首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eyespot is an economically important stem base disease of wheat caused by the soilborne fungal pathogens Oculimacula yallundae and Oculimacula acuformis. The most effective method of controlling the disease is host resistance. However, there are only three genetically characterized resistances in wheat varieties and further sources of resistance are required. Previous studies have identified resistances in wild relatives, but use of these resistances has been limited by linkage drag with deleterious traits exacerbated by low rates of recombination. Therefore, the identification of novel resistances in hexaploid wheat germplasm is desirable. The Watkins collection currently consists of 1056 hexaploid wheat landraces that represent global wheat diversity at the time of its collection in the 1920s and 1930s. As such, it may contain beneficial agronomic traits such as eyespot resistance. The Watkins collection was screened for resistance to O. yallundae based on a glasshouse test of all 1056 accessions and a polytunnel test of 44 accessions selected from a previous field trial. Resistant lines identified in these tests were retested against both O. yallundae and O. acuformis. This identified 17 accessions with resistance to one or both of the pathogen species. From these, two accessions (1190094.1 and 1190736.3) provided a high level of resistance to both pathogen species. An F4 population derived from accession 1190736.3 indicated that the resistance to O. acuformis in this accession is conferred by a single gene and therefore would be suitable for introgression into elite wheat varieties to provide an alternative source of eyespot resistance.  相似文献   

2.
This study aimed to elucidate the population dynamics of Rhizoctonia, Oculimacula, and Microdochium species, causing the stem base disease complex of sharp eyespot, eyespot, and brown foot rot in cereals. Pathogen DNA in soil, roots, and stem fractions, and disease expression were quantified in 102 English wheat fields in two seasons. Weather data for each site was collected to determine patterns that correlate with assessed diseases. Oculimacula spp. (66%) and R. solani AG 2-1 (63%) were most frequently detected in soil, followed by R. cerealis (54%) and Microdochium spp. (33%). Oculimacula spp. (89%) and R. cerealis (56%) predominated on roots and soil but were not associated with root rot symptoms, suggesting that these species used soil and roots for survival and as inoculum source. M. nivale was more frequently detected than M. majus on stems up to GS 21–30 and co-occurred on plant samples with O. acuformis. O. yallundae had higher DNA concentration than O. acuformis at the lower 5 cm basal region at GS 37–45. R. cerealis predominated in the upper 15 cm above the base beyond stem extension. Brown foot rot by Microdochium spp. was favoured by cool and wet autumns/winters and dominated in English wheat. Eyespot and sharp eyespot disease index by Oculimacula spp. and R. cerealis, respectively, correlated with wet/humid springs and summers. Results suggested that stem base pathogens generally coexisted; however, their abundance in time and space was influenced by favourable weather patterns and host development, with niche differentiation after stem extension.  相似文献   

3.
Ramularia leaf spot (RLS) is a newly important disease of barley across temperate regions worldwide. Despite this recent change in importance, the infection biology of the causal agent Ramularia collo‐cygni (Rcc) remains poorly understood. Confocal microscopy of the infection process of two transgenic Rcc isolates, expressing either GFP or DsRed reporter markers, was combined with light microscopy during field infection to track the progression of Rcc in planta. Infection of stomata, including the development of a previously unreported stomatopodium structure, results in symptomless development and intercellular colonization of the mesophyll tissue. Transition to necrotrophy is associated with breakdown of host chloroplasts and the formation of aggregates of conidiophores. In addition to barley, Rcc forms a compatible interaction with winter wheat and a number of perennial grass species. An incompatible reaction was observed with two dicotyledonous species. These results provide further insights into the host interactions of this fungus and suggest that RLS could be a potential threat to other agriculturally important crops.  相似文献   

4.
Brachypodium distachyon (Bd) is increasingly being used as a model for cereal diseases and to study cereal root architecture. Rhizoctonia solani AG 8 is a necrotrophic root pathogen that infects wheat soon after germination resulting in reduced plant growth and yield loss. Genetic resistance to R. solani AG 8 is not available in commercial wheat cultivars, although some quantitative levels of resistance have previously been found in mutant lines and grass relatives. Resistance mechanisms in cereals remain unknown. The ability to use Bd as a model to study the wheat–R. solani AG 8 pathosystem was investigated. The results presented show that Bd is susceptible to R. solani AG 8 and that the pathogen infects both species to a similar degree, producing comparable disease symptoms. Root length reduction was the primary indicator of disease, with shoots also affected. The second objective was to develop a repeatable phenotyping method to screen Bd populations for resistance to R. solani AG 8. Results of a preliminary experiment provide evidence for variation in resistance between Bd inbred lines. This is the first report showing the potential of Bd as a model plant for discovery of quantitative genetic variation in resistance to a necrotrophic cereal root pathogen.  相似文献   

5.
The recent report of a differential response of wheat lines containing the Pch2 gene to infection with the eyespot pathogens Oculimacula yallundae and O. acuformis has prompted this re‐examination of the response to these fungi by the recombinant lines used to map Pch2. Homozygous recombinant substitution lines (RSL) derived from the hybridization of Chinese Spring (CS) and the CS chromosome substitution line Cappelle Desprez 7A (CS/CD7A), previously evaluated for response to glucuronidase (GUS)‐transformed O. yallundae, were evaluated for response to infection with GUS‐transformed O. acuformis. Based on visual scores and on GUS expression level, which reflects fungal colonization of seedling plants, evidence of a quantitative trait locus (QTL) conferring resistance to O. acuformis was found in two separate growth chamber experiments (logarithm of the odds, LOD, = 2·7 and 6·7 at 305 and 289 cM, respectively) that was equivalent in location to that for resistance to O. yallundae (LOD = 13·2 and 11·4 at 289 and 304 cM, respectively). These results confirm that Pch2 confers some degree of resistance against both O. yallundae and O. acuformis under these conditions.  相似文献   

6.
Eyespot is an economically important stem‐base disease of wheat caused by two fungal species: Oculimacula yallundae and Oculimacula acuformis. This study investigated the efficacy of two sources of resistance, viz. the genes Pch1, introgressed into hexaploid wheat from Aegilops ventricosa, and Pch2, identified in wheat cv. Cappelle Desprez, against O. yallundae and O. acuformis separately. In a series of seedling bioassays Pch1 was found to be highly effective against both species. Although Pch2 was found to confer resistance against both pathogen species, it was significantly less effective against penetration from O. yallundae than O. acuformis. Furthermore, a quantitative trait locus (QTL) analysis was not able to locate any resistance to O. yallundae on chromosome 7A of Cappelle Desprez. This has important implications for the use of Pch2 in commercial cultivars as it is necessary to have genes that confer resistance to both pathogens for effective eyespot control. In addition, a set of 22 T. monococcum accessions was screened for resistance to both O. yallundae and O. acuformis to identify potentially novel resistances and to assess the accessions for evidence of differential resistance to the eyespot species. Significant differences in resistance to the two pathogens were identified in four of these lines, providing evidence for differential resistance in T. monococcum. This study demonstrates that future screening for novel sources of eyespot resistance should investigate both pathogen species.  相似文献   

7.
The Gram‐negative bacterium Erwinia amylovora, causal agent of fire blight disease in pome fruit trees, encodes a type three secretion system (T3SS) that translocates effector proteins into plant cells that collectively function to suppress host defences and enable pathogenesis. Until now, there has only been limited knowledge about the interaction of effector proteins and host resistance presented in several wild Malus species. This study tested disease responses in several Malus wild species with a set of effector deletion mutant strains and several highly virulent E. amylovora strains, which are assumed to influence the host resistance response of fire blight‐resistant Malus species. The findings confirm earlier studies that deletion of the T3SS abolished virulence of the pathogen. Furthermore, a new gene‐for‐gene relationship was established between the effector protein Eop1 and the fire blight resistant ornamental apple cultivar Evereste and the wild species Malus floribunda 821. The results presented here provide new insights into the host–pathogen interactions between Malus sp. and E. amylovora.  相似文献   

8.
Cereal cyst nematode (CCN), Heterodera avenae, is one of the most important pathogens of wheat worldwide, and causes significant yield losses. Research on CCN–wheat interactions is hampered by the lack of an effective model pathosystem. This study investigated the potential of the model cereal Brachypodium distachyon (Bd21‐3) and diploid wheat 2A (G1812) and 2D (AL8/78) as model hosts for CCN. Nematode infection analysis showed that although some CCN penetrated Bd21‐3 roots, these nematodes failed to develop to the later developmental stages or form cysts, indicating B. distachyon is not a host for CCN. A strong burst of reactive oxygen species (ROS) within Bd21‐3 roots infected with CCN was induced 3 days after infection and the expression of seven ROS‐producing genes was significantly increased. In contrast, CCN completed its life cycle in both diploid wheat 2A and 2D, and formed normal syncytia in these hosts. Although CCN developmental processes within both diploid wheat 2A and 2D were very similar to those in the susceptible control, the number of cysts formed on diploid wheat 2D was less than those formed on diploid wheat 2A and the susceptible control, indicating that diploid wheat 2A was a more suitable host for CCN than 2D. This is the first report of a potential new pathosystem for CCN–host interactions using diploid wheat.  相似文献   

9.
Environmental conditions in Sardinia (Tyrrhenian Islands) are conducive to fusarium root rot (FRR) and fusarium head blight (FHB). A monitoring survey on wheat was carried out from 2001 to 2013, investigating relations among these diseases and their causal agents. FHB was more frequently encountered in the most recent years while FRR was constantly present throughout the monitored period. By assessing the population composition of the causal agents as well as their genetic chemotypes and EF‐1α polymorphisms, the study examined whether the two diseases could be differentially associated to a species or a population. Fusarium culmorum chemotypes caused both diseases and were detected at different abundances (88% 3‐ADON, 12% NIV). Fusarium graminearum (15‐ADON genetic chemotype) appeared only recently (2013) and in few areas as the causal agent of FHB. In Fculmorum, two haplotypes were identified based on an SNP mutation located 34 bp after the first exon of the EF‐1α partial sequence (60% adenine, 40% thymine); the two populations did not segregate with the chemotype but the A‐haplotype was significantly associated with FRR in the Sardinian data set (= 0·001), suggesting a possible fitness advantage of the A‐haplotype in the establishment of FRR that was neither dependent on the sampling location nor the sampling year. The SNP determining the Sardinian haplotype is distributed worldwide. The question whether the A‐haplotype segregates with characters facilitating FRR establishment will require further validation on a specifically sampled international data set.  相似文献   

10.
The troubled history of the two major diseases of the chocolate tree (Theobroma cacao) in South America, witches' broom and frosty pod, is reviewed, concentrating on critical aspects of the aetiology as well as the phylogeny of the causal agents. Both diseases are caused by sister species within the genus Moniliophthora, belonging to the Marasmiaceae family of mushrooms. The witches' broom pathogen, Moniliophthora perniciosa, evolved on the Amazonian side of the Andes and induces brooms not only in cacao and its relatives in the genera Theobroma and Herrania (Malvaceae), but also in species in the plant families Bignoniaceae, Malpighiaceae and Solanaceae, on which the mushrooms (basidiomata) are produced. Moniliophthora roreri, the type species of the genus, evolved as a pod pathogen on endemic Theobroma species on the western side of the northern Andean Cordillera. Because Moniliophthora was described originally as the asexual form of an unknown basidiomycete, the generic diagnosis is amended here to accommodate species with agaricoid basidiomata. In addition, the new variety Mroreri var. gileri is designated for the morphotype occurring on Theobroma gileri, in northwest Ecuador. Cytology studies indicate that the supposed conidia of Mroreri are, in fact, sexual spores (meiospores) and it is posited that the fruiting structure represents a much‐modified mushroom. Finally, based on preliminary data from pathogenicity testing, it is hypothesized that the true causal agent of both diseases is an as yet unidentified infectious agent vectored into the host by the fungus.  相似文献   

11.
To improve the ability to understand how plants respond to multiple and/or concurrent stresses, disease resistance was investigated in Eutrema salsugineum, an extremophile model plant that is highly tolerant of abiotic stress. Compared to Arabidopsis (Col‐0), both Yukon and Shandong Eutrema accessions exhibit increased resistance to Pseudomonas syringae pv. tomato DC3000 (Pst) and pv. maculicola (Psm), with Shandong Eutrema exhibiting greater resistance to Pst than Yukon Eutrema. RT‐PCR of the EsPR1 (Pathogenesis‐related 1) defence marker gene confirmed RNA‐Seq data that healthy Shandong Eutrema constitutively expresses EsPR1. The data suggests that Shandong Eutrema exists in a highly primed state of defence preparedness, as it displays heightened resistance compared to defence‐primed natural accessions of Arabidopsis (Can‐0, Bur‐0). Pathogen‐triggered PR1 expression was delayed in Yukon Eutrema; however, these plants were resistant to Pst suggesting that Yukon Eutrema employs a PR1‐independent mechanism to resist Pst. This study demonstrates that Eutrema is an excellent model to investigate biotic stress tolerance. The Eutrema–P. syringae pathosystem will facilitate future studies to understand how this extremophile tolerates both abiotic and biotic stress, and will allow exploration of the interplay of these responses to inform efforts to improve stress tolerance in crops.  相似文献   

12.
Postbloom fruit drop (PFD) is an important citrus disease that causes up to 100% yield losses during years in which conditions are favourable for the occurrence of epidemics. The conidia of Colletotrichum acutatum and C. gloeosporioides, causal agents of PFD, are predominantly dispersed by rain splash. At the beginning of epidemics, the distribution of diseased plants is random and the disease progress rate is very high, which is unusual for pathogens spread by rain splash. As the pathogen produces abundant conidia on diseased petals, pollinating insects may contribute to disease dispersal. This study investigated honeybees (Apis mellifera) as dispersal agents of C. acutatum and C. gloeosporioides among citrus plants. Two experiments were carried out in a screenhouse in which citrus plants were protected (or not) in insect‐proof cages. The source of inoculum was placed on one side of the screenhouse, and a honeybee hive was placed on the opposite side. All uncaged plants showed symptoms of the disease, and none of the caged plants exhibited PFD symptoms. The monomolecular model showed a good fit to disease progress in both experiments. Conidium‐like structures of Colletotrichum spp. were identified attached to the bodies of the honeybees by scanning electron microscopy. These results have revealed that honeybees disperse Colletotrichum among citrus plants.  相似文献   

13.
Blackleg disease of canola/rapeseed (Brassica napus), caused by the devastating fungal pathogen Leptosphaeria maculans, can significantly influence B. napus production worldwide, except for China, where only the less aggressive L. biglobosa has been found associated with the disease. The aim of this study was to characterize both seedling resistance (major gene resistance, R gene resistance) and adult plant resistance (APR) from a collection of Chinese B. napus varieties/lines (accessions) to L. maculans. Evaluation of seedling resistance was carried out under a controlled environment, using 11 well‐characterized L. maculans isolates as differentials. The identification of APR was performed under multiple field environments in western Canada. R genes were detected in more than 40% of the accessions tested. Four specific R genes, Rlm1, Rlm2, Rlm3 and Rlm4 were identified, with Rlm3 and Rlm4 being the most common genes, while Rlm1 and Rlm2 were detected only occasionally. Results of field evaluation indicated significant variations among field locations as well as accessions; a large portion of the B. napus accessions, regardless of the resistance level observed at the seedling stage, showed high to moderate levels of APR under all environments tested. This study highlights that both R gene resistance and APR are present in Chinese B. napus germplasm and could be potential sources of resistance against blackleg caused by L. maculans if the pathogen ever becomes established in China.  相似文献   

14.
In winter wheat in the USA, Aegilops cylindrica is one of the most troublesome weeds, while the pathogen Oculimacula spp. causes foot rot disease. Imazamox‐resistant (IR) and foot rot‐resistant (FR) wheat cultivars represent effective tools to control the weed and prevent disease infection. However, resistance allele (RA) movement between wheat and A. cylindrica facilitates the introgression process under herbicide and disease selection pressure. Field experiments using IR and FR A. cylindrica plants intermixed with susceptible plants were conducted to measure the proportion of the RAs in the progeny and RA movement with and without herbicide and disease selection. Yield components of A. cylindrica plants were determined across treatments. The herbicide RA proportion in the progeny was greater when plants were treated with the herbicide imazamox in both years. Disease RA proportion was greater with disease occurrence only in one year. Herbicide RA movement from resistant to susceptible plants was greater with herbicide than without it only in one year. Plants carrying the RAs had greater total spikelet weight and 1000‐spikelet weight compared with susceptible plants with or without selection. However, susceptible plants produced more spikelets than the resistant ones in the absence of selection. If plants within an A. cylindrica population acquire the herbicide RA, its proportion will increase each generation under selection. These findings contribute to the understanding of crop allele introgression into related species and the evolution of increased weediness, with weed management implications.  相似文献   

15.
Sclerotinia sclerotiorum is a necrotrophic fungus that causes a devastating disease called white mould, infecting more than 450 plant species worldwide. Control of this disease with fungicides is limited, so host plant resistance is the preferred alternative for disease management. However, due to the nature of the disease, breeding programmes have had limited success. A potential alternative to developing necrotrophic fungal resistance is the use of host‐induced gene silencing (HIGS) methods, which involves host expression of dsRNA‐generating constructs directed against genes in the pathogen. In this study, the target gene chosen was chitin synthase (chs), which commands the synthesis of chitin, the polysaccharide that is a crucial structural component of the cell walls of many fungi. Tobacco plants were transformed with an interfering intron‐containing hairpin RNA construct for silencing the fungal chs gene. Seventy‐two hours after inoculation, five transgenic lines showed a reduction in disease severity ranging from 55·5 to 86·7% compared with the non‐transgenic lines. The lesion area did not show extensive progress over this time (up to 120 h). Disease resistance and silencing of the fungal chs gene was positively correlated with the presence of detectable siRNA in the transgenic lines. It was demonstrated that expression of endogenous genes from the very aggressive necrotrophic fungus S. sclerotiorum could be prevented by host induced silencing. HIGS of the fungal chitin synthase gene can generate white mould‐tolerant plants. From a biotechnological perspective, these results open new prospects for the development of transgenic plants resistant to necrotrophic fungal pathogens.  相似文献   

16.
Decline of newly planted, grafted grapevines is a serious viticultural problem worldwide. In the Riverina (New South Wales, Australia), characteristic symptoms include low fruit yields, very short shoots and severely stunted roots with black, sunken, necrotic lesions. To determine the cause, roots and wood tissue from affected plants in 20 vineyards (Vitis vinifera cv. Chardonnay grafted to V. champini cv. Ramsey rootstock) were assayed for microbial pathogens. Ilyonectria spp. (I. macrodidyma or I. liriodendra, producers of phytotoxin brefeldin A, BFA, and cause of black foot disease of grapevines) and Botryosphaeriaceae spp. (predominantly Diplodia seriata) were isolated from rootstocks of 100 and 95% of the plants, respectively. Togninia minima and Phaeomoniella chlamydospora (cause of grapevine Petri disease) were isolated from 13 and 7% of affected plants, respectively. All Ramsey rootstock stems of grafted plants sampled from a supplier nursery were infected with Ilyonectria spp. and D. seriata. Diplodia seriata, but not Ilyonectria spp., was also isolated from 25% of canes sampled from the rootstock source block. Root inoculation of potted, disease‐free Chardonnay plants with Ilyonectria isolates from diseased vineyards caused typical disease symptoms, while co‐inoculation with Botryosphaeriaceae spp. increased disease severity. This is the first study to show that a major cause of young grapevine decline can be sequential infection by Botryosphaeriaceae from rootstock cuttings and Ilyonectria spp. from nursery soil. Although the Petri disease fungi were less common in young declining grafted grapevines in the Riverina, they are likely to contribute to the decline of surviving plants as they mature.  相似文献   

17.
Eyespot, caused by Oculimacula acuformis and Oculimacula yallundae, is the major foot disease of winter wheat in several European countries, including France. It can be controlled by chemical treatment between tillering and the second node stage. The fungicides used include antimicrotubule toxicants (benzimidazoles), inhibitors of sterol 14α‐demethylation (DMIs) or of succinate dehydrogenase (SDHIs), the anilinopyrimidines cyprodinil and the benzophenone metrafenone. Since the early 1980s, a long‐term survey has been set up in France to monitor changes in the sensitivity of eyespot populations to fungicides. Resistance to benzimidazoles has become generalised since the early 1990s, in spite of the withdrawal of this class of fungicides. In the DMI group, resistance to triazoles is generalised, whereas no resistance to the triazolinethione prothioconazole has yet developed. Resistance to the imidazole prochloraz evolved successively in O. acuformis and O. yallundae and is now well established. Specific resistance to cyprodinil has also been detected, but its frequency has generally remained low. Finally, since the early 2000s, a few strains of O. yallundae displaying multidrug resistance (MDR) have been detected. These strains display low levels of resistance to prothioconazole and SDHIs, such as boscalid. Knowledge of the spatiotemporal distribution in France of O. acuformis and O. yallundae field strains resistant to fungicides allows resistance management strategies for eyespot fungi in winter wheat to be proposed.© 2012 Society of Chemical Industry  相似文献   

18.
The oomycete Phytophthora infestans, the cause of late blight, is one of the most important potato pathogens. During infection, it secretes effector proteins that manipulate host cell function, thus contributing to pathogenicity. This study examines sequence differentiation of two P. infestans effectors from 91 isolates collected in Poland and Norway and five reference isolates. A gene encoding the Avr‐vnt1 effector, recognized by the potato Rpi‐phu1 resistance gene product, is conserved. In contrast, the second effector, AvrSmira1 recognized by Rpi‐Smira1, is highly diverse. Both effectors contain positively selected amino acids. A majority of the polymorphisms and all selected sites are located in the effector C‐terminal region, which is responsible for their function inside host cells. Hence it is concluded that they are associated with a response to diversified target protein or recognition avoidance. Diversification of the AvrSmira1 effector sequences, which existed prior to the large‐scale cultivation of plants containing the Rpi‐Smira1 gene, may reduce the predicted durability of resistance provided by this gene. Although no isolates virulent to plants with the Rpi‐phu1 gene were found, the corresponding Avr‐vnt1 effector has undergone selection, providing evidence for an ongoing ‘arms race’ between the host and pathogen. Both genes remain valuable components for resistance gene pyramiding.  相似文献   

19.
Lettuce (Lactuca sativa) is the major leafy vegetable that is susceptible to powdery mildew disease under greenhouse and field conditions. Quantitative trait loci (QTLs) for resistance to powdery mildew under greenhouse conditions were mapped in an interspecific population derived from a cross between susceptible L. sativa cultivar Salinas and the highly susceptible L. serriola accession UC96US23. Four significant QTLs were detected on linkage groups LG 1 (pm‐1.1), LG 2 (pm‐2.1 and pm‐2.2) and LG 7 (pm‐7.1), each explaining between 35 to 42% of the phenotypic variation. The four QTLs are not located in the documented hotspots of lettuce resistance genes. Alleles for the disease resistance at the four QTLs originated from both parents (two from each), demonstrating that even highly susceptible accessions may provide alleles for resistance to powdery mildew. These QTLs appeared to operate during limited periods of time. Results of the field trials with F2:3 and F3:4 families derived from a Soraya (moderately resistant) × Salinas cross demonstrated effective transfer of resistance to powdery mildew in this material. An integrated rating approach was used to estimate relative levels of resistance in 80 cultivars and accessions tested in a total of 23 field and greenhouse experiments. Generally, very low resistance was observed in crisphead‐type lettuces, while the highest relative resistance was recorded in leaf and butterhead types. Comparison of two disease assessment methods (percentage rating and the area under the disease progress steps, AUDPS) for detection of QTLs shows that the two approaches complement each other.  相似文献   

20.
R Aly 《Weed Research》2013,53(4):231-241
Parasitic plants have evolved various methods of invading host plants. Some invade aerial parts, whereas others invade the roots to obtain necessary nutrients for their development. Phelipanche and Orobanche spp. (broomrapes) and Cuscuta spp. (dodders) are holoparasitic plants that subsist on roots and shoots, respectively, of a variety of agricultural crops. These weeds are able to connect directly with the vascular system of the host, thereby acquiring the water, minerals and carbohydrates necessary for their own growth and reproduction. This exploitation by parasitic plants often causes severe losses in yield quality and quantity of host crops. The key to an effective means for controlling parasitic plants lies in the development of resistant crops, supported by an improved understanding of broomrape and dodder biology. The haustoria formed at the junctions of parasite and host open the way for translocation of a variety of molecules and macromolecules from the host to the parasite. At the same time, however, the haustoria also open opportunities for the development of methods to control parasitic plants. This review will summarise the current knowledge on translocation of siRNAs, mRNAs, viruses, sugars, proteins and herbicides from host to parasitic plants and the potential significance of such molecules to the parasite. Improved understanding of the molecular exchange between host plants and their parasites is expected to lead to the development of state‐of‐the‐art, effective approaches to parasitic weed management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号