首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of SO2 on the deposition of ammonia and the response of eight tropical tree species to excess deposition of ammonia was investigated. This was achieved by studying physiological aspects like total sugars, protein, nitrate reductace (NR) activity, organic/inorganic nitrogen ratio, specific leaf area and foliar injury in plants growing under field conditions prevalent with SO2 and NH3. Analysis of water soluble substances present on foliar surfaces of the trees indicated enhanced NH4 + deposition and thereby result in enhanced foliar protein contents. Though the enhanced nitrogen was almost the same in different plants, the plants exhibited differential metabolic disturbances. Critical analysis of the results indicated three distinct types of plant response. Plants like Azadirachta indica, Acacia auriculiformis and Bambusa arundinaceae maintained enhanced total sugars and NR activity and incorporated excess NH4 + into proteins, thus enabling the plant to compensate/alleviate SO2 induced injury. Ficus benghalensis and Ficus religiosa maintained unaltered total sugars and NR activity and could partly incorporate NH4 + into proteins, thus modifying the SO2 impact to some extent. Dalbergia sissoo, Eucalyptus rostrata and Mangifera indica could not incorporate the excess NH4 +, mainly due to declined total sugars. The results indicate the ability of a plant to undergo species specific metabolic changes in order to cope with the excess nitrogen deposition, which may ultimately result in increasing or decreasing tolerance to SO2.  相似文献   

2.
Saplings of 12 species of common Indian trees were exposed to varying concentration of SO2 to determine the level of SO2 causing no injury, mild injury and severe injury in plants. The following order of sensitivity was emerged, T. indica > P. dulce > M. indica > F. rumphii > H. integrifolia > B. ceiba > F. bengalensis > A. indica > F. religiosa > S. cuminii > P. guajava > F. racemosa. SO2 sorption was extremely low in T. indica and M. indica while F. religiosa and F. racemosa exhibited best efficiency of SO2 Aorption. A correlation was found between the efficiency of SO2 sorption and alkalinity of cytoplasmic pH. Similarly plants rich in sulfite oxidase, in general, exhibited a better resistance. No single intrinsic factor could be held responsible for the manifested response of a tree towards SO2.  相似文献   

3.
Four different tree species, Zizyphus mauritiana, Syzygium cumini, Azadirachta indica and Mangifera indica were analyzed for stomatal conductances, sulphate, protein, superoxide dismutase and peroxidase activities for one complete year in an ambient environment with SO2 concentrations ranging between 90 to 10 ug m?3. The low conductances, declined protein content and enhanced sulphate content, superoxide dismutase (SOD) and peroxidase (POD) activities were the general responses exhibited by these species when compared with to the reference site. The pattern of the results indicate that plants under SO2 stress develop an ability to detoxify the phytotoxicity by undergoing certain biochemical changes. Plants which posses high intitial POD activities coupled with greatly enhanced SOD activity (Z. mauritiana) or plants which can enhance both POD and SOD activities (S. cumini) were more tolerant/least affected than that of A. indica and M. indica.  相似文献   

4.
The effect of a moderate increase in atmospheric sulphur dioxide on the production of phenolic secondary chemicals, soluble sugars and phytomass distribution within plants was investigated in six willow (Salix myrsinifolia Salisb.) clones. The plants were cultivated for 3 weeks under 0.11 ppm of SO2 (300 μg m?3). The production of salicin and chlorogenic acid was significantly reduced under increased SO2. However, salicortin, 2′-O-acetylsalicortin, (+)-catechin and two unknown phenolics did not show any clear trend. The increase in SO2 did not affect the glucose, fructose and sucrose contents. The final weight of the SO2-treatment plants was significantly greater than that of the control plants: the leaf, stem and root phytomass was from 14 to 48% greater under increased SO2. All the clones showed the same trend, although there was a significant variation in phytomass production. Our results indicate, although not consistently that even a short-term exposure of enhanced atmospheric SO2 may change moderately the accumulation pattern of willow phenolics.  相似文献   

5.
The purpose of this research was to analyze the responses of Norway spruce Picea abies (L.) Karsten to SO2, at a subnecrotic concentration (230 μg SO2 m?3 ), and to water stress using seedlings and 5 yr-old plants. In a first period, the plants were exposed to SO2 for 6 weeks; then they were simultaneously exposed to SO2 and to water stress for 1 week for the case of seedlings and 2 weeks for the 5 yr-old plants. The plants were then rewatered, but maintained under exposure to SO2. Their morphological and physiological characteristics were analyzed and compared to non-SO2 exposed plants. It was shown that there were no differences between SO2 exposed and non-exposed irrigated plants, specifically water content and water potential were not altered. After water stress the non-SO2 exposed seedlings and plants showed good revival upon rewatering. In contrast, the two simultaneous stresses were very damaging to the plants. Despite a better initial recovery upon rewatering, 50% of the continuously SO2 exposed plants died and, after 5 weeks of rewatering, the remainder showed altered water content and water potential. These results are discussed.  相似文献   

6.
A linear gradient field exposure system was modified from one originally described by Shinn et al. (1977) and used to expose field grown soybeans (Glycine max cv Hark) to a concentration gradient of a mixture of two gaseous pollutants: SO2 and 03. Since this technique does not use enclosures, study plants experienced near ambient fluctuations in environmental conditions, including wind, and hence were exposed to widely fluctuating pollutant concentrations. Plants in the gradient system were exposed to both pollutants for 57 h on 12 days during the pod-filling period (31 August–17 September). Mean concentrations during the 57 h of exposure at the ‘high’ end of the gradient were 0.16 and 0.06 µl l?1 (PPM) SO2 and O3, respectively, with 10 h at greater than 0.25 and 0.10 µl?1 SO2 and O3, respectively. Total doses for these plants were estimated to be 9.0 and 3.5 µl?1 · h SO2 and O3, respectively. Comparison with plants exposed to ambient air indicated that exposure to SO2 and O3 reduced total yield per plant and dry mass per bean by as much as 36 and 15 %, respectively. Since concurrent exposure to a much higher dosage of SO2 alone (20.2 µl l?1 · h) was observed in a separate experiment to have no significant effect on yield, 03, although present at moderately low levels, was probably responsible (alone or synergistically with SO2) for the greatest reduction in seed size and yield.  相似文献   

7.
Casuarina cunninghamiana and Eucalyptus camadulensis (Egyptian var.) plants were exposed to 0.20 and 0.40 μL L?1 O3, SO2 or NO2 for 6 hr daily for 10 days. Eucalyptus plants were very sensitive to SO2 and NO2 and less sensitive to O3. Casuarina plants were insensitive to the 3 gases. The rate of sorption of the 3 gases was estimated over a 10 day exposure to 0.20 μL L?1 pollutant concentration singly and in a 3-gas mixture. Casuarina plants removed air pollutants more efficiently than Eucalyptus plants. Leaves of both species generally sorbed about the same volume of a given gas from the mixture and from the same single gas. The sorption rate over the 10 day exposure was almost constant after a higher sorption rate during the first day for both species.  相似文献   

8.
Background and aims : Most physiological and biochemical studies on salt stress are NaCl‐based. However, other ions (e.g., K+, Ca2+, Mg2+, and SO 4 2 - ) also contribute to salt stress in special circumstances. In this study, salt stress induced by various salts was investigated for a better understanding of salinity. Methods : Arabidopsis thaliana plants were stepwise acclimated to five iso‐osmotic salts as follows: NaCl, KCl, Na2SO4, K2SO4, and CaCl2. Results and Conclusions : Exposure to KCl and K2SO4 led to more severe toxicity symptoms, smaller biomass, and lower level of chlorophyll than exposure to NaCl and Na2SO4, indicating that Arabidopsis plants are more sensitive to potassium salts. The strongly reduced growth was negatively correlated with the accumulation of soluble sugars observed in KCl‐ and K2SO4‐treated plants, suggesting a blockage in the utilization of sugars for growth. We found that exposure to KCl and K2SO4 suppressed or even blocked sucrose degradation, thus leading to strong accumulation of sucrose in shoots, which then probably inhibited photosynthesis via feedback inhibition. Moreover, K+ was more accumulated in shoots than Na+ after corresponding potassium or sodium salt treatments, thus resulting in decreased Ca2+ and Mg2+ concentrations in response to KCl and K2SO4. However, K2SO4 caused more severe toxicity symptoms than iso‐osmotic KCl, even when the K+ level was lower in K2SO4‐treated plants. We found that Na2SO4 and K2SO4 induced strong accumulation of tricarboxylic acid intermediates, especially fumarate and succinate which might induce oxidative stress. Thus, the severe toxicity symptoms found in K2SO4‐treated plants were also attributed to SO 4 2 - in addition to the massive accumulation of K+.  相似文献   

9.
Soybean plants (Glycine max L. cv. Buchanan) were subjected to one of three levels of salinity preteatment (with electrical conductivities of 0.7, 4.4 and 6.5 dS m?1) and then exposed to one of three concentrations of SO2 (1, 145 and 300 bl l ?1 for 5 h d?1), or vice versa. Each stress episode lasted 3 weeks. Both salinity and SO2 deecreased leaf area, root and shoot dry weight and the fresh weight of root nodules. SO2 induced an increase in the shoot: root ratio and leaf chlorophyll concentrations. Low salinity pretreatment protected plant growth from SO2 injury, probably by decreasing SO2 uptake by increasing stomatal resistance. However, high salinity-treated plants, despite also showing stomatal closure, were severely injured by subsequent SO2 exposure. Prior exposure to SO2 caused plants to become more vulnerable to salt injury. Plants pretreated with high SO2 were killed after 12 days of high salt stress. These data suggest that the compensatory mechanisms and predisposition characteristics of salinity and SO2 largely depend upon the stress levels used.  相似文献   

10.
Maize (Zea mays L.), soybean (Glycine max L.), and tomato (Lycopersicon esculentum Mill.) plants were grown in a controlled environment and exposed for 6 hr daily for 7 days to O3 at 0.15 μL L?1 and/or SO2 at 0.30 μL L?1 (daily exposures). Some plants exposed daily to O3 were also exposed to SO2 for 6 hr on the first, third, fifth, or seventh day of O3 exposure (variable exposures) and some plants exposed daily to SO2 were treated similarly with O3 to determine the growth effects of O3 or S02 pre- and/or post-treatments on S02 and O3 mixture response. Growth sensitivity to 6 hr S02 or 6 hr O3 treatments was generally affected by the previous history of O3 or SO2 exposure, respectively. Species differed in the number of days of O3 or SO2 treatments required to elicit maximum sensitivity to a single 6 hr O3 and SO2 treatment. Linear contrasts compared variable with daily exposures for the S02 and O3 regimes. Plants exposed to the gas mixture for a single day (variable exposures) tended to be smaller than those exposed to the gas mixture daily, with the exception of soybean exposed to SO2 during daily O3. The six treatments were carried out in eight exposure chambers, as a partially balanced incomplete block design in blocks of four due to separate environmental control of the exposure facilities. The partially balanced incomplete block design proved to be about 2.6 times as efficient as a complete block design. The inclusion of covariates further increased precision.  相似文献   

11.
Salinity toxicity is a worldwide agricultural and eco-environmental problem. The intent of this study was to determine the salt tolerance of Piriformospora indica and strains of Azospirillum, isolated from non-saline and saline soil, as well as to determine their affect on the tolerance of wheat to soil salinity. In this study, an experiment was conducted to investigate the salt stress tolerance abilities of the endophytic fungi, P. indica, and Azospirillum strains, isolated from non-saline and saline soil, at five NaCl levels (0, 0.1, 0.2, 0.3, 0.4, 0.5 mol L?1). Additionally, a greenhouse experiment was conducted to test the effects of these selected microorganisms under increasing salinity levels on seedling growth, solute accumulation (proline and sugars), and photosynthetic pigments (Chl a, b, ab) of seedling wheat. Azospirillum strains were isolated in Iran from the root of field-grown maize from non-saline soil with an EC = 0.7 dS m?1 and from saline soil with an EC = 4.7 dS m?1. Plants were irrigated with non-saline water–tap water with an electrical conductivity water (ECw) value of 0.2 dS m?1, as well as low, moderate and severe saline water-irrigation with saline water with an ECw of 4 dS m?1, 8 dS m?1 and 12 dS m?1, respectively. The upper threshold of P. indica salinity tolerance was 0.4 mol L?1 NaCl in both liquid and solid broth medium. The upper thresholds of the salt adapted and non-adapted Azospirillum strains were 0.2 and 0.4 mol L?1 NaCl, respectively. The results indicated a positive influence of the organisms on salinity tolerance, more with the saline-adapted Azospirillum strains than the non-adapted strains. P. indica was more effective than the Azospirillum strains. These results could be related to a better water status, higher photosynthetic pigment contents and proline accumulation in wheat seedlings inoculated with P. indica. The benefits of both isolates and P. indica depended on two factors: water salinity and growth stage of the host plant. Inoculation with the two isolates increased salinity tolerance of wheat plants; the saline-adapted Azospirillum strains showed better performance with respect to improved fresh and dry weights at 80 and 100 days after sowing under both non-saline and saline conditions. When compared to plants inoculated with non-saline-adapted Azospirillum strains, those inoculated with adapted Azospirillum strains had much better performance with respect to the presence of photosynthetic pigment (Chl a, b and ab) and proline accumulation. Overall, these results indicate that the symbiotic association between P. indica fungus and wheat plants improved wheat growth, regardless of the salinity. It is concluded that the mechanisms for protecting plants from the detrimental effects of salinity by P. indica fungus and Azospirillum strains may differ in their salinity tolerance and influence the uptake of water, photosynthetic pigment contents and proline accumulation in wheat seedlings.  相似文献   

12.
Safflower shoots were sprayed with either HNO3,HCl and H2SO4 acid solutions of pH 2.0 ordistilled water as a control and then sprayed with 0and 100 mg L-1 ascorbic acid solutions. In theabsence of ascorbic acid, membranes of leaf discsexcised from acid misted plants were more injured bydehydration (40% polyethylene glycol, P.E.G.) andheat (51 °C) stress than those taken fromunmisted plants. Safflower plants sprayed with HCl andH2SO4 solutions had lower contents ofchlorophyll (Chl.), soluble sugars (S.S.),hydrolysable carbohydrates (H.C.), soluble proteins(S.P.); total free amino acids (T.A.A.) and producedless biomass in their shoot and root systems than theunacidified control. The reverse held true in theplants received HNO3 solution. Proline contentincreased with exposure to an HCl acid mist of pH 2.0.An acid spray of pH 2.0 did not affect shoot Na+,K+ and Mg2+ content but reduced theircontents in the root. Shoot and root Ca2+contents were substantially lower in acid sprayedplants than in the unsprayed analogues. Ascorbic acidtreatment counteracted the deleterious effects of acidmist on the parameters tested, effectively protectingthe plant membranes from dehydration and heat stressinjury. Ascorbic acid protection was more pronouncedin plants that received HCl solution (e.g. chlorophyllcontent was about three-fold higher than that ofascorbic acid untreated analogues) in contrast toeither HNO3 or H2SO4 treated plants.The effects of single factors, acid mist (pH),ascorbic acid (A.A.) and their interaction (pH × A.A)on the parameters tested were statisticallysignificant. The coefficient of determination(η2) indicated that: (1) acid mist (pH) hada dominant role in affecting the stability of leafmembrane to dehydration stress, Chl content, shootlength and dry mass production, shoot S.P. and H.C.,and root S.S., S.P., T.A.A., Ca2+, and Mg2+contents. (2) The effect of ascorbic acid (A.A.) wasdominant for shoot Na+, K+, Ca2+ andproline contents as well as for root H.C. (3) Theshare of pH × AA. interaction was dominant for thestability of leaf membrane to heat stress, root dryweight, shoot S.S., T.A.A. and root Na+ content.(4) The role of pH and A.A. was equally dominant inaffecting root length.  相似文献   

13.
The ability of Chinese cabbage (Brassica pekinensis) to utilize atmospheric sulfur dioxide (SO2) as sulfur (S) source for growth was investigated in relation to root sulfate (SO ) nutrition. If seedlings of Chinese cabbage were transferred to a sulfate‐deprived nutrient solution directly after germination, plants became rapidly S‐deficient. Plant‐biomass production was decreased and the shoot‐to‐root ratio decreased. Sulfate deprivation resulted in a substantial decrease in total S, sulfate, organic‐S, and water‐soluble nonprotein thiol contents and in an increase in amino‐acid content of both shoot and root. The sulfate‐uptake rate of the root was strongly increased, whereas nitrate‐uptake rate was decreased. Upon resupply of sulfate, the onset of S‐deficiency symptoms was prevented, and growth was restored, whereas sulfate and nitrate‐uptake rates were quite similar to those of the sulfate‐sufficient plants. A 6‐day exposure to 0.12 µL L–1 SO2 of sulfate‐sufficient plants did not affect plant‐biomass production, shoot‐to‐root ratio, S and nitrogen (N) compounds of shoot and root, or sulfate and nitrate uptake by the root. Exposure of sulfate‐deprived plants to SO2 resulted in enhanced total S, organic‐S, and water‐soluble nonprotein thiol contents of the shoot. The contribution of SO2 as S source for biomass production depended on the duration of the sulfate deprivation. If Chinese cabbage was transferred to a sulfate‐deprived nutrient solution and simultaneously exposed to SO2, then plants benefited optimally from the foliarly absorbed S. The development of S‐deficiency symptoms was prevented, and shoot‐biomass production was quite similar to that of sulfate‐sufficient plants. However, upon SO2 exposure root‐biomass production was even higher than that of sulfate‐sufficient plants, whereas sulfate uptake was still enhanced. Evidently, upon SO2 exposure there was no strict and direct shoot‐to‐root signaling in tuning sulfate uptake by the root and its transport to the shoot to the need for growth, via down‐regulation of sulfate uptake and normalizing shoot–to–root biomass partitioning.  相似文献   

14.
Exposure of rice plants to low concentrations of O3 and SO2 singly and in combination showed foliar injury of different levels. The maximum leaf injury was noted in case of O3+SO2 treated plants and the minimum in O3 treated ones. Also the reductions in chlorophylla,b and total chlorophyll and carotenoid contents in leaves exposed to O3+SO2 mixtures were higher than the reduction noted in case of each individual pollutant. Thus the results suggest a synergism existing between O3 and SO2 regarding plant injury, especially with respect to chlorophyll and carotenoid contents of rice (Oryza sativa).  相似文献   

15.
Reversible decrease in CO2 fixation has been reported in rice plants exposed to low concentrations of SO2 (Matsuoka et al., 1969). Alpha hydroxy sulfonate is thought to form in leaves by an addition-reaction between plant aldehyde and SO2, and to inhibit the process of the photosynthesis. However, the identification of this compound in the leaves has not been successful. This report deals with the results of the radiochemical experiments to examine the occurrence of glyoxylate bisulfite, a-hydroxy sulfonate forms of glyoxylic acid in rice plant leaves exposed to radioactive sulfur dioxide. In plants exposed to SO2, sufficient amounts of glyoxylate bisulfite could be formed and thereby inhibit the progress of the path from glicolic to glyoxylic acid.  相似文献   

16.
The colony growth of some phylloplane fungi of wheat viz. Alternaria alternata, Aspergillus favus, Amiger, Cladosportium cladosporioides, Curvularia lunata, Drechslera australiensis, Epicoccum purpurascens, Fusarium oxysporum, Penicillium chrysogenum and P. citrinum were studied in chamber fumigation experiments exposed to 2669 ± 105 μg SO2 m?3 and 708.33 ± 55 μg NH3 m?3 air, separately, for 10, 30 and 60 min. The colony growth of all the test fungi was significantly (P=0.01/0.005) inhibited on prolonged period of SO2/NH3 exposure. However, some of the test fungi namely A. favus, A. niger, E. purpurascens and F. oxysporum showed growth stimulation after 10 min exposure of SO2. Similarly, the growth of C. lunata and F. oxysporum increased only after 10 min exposure of NH3. The inhibitory effect of SO2/NH3 was directly correlated with the exposure times.  相似文献   

17.
Sulphur dioxid, hydrogen sulphate, nitrous gases, and ammonia as sole source of S and N for higher plants Long duration gasing experiments using SO2, H2S, nitrous gases and NH3, showed, that higher plants can use these gases as only source of S or N respectively, without affecting their normal growth during the whole vegetation period. The sulphur and nitrogen of these high oxidized or high reduced gas forms were taken up by the plants and were also translocated to the roots. The assimilation of sulphur, given as SO2, was more intensive than that given as H2S. The uptake of nitrogen, given as ammonia, was higher than that given as nitrous gases.  相似文献   

18.
Aphids are frequently found on conifers, but mass outbreaks are seldom reported. On trees stressed by air pollutants the natural resistance can be broken and insect attack combined with pollution stress may promote plant damages. To evaluate effects of air pollution on conifer aphids Scots pine and Norway spruce seedlings have been exposed to gaseous pollutants (O3, SO2 and NO2) in growth chambers. The studied aphid species were Cinara pilicornis Hartig on Norway spruce, C. pinea (Mordv.) and Schizolachnus pineti Fabr. on Scots pine in SO2 fumigations and S. pineti in O3 and NO2 fumigations. C. pilicornis nymphs had peaked dose response to SO2 concentration. Both the first and third instar larvae of C. pilicornis showed highest mean relative growth rate (MRGR) at 100 ppb SO2 concentration. MRGR of C. pinea peaked at 50 and 150 ppb SO2 The response of S. pineti was more inconsistent During fumigation the peak MRGR of S. pineti was at 100 ppb and after exposure at 50 ppb SO2. MRGR of S. pineti nymphs was not significantly affected during fumigation or after the end of fumigation experiment by 100 ppb O3 or 100 ppb NO2 or the mixtures. The results suggest that SO2 affects more distinctively on aphid performance on conifers than O3 or NO2. Especially stem-feeding aphids on spruce can exploit physiological disturbance of host plant under pollution stress.  相似文献   

19.
The effect of varying hydrogel (0, 0.5, and 1.0% w/w) supply on some agro-physiological properties, such as dry matter, nutrient contents, chlorophyll contents, proline content, and ionic balance of bean plants in different salt sources and stress due to doses were investigated. Plants were treated with eight salt sources [sodium chloride (NaCl), sodium sulfate (Na2SO4), calcium chloride (CaCl2), calcium sulfate (CaSO4), potassium chloride (KCl), potassium sulfate (K2SO4), magnesium chloride (MgCl2), magnesium sulfate (MgSO4)] and four concentrations (0, 30, 60, and 120 mM doses) for 60 days in a growth media. Salt type, doses, and hydrogel (HG) affected the soil electrical conductivity. Soil salinity affected the parameters considered, and changed the nutrient balance of plants. High salt concentration caused substantial reduction in plant growth. Different salt concentrations negatively affected plant dry weight. The highest decrease of plant root dry weight was obtained with NaCl application followed by Na2SO4, CaCl2, CaSO4, MgCl2, MgSO4, KCl, and K2SO4, and similarly NaCl, Na2SO4, CaCl2, CaSO4, KCl, K2SO4, MgCl2, and MgSO4 in root dry weight. Total chlorophyll and nitrate contents of plants decreased with increasing salt doses, and the lowest value was obtained for NaCl application. Proline contents of plants were increased with increasing salt doses, and the highest value was obtained with the NaCl application. The effects of salt concentrations in nitrogen (N), potassium (K), and phosphorus (P) content of plants were significant. The presence of salt in the growth medium induced an important decrease the macro nutrient of the root and shoot part of plant such as N, P, K, calcium (Ca), and magnesium (Mg) content, but the N and P content of root and shoot part of the plant were increased with increasing of the HG application doses. The highest N and P increases were obtained with the 1.0 HG application for all salt types for both the root and shoots of plants. The HG added to saline soil significantly improved the variables affected by high salinity and also increased plant N and P, reduced soil electricity conductivity, nitrate, proline, and electrolyte leakage of plants, enhanced plant root and shoot dry weight by allowing nutrients and water to release to the plant as needed. The results suggested that HG has great potential for use in alleviating salinity stress on plant growth and growth parameters in saline soils of arid and semi-arid areas. This HG appears to be highly effective for use as a soil conditioner in vegetable growing, to improve crop tolerance and growth in saline conditions. It is intended to confirm the results of these studies by field trials.  相似文献   

20.
Tobacco plants (Nicotiana tabacum L. cv NC82) were supplied with (NH4)2SO4, or NH4Cl at root‐zone pH of 6.0 and 4.5 in hydroponic culture for 28 days. Dry matter accumulation, total N and C content, and leaf area and number were not affected by the NH4 + source or root‐zone pH. Plants supplied with NH4C1 accumulated up to 1.2 mM Cl g DW‐1, but accumulated 37% less inorganic H2PO4 and 47% less SO4 2‐ than plants supplied with (NH)2SO4. The large Cl accumulation resulted in NH4C1 –supplied plants having a 31% higher inorganic anion (NO3 , H2, PO4 , SO4 2‐, and Cl) charge. This higher inorganic anion charge in the NH4C1‐supplied plants was balanced by a similar increase in K+ charge. Plants supplied with NH4Cl accumulated greater concentrations of Cl in leaves (up to 5.1% of DW) than plants supplied with (NH4)2SO4 (less than ‐% DW). Despite the high Cl concentration of leaves in NH4Cl supplied plants, these plants showed no symptoms of Cl toxicity. This demonstrates that toxicity symptoms are not due solely to an interaction between high Cl concentration in tissue and NH4 + nutrition. The increase in root‐zone acidity to pH 4.5 from 6.0 did not induce toxicity symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号