel oxygen consumption pattern of the smaller group of fish tested (range between 3.2 and 14.2 g) had a peak during the feeding period, and relatively low and falling oxygen consumption after feeding was stopped. Oxygen consumption of the larger group of fish (range between 110.5 and 165.6 g) showed a less marked diel variation and did not change significantly after feed was distributed. In conclusion, diel oxygen consumption rates for California halibut reported here are key bioengineering parameters to be used when designing and sizing a rearing facility for the intensive culture of California halibut.  相似文献   

7.
Direct and continuous measurement of dissolved CO2 (dCO2) is crucial for intensive aquaculture, especially in shallow raceway systems (SRS). In this work the performance of a portable dissolved CO2 probe analyzer was tested for the effects of different aqueous solutions, pure oxygen injection and agitation. Laboratory results showed significant (p < 0.05) solution effects on probe performance for low (10–20 mg L−1) and high (30–50 mg L−1) dCO2 concentrations. Globally performance was better in deionized water, followed by marine fish farm water and artificial seawater. Accuracy and response time were the parameters most affected by the type of solution tested. Linearity was always observed (R2 = 0.995–0.999). The probe was sensitive to 1 mg L−1 dCO2 increments for concentrations <6 mg L−1 in artificial seawater. Pure oxygen injection did not affect probe readouts, and agitation was needed for better accuracy and response time. In real marine SRS with tanks in series dCO2 dynamics was revealed using the probe coupled to a developed flow cell. A prototype SRS was built and used to study dCO2 dynamics without endangering cultivated fish. Generally, results obtained indicate that the probe tested although precise, is better suited for discrete, single-point dCO2 monitoring, being a limited resource for the special needs of shallow raceway systems. As SRS represent a paradigm change in aquaculture, new water quality monitoring strategies and instrumentation are needed, especially for dCO2. Fiber optic sensors can be a solution for continuous, multipoint monitoring, thus contributing to the understanding of water quality dynamics in hyperintensive aquaculture systems.  相似文献   

8.
A study was undertaken to measure the water flow (Qw) delivered by a vacuum airlift designed for recirculating aquaculture systems (RAS) in fresh (<1‰ of salinity) and sea water (35‰ of salinity). The vacuum airlift consists of two concentric tubes connected at their top to a depression chamber. The water rises in the inner tube as a result of air being injected in its lower section and flows back through the external downcomer tube. The vacuum airlift was adjusted at three different lengths: 2, 4 or 6 m and water discharge could be lifted from 0 to 30 cm. Air flow rate (Qg) varied from 0 to 80 L min−1. Different types of air injectors were tested, delivering different bubble sizes (0.1–5 mm) depending on porosity and functioning at low or high injection pressure. Results show an increase in water flow when pipe length and air flow were increased and lift height reduced. Water flow also depended on the type of water and ranged from 0 to 35 m3 h−1 (0–580 L min−1) for fresh water and only from 0 to 20 m3 h−1 (0–330 L min−1) for sea water (for a 6 m high vacuum airlift). This difference was attributed to the smaller bubble diameter and higher gas holdup (ɛg) observed in sea water (0–20%) compared to fresh water (0–10%). When bubbles were present in the downcomer tube, they created a resistance to flow (counter-current airlift) that slowed down liquid velocity and thus water flow. Increasing the vacuum made it possible to use low air injection pressures and high injection depths. Vacuum also increased bubble size and airflow (20 L min−1 at atmospheric pressure to 60 L min−1 at 0.3 barA) and thus water flow rates. With RAS, the presence of fish feed in water rapidly increased water flow delivered by the airlift because of changes of water quality and gas holdup. When working with low head RAS (under 0.3 m), vacuum airlift could save up to 50% of the energy required for centrifugal pumps. An empirical predictive model was developed and calibrated. Simulation shows a good correlation between predicted values and measurements (R2 = 0.96).  相似文献   

9.
A jet fish pump with a throat of ø60 mm was designed to study its performance in the transport of different fish species and the physiological changes in fish thereafter. Experiments were conducted to investigate the fish transport rate and energy required to transport each ton of fish when transporting Carassius auratus, commonly known as the Chinese goldfish, Megalobrama amblycephala, or Wuchang bream, and Ctenopharyngodon idella, the grass carp. Fish were examined for external injuries as well as for several important enzymes and hormones which are indicators of tissue injury and stress. The results showed that the transport rate for all three species of fish rose dramatically with an increase in the primary stream rate. In this experiment, the transport rates of C. auratus, M. amblycephala and C. idella reached 2357 ± 37.2 kg  h−1, 2888 ± 41.6 kg  h−1, and 2060 ± 40.2 kg  h−1, respectively. However, both injury rate and energy required to transport each ton of fish increased no matter whether the primary stream rate was too low or too high. Considering both transport rate and injury rate, the mean primary stream rate of 80 m3  h−1 was determined to be the optimal operating condition in this experiment. Fish were stressed and most likely some of their organs were damaged. However, most physiological indexes almost fully recovered after several hours.  相似文献   

10.
Irrigated rice fields have enormous potential for expanding the aquaculture production in rice producing countries. Two field experiments were carried out at the Bangladesh Agricultural University, Mymensingh, to optimize the productivity of integrated rice–fish systems using Nile tilapia, Oreochromis niloticus (L.), and common carp, Cyprinus carpio L. Both experiments were laid out in a randomized complete block design with three replicates per treatment and regular rice monoculture as control. In the first trial, carp and tilapia were tested in single culture and in mixed culture with supplementary feeding at 2× maintenance level. The highest fish yield was obtained in the carp/tilapia mixed culture (586 ± 125 kg ha 1), followed by tilapia alone (540 ± 65 kg ha 1), and carp alone (257 ± 95 kg ha 1). Carp had significantly lower yield than the other two fish groups (p < 0.05) due to high mortality and inefficient feed utilization. As the carp/tilapia combination performed the best in the first experiment, it was tested with different inputs in the second trial, i.e. regular urea fertilization and two different feeding levels. The feeding levels were: continuous feeding at 2× maintenance level (feed level I) and a declining feeding schedule from 4× to 2× maintenance level (feed level II). The highest fish yield was obtained in feed level II (935 ± 29 kg ha 1), followed by feed level I (776 ± 22 kg ha 1), and the non-fed group (515 ± 85 kg ha 1). Yield differences between the treatments were significant at p < 0.05. Rice yields showed controversial effects between the rice–fish treatments and were dependent on the inputs provided. The highest rice production (4.2 t ha 1) was obtained from rice–fish plots with regular urea fertilization. Various significant effects of fish on water quality parameters were observed. Fish decreased the dissolved oxygen (DO) and pH value compared to rice only, especially when supplementary feed was provided. Moreover, fish stimulated the growth of phytoplankton and increased chlorophyll-a concentration. In conclusion, carp/tilapia mixed culture with supplementary feeding was found to be optimal for maximizing the output from rice–fish culture.  相似文献   

11.
Production of Akoya pearls from the Southwest coast of India   总被引:1,自引:0,他引:1  
The Indian pearl oyster Pinctada fucata (Gould) is typically capable of producing pearls of 3–5 mm diameter. The feasibility of production of pearls similar to Akoya pearls of 6–8 mm diameter was studied from the southwest coast of India. Along with this, mortality and retention rates of implanted oysters, rate of nacre production, thickness of nacre deposited, quality and type of pearls produced and effect of hydrographic variations on the mortality of implanted oysters were also studied. A total of 706 oysters were implanted, 311 with 5 mm, 395 with 6 mm nuclei and stocked in 30 cages for a period of 317 days. The mortality rates were highest, 0.173 ± 0.22 for the 6 mm nucleus implanted oysters followed by 5 mm nucleus implanted oysters at 0.107 ± 0.025 during the first 30 days after implantation. These rates were significantly different (P < 0.05) from the mortality rate of the control oysters (0.042 ± 0.04). The retention rates based on the surviving oysters, ranged from 33 to 61% (average 45.9 for 5 mm) and 31 to 60% (average 48.9% for 6 mm). The nacre deposition rates on the nuclei were found to be 4.0 ± 1.0 μm day 1 and 3.0 ± 1.0 μm day 1 for 6 and 5 mm nuclei respectively. Of the total 131 pearls obtained, 27.6% were A-grade, 31.3% B-grade, 19.8% C-grade, 7.6% baroques and 13.7% rejects or trash. The total suspended solids (TSS) in the water were found to be positively correlated (P < 0.05) with the monthly mortality rate of the implanted oysters. The study showed that it was possible to obtain relatively thick nacre within a short period of 10 months, the deposition rate being about 9 times higher than that observed in Japanese waters and 2.2 to 2.3 times more than that along the Indian southeast coast.  相似文献   

12.
Growth of juvenile pollack was assessed at five constant temperatures (9, 12, 15, 18 and 21 °C) in an 84-day trial. Duplicate groups of 75 fish (initial weight 143 ± 2 g) were held in O2 saturated water (102–103% saturation) and fed to apparent satiation. Growth increased as temperature increased from 9 °C up to a plateau at 12–15 °C (NS differences between 12 and 15 °C) followed by a decrease from 18 °C. No growth occurred at 21 °C. For the overall period, specific growth rates were 0.52% and 0.53% day 1 at 12 and 15 °C compared to 0.40% day 1 at 18 °C. Feed intake was maximum at 15–18 °C (0.68–0.69% day 1) and it was significantly lower at 21 °C (0.45% day 1). Apparent feed conversion ratio was significantly higher at 18 °C than at 12–15 °C (1.8 compared to 1.2–1.4). There was no significant change in fish whole body composition related to temperature.At the end of the experiment, fish growth recovery following a transfer from 18 and 21 °C to 15 °C was assessed using a 50-day challenge test. Growth rate of the previous 21 °C group was the same as in the 15 °C group (NS differences) and in the previous 18 °C group it was significantly lower. The study showed that pollack have a high capacity to recover from a prolonged period of low or no growth induced by high temperatures.  相似文献   

13.
This study investigated the effects of three microscreen mesh sizes (100, 60 and 20 μm) on water quality and rainbow trout (Oncorhynchus mykiss) performance compared to a control group without microscreens, in triplicated recirculating aquaculture systems (RAS). Operational conditions were kept constant during a 6-week period where the microscreens were manually rinsed three times a day. The effects of microscreen cleaning frequency and nitrification performance were subsequently assessed.Compared to the control group, microscreens removed particles, reduced particulate organic matter, and increased β-values. Particulate parameters reached steady-state in all treatment groups having microscreens at the end of the trial. The time to reach equilibrium seemingly increased with increasing mesh size but the three treatment groups (100, 60 and 20 μm) did not significantly differ at the end of the trial. Increased backwashing frequency over a 24-h period had no further significant effects on the parameters measured. The results demonstrated the role and importance of a microscreen, and showed that mesh size, within the range tested, is less important at long operations under constant conditions.Fish performed similarly in all treatments. Preliminary screening of trout gills did not reveal any pathological changes related to microscreen filtration and the resulting water quality. Biofilter performance was also unaffected, with 0′-order nitrification rates (k0a) being equivalent for all twelve systems (0.148 ± 0.022 g N m−2 d−1).Mechanisms for RAS equilibrium establishment, within and between systems with different mesh sizes, are discussed.  相似文献   

14.
The separation performance of a low-pressure hydrocyclone was tested using fine organic particles from 1 to 700 μm. The dimensions of the low-pressure hydrocyclone were an inflow diameter of 30 mm, a cylinder length of 575 mm, an overflow diameter of 60 mm, an underflow diameter of 50 mm, a cylinder diameter of 335 mm and a cone angle of 68°. The low-pressure hydrocyclone was operated with a lower inlet pressure (average 1.38–5.56 kPa) that could be maintained under water level differences that ranged from 17.5 to 53.5 cm between the water surface of the feeding mass cylinder and the middle of the inlet pipe of the low-pressure hydrocyclone. By varying the inflow rate, underflow ratio and feed concentration, the separation performance of the low-pressure hydrocyclone was affected. The separation performances were determined from total separation efficiency and grade efficiency. Separation performances were determined according to the different inflow rates of 400, 600, 800 and 1000 ml s−1 and their respective underflow ratios that ranged from 5% to 30%. The maximum total separation efficiencies for each inflow rate were 41%, 46% and 46% at 400, 800 and 1000 ml s−1 inflow rates, respectively, and at underflow rates of 30% of the inflow rates. In addition, a total separation efficiency of 46% was employed at 600 ml s−1 of inflow rate and with an underflow rate of 25% its inflow rate. As the feed concentration increased from 25 to 150 mg l−1, the separation performances were gradually decreased. For the fine particles ranging 1–200 μm, the grade efficiency was higher at the higher inflow rate (higher than 600 ml s−1) and higher underflow rate. However, for the coarse particles ranging 400–700 μm, the grade efficiency was higher at the lower inflow rate (lower than 600 ml s−1) and higher underflow rate. The cut-point (d50) values ranged from 30 to 200 μm for a feed size range of 1–700 μm. The Response Surface Method (RSM) model predicted an optimum operating inflow rate and underflow ratio of 721 ml s−1 of inflow rate and 30%, respectively, for the low-pressure hydrocyclone at a maximum total separation efficiency. Based on these findings, further design and operating adaptation of low-pressure hydrocyclones used for fine solids removal in recirculating aquaculture systems is expected.  相似文献   

15.
A step toward environmental sustainability of recirculat aquaculture systems (RAS) is implementation of single-sludge denitrification, a process eliminating nitrate from the aqueous environment while reducing the organic matter discharge simultaneously. Two 1700 L pilot-scale RAS systems each with a 85 L denitrification (DN) reactor treating discharged water and hydrolyzed solid waste were setup to test the kinetics of nitrate and COD removal. Nitrate removal and COD reduction efficiency was measured at two different DN-reactor sludge ages (high θX: 33–42 days and low θX: 17–23 days). Nitrate and total N (NO3 + NO2 + NH4+) removal of the treated effluent water ranged from 73–99% and 60–95% during the periods, respectively, corresponding to an overall maximum RAS nitrate removal of approximately 75%. The specific nitrate removal rate increased from 17 to 23 mg NO3-N (g TVS d)−1 and the maximal potential DN rate (measured at laboratory ideal conditions) increased correspondingly from 64–68 mg NO3-N (g TVS d)−1 to 247–294 mg NO3-N (g TVS d)−1 at high and low θX, respectively. Quantification of denitrifiers in the DN-reactors by qPCR showed only minor differences upon the altered sludge removal practice. The hydrolysis unit improved the biodegradability of the solid waste by increasing volatile fatty acid COD content 74–76%. COD reductions in the DN-reactors were 64–70%. In conclusion, this study showed that single-sludge denitrification was a feasible way to reduce nitrate discharge from RAS, and higher DN rates were induced at lower sludge age/increased sludge removal regime. Improved control and optimization of reactor DN-activity may be achieved by further modifying reactor design and management scheme as indicated by the variation in and between the two DN-reactors.  相似文献   

16.
Leakage of water soluble nutrients from larval microparticulated feeds is probably extensive and needs to be further investigated. Leaching rates of 14C-labelled serine, pepsin hydrolysed, protein enriched 14C-algae extract and intact protein enriched 14C-algae extract were measured from three microparticulated feeds for marine fish larvae (heat coagulated, protein bond feed; agglomerated feed; protein encapsulated feed). The effects of particle size (< 0.3 mm, 0.3–0.6 mm; 0.6–1.0 mm) and immersion time (1–60 min) in salt water were also tested. Leaching increased by decreasing molecular weight of leaching component (P < 10 5), by the feeds in order encapsulated, heat coagulated and agglomerated feeds (P < 10 5), by longer immersion time (P < 10 5), and by decreasing feed particle size (P < 10 5). Due to low protein content of the algae extract, the leaching rates of intact and hydrolysed algae extract did not represent absolute estimates for protein and hydrolysed protein leaching. A new estimate for leakage of hydrolysed protein was calculated based on molecular weight distribution of the hydrolysed algae extract analysed by cutoff centrifugation of the extract. Assuming that molecules < 300–600 or < 9–18 kD would leak, leakage of hydrolysed protein from the smallest feed particles after 5 min immersion would be 80–98%, 43–54% and 4–6% of the agglomerated, heat coagulated and protein encapsulated feeds, respectively. The feeds were also tested for preference in cod larvae of two different sizes (5.6 ± 2.5 mg and 15.8 ± 7.2 mg). The preference was highest for the heat coagulated feed in the first experiment (feed intake 0.32 ± 0.06 mg dry feed larvae 1) and the agglomerated in the second (2.04 ± 0.32 mg dry feed larvae 1), while the protein encapsulated feed was preferred at lower rates in both experiments (0.11–0.14 mg dry feed larvae 1).  相似文献   

17.
The food grade agar in India has been almost exclusively obtained from Gracilaria edulis, but the industrial production overwhelmingly relies on exploitation of natural resources. United Nations efforts through Food and Agriculture Organization under Bay of Bengal Program highlighted the necessity of undertaking commercial farming of this species along Indian coast for socio-economic benefits. The pilot-scale experiments established viability of large-scale cultivation by floating raft method. Nevertheless, drastic reduction in yield and quality during summer months due to enhanced sedimentation and severe epiphytism is found to be a major hindrance. Altering the positioning of rafts from horizontal to vertical alignment improved the growth and yield under open sea condition at two different locations along south east coast of India. The average yield in horizontal raft was found to be 3.08 ± 0.61 kg fr wt raft−1 with corresponding DGR of 1.87 ± 0.63% day−1 while same in case of vertical rafts was 13.76 ± 3.86 kg fr wt raft−1 and 5.00 ± 0.5% day−1 in Gulf of Mannar under 45 days growth cycle. The corresponding values along Palk Bay were 2.98 ± 0.52 g fr wt raft−1 and 1.38 ± 0.42% day−1 for horizontal raft and 13.02 ± 6.06 kg fr wt raft−1 and 4.14 ± 1.18% day−1 for vertical raft. ANOVA clearly indicated that raft position significantly influenced the biomass yield and DGR at Palk Bay (F = 75.77; F = 112.81) as well as Gulf of Mannar (F = 27.21; F = 59.16) at p = 0.001. The increment of 1.9–2.6% in fresh weight of individual frond was reported in vertically aligned rafts. The computational fluid dynamics (CFD) based unsteady numerical simulations have confirmed that vertical alignment of raft facilitates relatively free movement of water due to which sedimentation and epiphytism are either minimised or eliminated. Thus these studies can help us to deduce important conclusions pertaining to management of sustained commercial cultivation of this alga in Indian waters.  相似文献   

18.
In zero-exchange superintensive culture systems, flocculated particles (bioflocs) accumulate in the water column. Consequently, some control over the concentration of these particles must be performed. The objective of this study is to evaluate the effects of three concentrations of bioflocs on microbial activity, selected water quality indicators and performance of Litopenaeus vannamei in a tank system operated with no water exchange. A 44-day study was conducted with juvenile (6.8 g) shrimp stocked in twelve 850 L tanks at a stocking density of 459 shrimp m−3. Biofloc levels were expressed as three presets of total suspended solids (TSS) concentrations, as follows: 200 mg L−1 (T200), 400–600 mg L−1 (T400–600), and 800–1000 mg L−1 (T800–1000). TSS levels were controlled by attaching a 40 L settling tank to each culture tank. Reduction of TSS to concentrations close to 200 mg L−1 decreased the time of bacterial cell residence and significantly reduced the nitrification rates in the water (P < 0.05). The tanks in the T200 treatment had a greater variability of ammonia and nitrite (P < 0.05), which led to the need to increase the C:N ratio of the organic substrate to control ammonia through its assimilation into heterotrophic bacterial biomass. But the higher production of heterotrophic bacteria in T200 (P < 0.05) increased the dissolved oxygen demand. Nitrification rates were higher (P < 0.05) in tanks with TSS concentrations above 400 mg L−1, and ammonia and nitrite were significantly lower than in the T200 tanks. We suggest that ammonia and nitrite in the T400–600 and T800–1000 tanks were controlled primarily by nitrifying bacteria, which provided higher stability of these parameters and of dissolved oxygen. Regarding shrimp performance, the reduction of TSS to levels close to 200 mg L−1 was associated with better nutritional quality of bioflocs. Nevertheless, differences in biofloc levels and nutritional quality were not sufficient to affect the weight gain by shrimp. The rate of shrimp survival and the final shrimp biomass were lower (P < 0.05) when the TSS concentrations were higher than 800 mg L−1. Analysis of the shrimps’ gills showed a higher degree of occlusion in the T800–1000 treatment (P < 0.05), which suggests that the shrimp have an intolerance to environments with a solids concentration above 800 mg L−1. Our results show that intermediate levels of bioflocs (TSS between 400 and 600 mg L−1) appear to be more suitable to superintensive culture of L. vannamei since they create factors propitious for maintaining the system’s productivity and stability  相似文献   

19.
A new physico-chemical process for ammonia removal from fresh-water recirculated aquaculture systems (RASs) is introduced. The method is based on separating NH4+ from RAS water through an ion-exchange resin, which is subsequently regenerated by simultaneous chemical desorption and indirect electrochemical ammonia oxidation. Approach advantages include (1) only slight temperature dependence and no dependence on bacterial predators and chemical toxins; (2) no startup period is required and the system can be switched on and off at will; and (3) the fish are grown in much lower bacterial concentration, making the potential for both disease and off-flavor, lower. A small pilot scale RAS was operated for 51 d for proving the concept. The system was stocked by 105 tilapia fish (initial weight 35.8 g). The fish, which were maintained at high TAN (total ammonia nitrogen) concentrations (10–23 mgN L−1) and fish density of up to 20 kg m−3, grew at a rate identical to their established growth potential. NH3(aq) concentrations in the fish tank were maintained lower than the assumed toxicity threshold (0.1 mgN L−1) by operating the pond water at low pH (6.5–6.7). The low pH resulted in efficient CO2 air stripping, and low resultant CO2(aq) concentrations (<7 mg L−1). Due to efficient solids removal, no nitrification was observed in the fish tank and measured nitrite and nitrate concentrations were very low. The system was operated successfully, first at 10% and then at 5% daily makeup water exchange rate. The normalized operational costs, calculated based on data derived from the pilot operation, amounted to 28.7 $ cent per kg fish feed. The volume of the proposed process was calculated to be ∼13 times smaller than that of a typical RAS biofilter. The results show the process to be highly feasible from both the operational and economical standpoints.  相似文献   

20.
The sharptail mola, Masturus lanceolatus, is one of the largest teleost fishes in the world, and can be found in warm temperate and tropical regions worldwide. The increase of sharptail mola catch in the eastern Taiwan in recent years stimulated a concern that increasing exploitation of this species might lead to a decline of the stock. However, biological information of this species is very limited. Hence, this study provides the first information on age and growth of this species in the waters off eastern Taiwan based on 265 specimens (105 females and 160 males) collected from January 2003 to November 2006 at the Nanfanao and Hualien fish markets, eastern Taiwan. The relationships between whole weight (W) and standard length were expressed as: W = 9.98 × 10?4 SL2.45 (n = 105, p < 0.01) for females, and W = 3.33 × 10?4 SL2.68 (n = 160, p < 0.01) for males. Based on the MIR analysis, growth band pairs (including translucent and opaque bands) in vertebrae formed once a year and were counted up to 23 and 16 for females and males, respectively. Three growth functions, the von Bertalanffy (VBGF), Robertson, and Gompertz, were used to model the observed length at age data. The VBGF had the best fit and predicted an asymptotic length (L) = 262.5 cm SL, growth coefficient (k) = 0.046 yr?1, age at zero length (t0) = ?3.350 yr (n = 80, p < 0.01) for females, and L = 231.0 cm SL, k = 0.059 yr?1, t0 = ?1.852 yr (n = 135, p < 0.01) for males. The longevities were estimated to be 105 and 82 yr based on the VBGF for females and males, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号