首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The consequence of cryptosporidiosis on the immune response of vaccinated chickens against Newcastle disease and/or avian influenza was studied by using 240, 1 day old, male, white Hy-Line chicks and divided into 8 groups and subgroups. Each group or subgroup was consisting of 30 chicks (15?×?2 replicates). The first and second groups were kept as unvaccinated control, G1uninfected and G2 infected. G3, G4 and G5 contained 2 subgroups A&B (G3A, G3B, G4A, G4B, G5A and G5B). Chicks of subgroup A were vaccinated only while chicks of subgroup B were infected and vaccinated. These chicks were orally inoculated with 5?×?105 oocysts of Cryptosporidium baileyi (C. baileyi) at 2 days of age. Chickens were vaccinated intraocular with live Newcastle disease (ND) vaccine (Hitchner on day 7th and LaSota on day 17th of chicken life) (G3) or vaccinated by subcutaneous route with Volvac®- H5N2- AI vaccine on day 10 of chicken life (G4). Last group (G5) was infected similarly and vaccinated with ND and AI vaccines with the same day, dose and route of vaccination for each one. Random blood samples were collected for 3 weeks post-vaccination for investigation of humoral immune response against Newcastle and/or avian influenza vaccines by the haemagglutination inhibition (HI) test. The results showed that H5N2 vaccine at day 10 of chicken life is effective in chickens indicated by the geometric mean of HI titer against AI virus. The findings of this study showed that the infection with Cryptosporidia in the broiler chicken has a depressive effect on the immune status of the birds vaccinated against ND and/or AI vaccination. Moreover, the obtained protection rates against challenge with virulent ND virus observed to be parallel to the results of HI- test. Also, by using 2 different antigens (one commercial and field prepared antigen) to avian influenza virus, lower Geometric mean (GM) HI titer were appeared in infected and vaccinated group than vaccinated group only. A study of the relative lymphoid organs weight such as bursa of Fabricius from the experimental chicks indicated that those organs were comparable between the groups infected-vaccinated and vaccinated only. Non significant variations in final live weight between uninfected control and infected groups were indicated. Also, H5N2-AI vaccination at 10 days old did not affect the final live weight. ND and/or AI Vaccination could not be a substitute to application of good hygienic measures and fecal examination of the birds especially for protozoal diseases such as cryptosporidiosis. It could be concluded that cryptosporidiosis could be one cause of ND and/or AI vaccination failure in poultry farms.  相似文献   

2.
Because it is expected to induce cross-reactive serum and mucosal antibody responses, mucosal vaccination against highly pathogenic avian influenza (HPAI) is potentially superior to conventional parenteral vaccination. Here, we tested whether intraocular vaccination with an inactivated AI virus induced protective antibody responses in chickens. Chickens were inoculated intraocularly twice with 104 hemagglutination units of an inactivated H5N1 HPAI virus. Four weeks after the second vaccination, the chickens were challenged with a lethal dose of the homologous H5N1 HPAI virus. Results showed that most of the vaccinated chickens mounted positive antibody responses. The median serum hemagglutination inhibition titer was 1:80. Addition of CpG oligodeoxynucleotide 2006 or cholera toxin to the vaccine did not enhance serum antibody titers. Cross-reactive anti-hemagglutinin IgG, but not IgA, was detected in oropharyngeal secretions. In accordance with these antibody results, most vaccinated chickens survived a lethal challenge with the H5N1 HPAI virus and did not shed the challenge virus in respiratory or digestive tract secretions. Our results show that intraocular vaccination with an inactivated AI virus induces not only systemic but also mucosal antibody responses and confers protection against HPAI in chickens.  相似文献   

3.
In contrast to chickens, there is a paucity of information on the potency of H5 vaccines to protect turkeys against the highly pathogenic avian influenza (HPAI) H5N1 virus infections. In this study, 4 groups, 10 turkey poults each, were vaccinated at seven days old with one of H5N2 or H5N1 commercial vaccines or one of two prepared H5N1 vaccines from a local Egyptian variant HPAI H5N1 (EGYvar/H5N1) strain. At 35 days age, all vaccinated and 10 non vaccinated birds were challenged intranasal with 10(6) EID(50)/0.1 ml of EGYvar/H5N1. All vaccines used in this study were immunogenic in turkeys. There was no cross reaction between the commercial vaccines and the Egyptian variant H5N1 antigen as obtained by the hemagglutination inhibition test. Birds vaccinated with H5N2 vaccine were died, while other H5N1 vaccinated groups have had 20-40% mortality. The highest virus excretion was found in non-vaccinated infected and H5N2 vaccinated birds. Eleven peculiar amino acid substitutions in H5 protein of the variant strain were existed neither in the vaccine strains nor in the earliest H5N1 virus introduced into Egypt in 2006. In conclusion, single vaccination at seven days old is inadequate for protection of meat turkeys against variant HPAI H5N1 challenge and multi-dose vaccination at older age is recommended. For the foreseeable future, continuous evaluation of the current vaccines in H5N1 endemic countries in the face of virus evolution is a paramount challenge to mitigate the socio-economic impact of the virus.  相似文献   

4.
Highly pathogenic avian influenza (HPAI) is a devastating viral disease of poultry and quick control of outbreaks is vital. Airborne transmission has often been suggested as a route of transmission between flocks, but knowledge of the rate of transmission via this route is sparse. In the current study, we quantified the rate of airborne transmission of an HPAI H5N1 virus strain between chickens under experimental conditions. In addition, we quantified viral load in air and dust samples. Sixteen trials were done, comprising a total of 160 chickens housed in cages, with three treatment groups. The first group was inoculated with strain A/turkey/Turkey/1/2005 H5N1, the second and third group were not inoculated, but housed at 0.2 and 1.1m distance of the first group, respectively. Tracheal and cloacal swabs were collected daily of each chicken to monitor virus transmission. Air and dust samples were taken daily to quantify virus load in the immediate surroundings of the birds. Samples were tested by quantitative RRT-PCR and virus isolation. In 4 out of 16 trials virus was transmitted from the experimentally inoculated chickens to the non-inoculated chickens. The transmission rate was 0.13 and 0.10 new infections per infectious bird at 0.2m and 1.1m, respectively. The difference between these estimates was, however, not significant. Two air samples tested positive in virus isolation, but none of these samples originated from the trials with successful transmission. Five dust samples were confirmed positive in virus isolation. The results of this study demonstrate that the rate of airborne transmission between chickens over short distances is low, suggesting that airborne transmission over a long distance is an unlikely route of spread. Whether or not this also applies to the field situation needs to be examined.  相似文献   

5.
Two low-pathogenicity (LP) and two high-pathogenicity (HP) avian influenza (AI) viruses were inoculated into chickens by the intranasal route to determine the presence of the AI virus in breast and thigh meat as well as any potential role that meat could fill as a transmission vehicle. The LPAI viruses caused localized virus infections in respiratory and gastrointestinal (GI) tracts. Virus was not detected in blood, bone marrow, or breast and thigh meat, and feeding breast and thigh meat from virus-infected birds did not transmit the virus. In contrast to the two LPAI viruses, A/chicken/Pennsylvania/1370/1983 (H5N2) HPAI virus caused respiratory and GI tract infections with systemic spread, and virus was detected in blood, bone marrow, and breast and thigh meat. Feeding breast or thigh meat from HPAI (H5N2) virus-infected chickens to other chickens did not transmit the infection. However, A/lchicken/Korea/ES/2003 (H5N1) HPAI virus produced high titers of virus in the breast meat, and feeding breast meat from these infected chickens to other chickens resulted in Al virus infection and death. Usage of either recombinant fowlpox vaccine with H5 AI gene insert or inactivated Al whole-virus vaccines prevented HPAI virus in breast meat. These data indicate that the potential for LPAI virus appearing in meat of infected chickens is negligible, while the potential for having HPAI virus in meat from infected chickens is high, but proper usage of vaccines can prevent HPAI virus from being present in meat.  相似文献   

6.
Field trials were used to assess the efficacy of an inactivated vaccine against hydropericardium syndrome in broiler chickens. A single vaccination at 10 to 12 days old was effective for the control of the syndrome; mortality in the vaccinated birds was 0.52 per cent compared with 5.34 per cent in unvaccinated birds kept at the same premises. Vaccination was also effective when carried out in the face of an outbreak; mortality in the vaccinated infected birds was 2.33 per cent compared with 10.27 per cent in unvaccinated infected birds. The data indicate that a formalinised vaccine prepared from the liver of experimentally infected birds could be used for the control of hydropericardium syndrome.  相似文献   

7.
We evaluated protection conferred by mucosal vaccination with replication-competent adenovirus-free recombinant adenovirus expressing a codon-optimized avian influenza (AI) H5 gene from A/turkey/WI/68 (AdTW68.H5ck). Commercial, layer-type chicken groups were either singly vaccinated ocularly at 5 days of age, singly vaccinated via spray at 5 days of age, or ocularly primed at 5 days and ocularly boosted at 15 days of age. Only chickens primed and boosted via the ocular route developed AI systemic antibodies with maximum hemagglutination inhibition mean titers of 3.9 log2 at 32 days of age. In contrast, single vaccination via the ocular or spray routes maintained an antibody status similar to unvaccinated controls. All chickens (16/16) subjected to ocular priming and boosting with AdTW68.H5ck survived challenge with highly pathogenic AI virus A/chicken/Queretaro/14588-19/95 (H5N2). Single ocular vaccination resulted in 63% (10/16) of birds surviving the challenge followed by a 44% (7/16) survival of single-sprayed vaccinated birds. Birds vaccinated twice via the ocular route also showed significantly lower (P < 0.05) AI virus RNA concentrations in oropharyngeal swabs compared to unvaccinated-challenged controls.  相似文献   

8.
Meat chickens housed on a commercial broiler farm in Australia were vaccinated once at 10 to 11 days-of-age by aerosol with live V4 Newcastle disease virus (NDV) vaccine. Groups of vaccinated and unvaccinated birds were flown to Malaysia, where they were challenged with a virulent strain of NDV. Survival rates in vaccinated chickens challenged 7, 14, 21 or 31 d after vaccination were 0.47, 0.77, 0.97 and 0.92, respectively. All unvaccinated chickens died due to Newcastle disease (ND) following challenge. Chickens in Australia and Malaysia were bled and the serums tested for haemagglutination-inhibiting (HI) antibody to NDV. Many vaccinated birds with no detectable antibody, and all birds with a log2 titre of 2 or greater, survived challenge. The results showed that this V4 vaccine induced protective immunity in a significant proportion of chickens within 7 d of mass aerosol vaccination. This early immunity occurred in the absence of detectable circulating HI antibody. Non-HI antibody mediated immunity continued to provide protection up to 31 d after vaccination. Almost all vaccinated birds were protected within 3 w of vaccination. It is concluded that the V4 vaccine is efficacious and could be useful during an outbreak of virulent ND in Australia.  相似文献   

9.
In this study, two highly pathogenic avian influenza (HPAI) H5N8 viruses were isolated from chicken and geese in 2018 and 2019 (Chicken/ME-2018 and Geese/Egypt/MG4/2019). The hemagglutinin and neuraminidase gene analyses revealed their close relatedness to the clade-2.3.4.4b H5N8 viruses isolated from Egypt and Eurasian countries. A monovalent inactivated oil-emulsion vaccine containing a reassortant virus with HA gene of the Chicken/ME-2018/H5N8 strain and a bivalent vaccine containing same reassortant virus plus a previously generated reassortant H5N1 strain (CK/Eg/RG-173CAL/17). The safety of both vaccines was evaluated in specific-pathogen-free (SPF) chickens. To evaluate the efficacy of the prepared vaccines, 2-week-old SPF chickens were vaccinated with 0.5 mL of a vaccine formula containing 108/EID50 /dose from each strain via the subcutaneous route. Vaccinated birds were challenged with either wild-type HPAI-H5N8 or H5N1 viruses separately at 3 weeks post-vaccine. Results revealed that both vaccines induced protective hemagglutination-inhibiting (HI) antibody titers as early as 2 weeks PV (≥5.0 log2). Vaccinated birds were protected clinically against both subtypes (100 % protection). HPAI-H5N1 virus shedding was significantly reduced in birds that were vaccinated with the bivalent vaccine; meanwhile, HPAI-H5N8 virus shedding was completely neutralized in both tracheal and cloacal swabs after 3 days post-infection in birds that had been vaccinated with either vaccine. In conclusion, the developed bivalent vaccine proved to be efficient in protecting chickens clinically and reduced virus shedding via the respiratory and digestive tracts. The applicability of the multivalent avian influenza vaccines further supported their value to facilitate vaccination programs in endemic countries.  相似文献   

10.
An experiment was carried out to study the effects of vaccination with Paracox, a live, attenuated vaccine against avian coccidiosis, on broilers isolated from extraneous Eimeria parasites. The study involved 3200 broiler chickens raised in floor pens similar to commercial conditions, but in an initially Eimeria-free environment. Forty percent of the chickens were vaccinated at 3 days of age and given either a basal unmedicated feed or a feed supplemented with the feed antibiotic virginiamycin. Unvaccinated birds were given either the basal feed or feed supplemented either with virginiamycin or the anticoccidial ionophore narasin. At slaughter at 36 days of age vaccinated birds had a lower live weight than non-vaccinated birds. The difference was 4.6% in unmedicated, and 6.0% in virginiamycin medicated chickens. Feed conversion ratio at slaughter was 2.5% higher for unmedicated vaccinated birds, and 1.3% higher for virginiamycin medicated vaccinated birds, compared to respective non-vaccinated groups. There was no significant difference in overall performance of unvaccinated birds given narasin as compared to virginiamycin. At 10 days post vaccination vaccinated birds had a higher number of Clostridium perfringens in the caeca, but there was no difference thereafter. Throughout the experiment, caecal clostridial counts were considerably higher in vaccinated unmedicated birds than in unvaccinated birds given narasin. The number of oocysts shed in the vaccinated groups was very low, but during a subsequent challenge with E. maxima and E. tenella the birds' immunity was found to be satisfactory.  相似文献   

11.
Immunization against Angara disease virus (ADV), a serotype 4 avian adenovirus, and Newcastle disease virus (NDV), an avian paramyxovirus serotype 1, is the mainstay of a broiler vaccination programme, while polyether ionophores usually form an essential component of a broiler medication programme in most parts of India and Pakistan. The role of polyether ionophores in the protective immune responses of broiler chickens vaccinated and challenged with ADV and NDV was investigated. A total of 1600 birds were divided into eight groups of 200 birds each. First four groups were vaccinated against NDV and ADV, while the remaining four served as unvaccinated controls. The first 3 groups of birds were administered salinomycin, monensin and cyclophosphamide (CYP), respectively. The last group served as an untreated control. The same treatment schedule was also followed for the next four unvaccinated groups. The post-vaccination and post-challenge serological responses to NDV and ADV, body and lymphoid organ weight gains, post-challenge survival rate and detection of NDV and ADV in the tissues of infected birds were evaluated. Birds administered salinomycin showed a significant stimulation of protective immune responses against both NDV and ADV as compared to the untreated and CYP-treated birds. Monensin also enhanced the protective immune responses against both viruses but the effect was not statistically significant. Thus, it is concluded that monensin and salinomycin augment the anti-NDV and anti-ADV immune responses in broiler chickens, which supports their use in poultry flocks.  相似文献   

12.
The virulence of four South African field isolates of NAD-dependent Haemophilus paragallinarum and two field isolates of NAD-independent H. paragallinarum has previously been tested in unvaccinated chickens. In this study, the disease profiles caused by the NAD-dependent isolates of H. paragallinarum in vaccinated chickens were studied. It was shown that the clinical signs induced in the vaccinated chickens were substantially less severe than were those in unvaccinated chickens, as was expected. However, due to the high virulence of the serovar C-3 isolates, clinical signs in the vaccinated chickens challenged with this isolate were still detected. These were as severe as those occurring in unvaccinated chickens challenged with serovar B-1 isolates. Although the clinical signs induced in unvaccinated birds challenged with serovar A-1 were more severe than those occurring when vaccinated birds were challenged with serovar C-3, the overall disease profiles were similar. Substantial clinical signs were recorded in vaccinated birds challenged with serovar C-3. This could be interpreted as vaccination failure if the disease profile obtained in unvaccinated birds is not considered. It was found that a high level of protection was provided by this vaccine against challenge by serovar C-3. The high virulence of this serovar resulted in the development of clinical signs in vaccinated birds. These findings could possibly explain the large number of so-called vaccination failures that are reported in South Africa.  相似文献   

13.
In general, avian influenza (AI) vaccines protect chickens from morbidity and mortality and reduce, but do not completely prevent, replication of wild AI viruses in the respiratory and intestinal tracts of vaccinated chickens. Therefore, surveillance programs based on serological testing must be developed to differentiate vaccinated flocks infected with wild strains of AI virus from noninfected vaccinated flocks in order to evaluate the success of vaccination in a control program and allow continuation of national and international commerce of poultry and poultry products. In this study, chickens were immunized with a commercial recombinant fowlpox virus vaccine containing an H5 hemagglutinin gene from A/turkey/Ireland/83 (H5N8) avian influenza (AI) virus (rFP-H5) and evaluated for correlation of immunological response by hemagglutination inhibition (HI) or agar gel immunodiffusion (AGID) tests and determination of protection following challenge with a high pathogenicity AI (HPAI) virus. In two different trials, chickens immunized with the rFP-H5 vaccine did not develop AGID antibodies because the vaccine lacks AI nucleoprotein and matrix genes, but 0%-100% had HI antibodies, depending on the AI virus strain used in the HI test, the HI antigen inactivation procedure, and whether the birds had been preimmunized against fowlpox virus. The most consistent and highest HI titers were observed when using A/turkey/Ireland/83 (H5N8) HPAI virus strain as the beta-propiolactone (BPL)-inactivated HI test antigen, which matched the hemagglutinin gene insert in the rFP-H5 vaccine. In addition, higher HI titers were observed if ether or a combination of ether and BPL-inactivated virus was used in place of the BPL-inactivated virus. The rFP-H5 vaccinated chickens survived HPAI challenge and antibodies were detected by both AGID and HI tests. In conclusion, we demonstrated that the rFP-H5 vaccine allowed easy serological differentiation of infected from noninfected birds in vaccinated populations of chickens when using standard AGID and HI tests.  相似文献   

14.
The immunity to infectious bronchitis afforded by spray vaccination of mycoplasma free two days-old broilers with maternal antibodies to infectious bronchitis virus was tested by comparing zootechnical scores, clinical signs, macroscopical and microscopical changes, frequency of infectious bronchitis virus isolation following challenge at one, three and five weeks of age in vaccinated, unvaccinated, challenged and unchallenged birds. This vaccination gave a very good protection to infectious bronchitis for the most part of broiler economical life; growth delays were especially avoided. However, vaccinated and unvaccinated one-week-old birds were not protected enough. No correlation was observed between haemagglutinating antibodies titres and protection. At last this vaccination caused a notable reaction in specific pathogen free control birds of the same age.  相似文献   

15.
Highly pathogenic avian influenza (HPAI) subtype H5N1 remains an enzootic disease of village chickens in Indonesia, posing ongoing risk at the animal–human interface. Previous modelling showed that the fast natural turnover of chicken populations might undermine herd immunity after vaccination, although actual details of how this effect applies to Indonesia's village chicken population have not been determined. We explored the turnover effect in Indonesia's scavenging and mixed populations of village chickens using an extended Leslie matrix model parameterized with data collected from village chicken flocks in Java region, Indonesia. Population dynamics were simulated for 208 weeks; the turnover effect was simulated for 16 weeks after vaccination in two ‘best case’ scenarios, where the whole population (scenario 1), or birds aged over 14 days (scenario 2), were vaccinated. We found that the scavenging and mixed populations have different productive traits. When steady‐state dynamics are reached, both populations are dominated by females (54.5%), and ‘growers’ and ‘chicks’ represent the most abundant age stages with 39% and 38% in the scavenging, and 60% and 25% in the mixed population, respectively. Simulations showed that the population turnover might reduce the herd immunity below the critical threshold that prevents the re‐emergence of HPAI H5N1 4–8 weeks (scavenging) and 6–9 weeks (mixed population) after vaccination in scenario 1, and 2–6 weeks (scavenging) and 4–7 weeks (mixed population) after vaccination in scenario 2. In conclusion, we found that Indonesia's village chicken population does not have a unique underlying population dynamic and therefore, different turnover effects on herd immunity may be expected after vaccination; nonetheless, our simulations carried out in best case scenarios highlight the limitations of current vaccine technologies to control HPAI H5N1. This suggests that the improvements and complementary strategies are necessary and must be explored.  相似文献   

16.
重组禽流感灭活苗和禽流感灭活苗对鸡免疫效果的观察   总被引:3,自引:3,他引:0  
用重组禽流感灭活苗接种10日龄、14日龄和21日龄的SPF鸡,接种后HI抗体效价无显著差异。将H5N1和H5N2疫苗分别接种21日龄SPF鸡,结果表明,H5N1和H5N2均能刺激SPF鸡产生较高的HI抗体;分别接种三黄鸡,接种后21 d,H5N1能刺激三黄鸡产生较高的HI抗体;而H5N2不能刺激三黄鸡产生合格的HI抗体,与SPF鸡免疫组相比差异显著。经过二次接种,HI抗体平均为8.9 log2,与SPF鸡组接种后42 d的各组相比差异不显著,而与一免后21 d的各组HI抗体效价相比差异显著。表明应用禽流感灭活苗对三黄鸡免疫接种,必须进行二免方可达到理想免疫效果,而应用重组禽流感灭活苗对三黄鸡进行免疫接种,一次免疫即可获得较高的HI抗体效价。  相似文献   

17.
Tetanus toxoid (TT) was assessed as a positive marker for avian influenza (AI) virus vaccination in chickens, in a vaccination and challenge study. Chickens were vaccinated twice with inactivated AI H5N2 virus vaccine, and then challenged three weeks later with highly pathogenic AI H5N1 virus. Vaccinated chickens were compared with other groups that were either sham-vaccinated or vaccinated with virus with the TT marker. All sham-vaccinated chickens died by 36 hours postinfection, whereas all vaccinated chickens, with or without the TT marker, were protected from morbidity and mortality following exposure to the challenge virus. Serological testing for H5-specific antibodies identified anamnestic responses to H5 in some of the vaccinated birds, indicating active virus infection.  相似文献   

18.
The avian adeno-associated virus (AAAV) is a replication-defective nonpathogenic virus member of the family Parvoviridae that has been proved to be useful as a viral vector for gene delivery. The use of AAAV for transgenic expression of Newcastle disease virus (NDV) hemagglutinin-neuraminidase (HN) protein and its ability to induce immunity in chickens were assessed. Proposed advantages of this system include no interference with maternal antibodies, diminished immune response against the vector, and the ability to accommodate large fragments of genetic information. In this work the generation of recombinant AAAV virions expressing the HN protein (rAAAV-HN) was demonstrated by electron microscopy, immunocytochemistry, and western blot analysis. Serological evidence of HN protein expression after in ovo or intramuscular inoculation of the recombinant virus in specific-pathogen-free chickens was obtained. Serum from rAAAV-HN-vaccinated birds showed a systemic immune response evidenced by NDV-specific enzyme-linked immunosorbent assay and hemagglutination inhibition testing. Positive virus neutralization in embryonated chicken eggs and indirect immunofluorescence detection of NDV infected cells by serum from rAAAV-HN vaccinated birds is also reported. A vaccine-challenge experiment in commercial broiler chickens using a Venezuelan virulent viscerotropic strain of NDV was performed. All unvaccinated controls died within 5 days postchallenge. Protection up to 80% was observed in birds vaccinated in ovo and revaccinated at 7 days of age with the rAAAV-HN. The results demonstrate the feasibility of developing and using an AAAV-based gene delivery system for poultry vaccination.  相似文献   

19.
In Egypt, continuous circulation of highly pathogenic avian influenza (HPAI) H5N1 viruses of clade 2.2.1 in vaccinated commercial poultry challenges strenuous control efforts. Here, vaccine-derived maternal AIV H5 specific immunity in one-day old chicks was investigated as a factor of vaccine failure in long-term blanket vaccination campaigns in broiler chickens. H5 seropositive one-day old chicks were derived from breeders repeatedly immunized with a commercial inactivated vaccine based on the Potsdam/H5N2 strain. When challenged using the antigenically related HPAIV strain Italy/98 (H5N2) clinical protection was achieved until at least 10 days post-hatch although virus replication was not fully suppressed. No protection at all was observed against the Egyptian HPAIV strain EGYvar/H5N1 representing a vaccine escape lineage. Other groups of chicks with maternal immunity were vaccinated once at 3 or 14 days of age using either the Potsdam/H5N2 vaccine or a vaccine based on EGYvar/H5N1. At day 35 of age these chicks were challenged with the Egyptian HPAIV strain EGYcls/H5N1 which co-circulates with EGYvar/H5N1 but does not represent an antigenic drift variant. The Potsdam/H5N2 vaccinated groups were not protected against EGYcls/H5N1 infection while, in contrast, the EGYvar/H5N1 vaccinated chicks withstand challenge with EGYvar/H5N1 infection. In addition, the results showed that maternal antibodies could interfere with the immune response when a homologous vaccine strain was used.  相似文献   

20.
Age-related susceptibility patterns of turkeys, broilers, and specific pathogen-free (SPF) White Leghorn chickens to experimentally induced infection with turkey or chicken rotavirus isolates were compared. The following determinants were evaluated: clinical signs, onset and duration of virus production, viral titers, involvement of intestinal villi in the replication of the virus, and the development of antibodies against the virus. Older turkeys and chickens were more susceptible than were their younger counterparts, turkeys were more susceptible than were broiler and White Leghorn chickens (regardless of age), and broiler chickens were slightly more susceptible than were age-matched White Leghorn chickens. Turkeys developed diarrhea, accompanied by high viral titers within 1 day after inoculation with virus. Viral antigen was found in the epithelial cells of the intestinal villi throughout the intestinal tract and some cells of the cecal tonsils. Antibodies could be detected as early as 4 to 5 days after inoculation. These findings were more pronounced in turkeys inoculated at 112 days of age than in birds inoculated at a younger age. Age-related susceptibility patterns were similar in White Leghorn and broiler chickens. Infection was subclinical in birds less than 56 days old, whereas older birds developed soft feces. Egg production in the White Leghorn chickens decreased after being inoculated with virus at 350 days of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号