首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over 100 isolates of Rhizorhapis suberifaciens, Sphingobium (Sb.) sp., Sb. mellinum, Sb. xanthum, Rhizorhabdus sp., and Sphingopyxis sp. (Sphingomonodaceae) were tested for pathogenicity on lettuce (Lactuca sativa) cultivars Salinas and Green Lakes, susceptible and resistant, respectively, or their resistant descendent breeding line (B.L.) 440‐8, to R. suberifaciens type strain CA1T. Rhizorhabdus sp. CA15 and NL2, R. suberifaciens CA3, and Sphingopyxis CA32 were equally virulent to Green Lakes or B.L. 440‐8 and Salinas. Over 40 accessions from four Lactuca species were tested for resistance to R. suberifaciens CA1T/CA3 or Rhizorhabdus sp. CA15/NL2. All lettuce accessions with resistance to CA1T were susceptible to isolates CA15, NL2 and/or CA3. None of the Lactuca lines were highly resistant to all four isolates. There was a significant differential interaction between eight Lactuca lines and ten isolates of Rhizorhapis and related genera with respect to corky root severity. Three strains of isolates were distinguished: (i) isolates with a similar virulence pattern as R. suberifaciens CA1T, (ii) isolates with a virulence pattern similar to that of R. suberifaciens CA3 and Sphingopyxis sp. CA32, and (iii) isolates of Rhizorhabdus being moderately aggressive to all Lactuca lines. Thus, strains belonging to several genera can cause similar symptoms (a rare phenomenon) but have different virulence patterns on Lactuca species and cultivars.  相似文献   

2.
This study tested the hypothesis that Botyrtis cinerea shows host specialization on tomato and lettuce, using phenotypic and genotypic tools. Strains were isolated from tomato and lettuce grown together in the same greenhouse. Forty‐four lettuce strains and 42 tomato strains were investigated for their genetic diversity and their aggressiveness. Both gene diversity and allelic richness were significantly higher in lettuce strains than in tomato strains (= 0·01). Cluster analysis revealed a clear division of the strains under study into two clusters. However, this structure did not separate the strains according to their host of origin. Tomato strains were significantly more aggressive than lettuce strains when inoculated on tomatoes (= 0·001), but no significant differences in aggressiveness were observed when the strains were inoculated on lettuce (= 0·17) or on apple (= 0·87). The results suggest an absence of clear host specialization of B. cinerea on tomato and lettuce.  相似文献   

3.
The severity of fusarium wilt is affected by inoculum density in soil, which is expected to decline during intervals when a non‐susceptible crop is grown. However, the anticipated benefits of crop rotation may not be realized if the pathogen can colonize and produce inoculum on a resistant cultivar or rotation crop. The present study documented colonization of roots of broccoli, cauliflower and spinach by Fusarium oxysporum f. sp. lactucae, the cause of fusarium wilt of lettuce. The frequency of infection was significantly lower on all three rotation crops than on a susceptible lettuce cultivar, and the pathogen was restricted to the cortex of roots of broccoli. However, F. oxysporum f. sp. lactucae was isolated from the root vascular stele of 7·4% of cauliflower plants and 50% of spinach plants that were sampled, indicating a greater potential for colonization and production of inoculum on these crops. The pathogen was also recovered from the root vascular stele of five fusarium wilt‐resistant lettuce cultivars. Thus, disease‐resistant plants may support growth of the pathogen and thereby contribute to an increase in soil inoculum density. Cultivars that were indistinguishable based on above‐ground symptoms, differed significantly in the extent to which they were colonized by F. oxysporum f. sp. lactucae. Less extensively colonized cultivars may prove to be superior sources of resistance to fusarium wilt for use in breeding programmes.  相似文献   

4.
The population of Phytophthora infestans on potato landraces in three provinces (Carchi, Chimborazo and Loja) of Ecuador was analysed. All isolates (= 66) were of the A1 mating type. Simple sequence repeats (SSR) were used to assess the genetic diversity of the isolates. The P. infestans isolates from the potato landraces grouped in a single clade together with reference isolates belonging to the clonal lineage EC‐1. In the 66 SSR profiles obtained, 31 multilocus genotypes were identified. The 66 isolates constituted 49 different races according to the Solanum demissum differential set ( R1 to R11). The P. infestans population was complex and virulent on 4 to 11 R genes. Analysis showed that the subclonal variation in the Ecuadorian EC‐1 clone is increasing over time and is much larger than clonal variation in lineages in the Netherlands and Nicaragua, suggesting high mutation rates and little or no selection in Ecuador.  相似文献   

5.
Big vein disease of lettuce (Lactuca sativa) is an economically important disease transmitted through soil by Olpidium virulentus, and has occurred in most production areas worldwide. The disease is assumed to be caused by Mirafiori lettuce big‐vein virus (MiLBVV). To understand the dynamics of the virus and its vector, MiLBVV and O. virulentus were directly detected in soil. DNA and RNA were extracted from 5 g soil using a bead beating method, followed by purification using adsorption to a column. Detection and quantification were performed using real‐time PCR and a TaqMan probe that was prepared based on the CP region of MiLBVV and the rDNA‐ITS region of O. virulentus, respectively. Furthermore, using a visual assessment of the incidence rate of big vein disease on lettuce in agricultural fields, the Ct values of MiLBVV and O. virulentus from soil were also determined using real‐time PCR. The results showed that MiLBVV concentrations in the soil were high in the field, as also determined by a visual assessment of the incidence rate of big vein disease on lettuce. However, the amount of O. virulentus in soil was not directly correlated with the incidence of MiLBVV. From these results, it is suggested that the risk of lettuce crops developing big vein disease can be estimated using an index of the amount of MiLBVV in the soil.  相似文献   

6.
Pseudocercosporella capsellae (white leaf spot disease) is an important disease on crucifers. Fifty‐four single‐conidial isolates collected from Brassica juncea (Indian mustard), B. napus (oilseed rape), B. rapa (turnip), and Raphanus raphanistrum (wild radish) across Western Australia were investigated for differences in pathogenicity and virulence using cotyledon screening tests, genetic differences using internal transcribed spacer (ITS) sequencing and phylogenetic analysis, and growth rates on potato dextrose, V8 juice and malt extract agars. All isolates from the four crucifer hosts were pathogenic on the three test species: B. juncea, B. napus and R. raphanistrum, but showed differences in levels of virulence. Overall, isolates from B. juncea, B. napus and B. rapa showed greatest virulence on B. juncea, least on R. raphanistrum and intermediate virulence on B. napus. Isolates from R. raphanistrum showed greatest virulence on B. juncea, least on B. napus and intermediate virulence on R. raphanistrum. Growth and production of a purple‐pink pigment indicative of cercosporin was greatest on malt extract agar and cercosporin production on V8 juice agar was positively correlated with virulence of isolates on B. juncea and B. napus. ITS sequencing and phylogenetic analysis showed that isolates collected from B. napus, B. juncea and B. rapa, in general and with few exceptions, had a high degree of genetic similarity. In contrast, isolates from R. raphanistrum were clearly differentiated from isolate groups collected from Brassica hosts. Pseudocercosporella capsellae reference isolates from other countries generally grouped into a single separate cluster, highlighting the genetic distinctiveness of Western Australian isolates.  相似文献   

7.
Two important sources of Capsicum annuum (bell pepper) resistance were evaluated for their response to inoculation with two isolates of Tobacco etch virus strain NW (TEV‐NW, genus Potyvirus). The resistant cultivars were CA4 and Dempsey, which contain the pvr1 and pvr12 resistance genes, respectively. TEV‐NW was maintained by mechanical passage in the susceptible pepper cultivar Early Calwonder and Nicotiana tabacum cv. Kentucky 14. In initial experiments, the TEV‐NW isolate maintained in Early Calwonder infected two of seven CA4 plants; however, none of the CA4 plants inoculated with the TEV‐NW isolate maintained in Kentucky 14 were infected. The infected CA4 plants had low virus titres in non‐inoculated leaves and did not develop visible symptoms. When the infected CA4 plants were used as inoculum of additional CA4 plants, all newly inoculated plants became infected, developed systemic symptoms and accumulated virus in non‐inoculated leaves more quickly than the originally infected CA4 plants. This new NW isolate, referred to as NW‐CA4, was shown to overcome the resistances expressed by both CA4 (pvr1) and Dempsey (pvr12). The potyviral VPg is believed to be the determinant for pvr1 and pvr12 resistance genes, both of which are eIF4E‐encoding genes. The VPg amino acid sequence for NW‐CA4 was determined and compared with that of NW isolates and different TEV strains. No amino acid variation was identified that explained the infectivity of NW‐CA4 in CA4 and Dempsey plants.  相似文献   

8.
Genetic, phenotypic and host range diversity among Pseudomonas savastanoi isolates from Myrtus communis were investigated. Thirty‐one isolates from six Sardinian commercial myrtle orchards and three isolates from plants growing spontaneously on the island of Rhodes (Greece) were compared with reference strains of Psavastanoi from olive, oleander, ash and myrtle. Multilocus sequence analysis (MLSA) indicated the presence of a monomorphic population with a very low level of variability. Conversely, Biolog phenotypic fingerprinting and phytohormone production analyses showed a considerable metabolic diversity, as bacteria obtained from single infected tissue differed more than bacteria obtained from different orchards. When pathogenicity tests were carried out on myrtle plants, different types of symptoms were induced: knots, canker lesions with or without tissue proliferations and, occasionally, wilting of the inoculated twig, a symptom never reported before for Psavastanoi. Comparable symptoms were also observed in the natural environment both on spontaneous and cultivated plants. Moreover, the host range of the myrtle population was heterogeneous and not well defined. Some isolates showed a wide host range whilst others were pathogenic only to their natural host. Overall these findings suggest that the diversity of the Psavastanoi population from myrtle does not depend so much on the locality or the natural host and does not allow the Sardinian and Greek isolates, together with previously characterized myrtle strains, to be ascribed to a known pathovar of Psavastanoi, nor to propose their belonging, as a whole, to a new pathovar.  相似文献   

9.
In 2012, Colletotrichum isolates were collected from field‐grown safflower (Carthamus tinctorius) crops in central Italy from plants exhibiting typical anthracnose symptoms. Colletotrichum isolates were also collected from seed surfaces and from within seeds. The genetic variability of these isolates was assessed by a multilocus sequencing approach and compared with those from Colletotrichum chrysanthemi and Colletotrichum carthami isolates from different geographic areas and other Colletotrichum acutatum sensu lato‐related isolates. Phylogenetic analysis revealed that all of the strains isolated from C. tinctorius belonged to the species described as C. chrysanthemi, whereas all of the strains belonging to C. carthami had been isolated from Calendula officinalis. Phenotypic characterization of isolates was performed by assessing growth rates at different temperatures, morphology of colonies on potato dextrose agar (PDA) and the size of conidia. All C. chrysanthemi isolates from safflower had similar growth rates at different temperatures, comparable colony morphologies when grown on PDA and conidial sizes consistent with previously described C. chrysanthemi isolates. Pathogenicity tests were performed by artificially inoculating both seeds and plants and confirmed the seedborne nature of this pathogen. When inoculated on plants, C. chrysanthemi caused the typical symptoms of anthracnose on leaves. This is the first record of this pathogen on C. tinctorius in Italy, and it presents an updated characterization of Colletotrichum isolates pathogenic to safflowers in Europe.  相似文献   

10.
Bacterial wilt is a serious problem affecting many important food crops. Recent studies have indicated that treatment with biotic or abiotic stress factors may increase the resistance of plants to bacterial infection. This study investigated the effects of magnesium oxide nanoparticles (MgO NP) on disease resistance in tomato plants against Ralstonia solanacearum, as well as its antibacterial activity. The roots of tomato seedlings were inoculated with R. solanacearum and then immediately treated with MgO NP; the treated plants showed very little inhibition of bacterial wilt. In contrast, when roots were drenched with a MgO NP suspension prior to inoculation with the pathogen, the incidence of disease was significantly reduced. Rapid generation of reactive oxygen species such as O2 radicals was observed in tomato roots treated with MgO NP. Further O2 was rapidly generated when tomato plant extracts or polyphenols were added to the MgO NP suspension, suggesting that the generation of O2 in tomato roots might be due to a reaction between MgO NP and polyphenols present in the roots. Salicylic acid‐inducible PR1, jasmonic acid‐inducible LoxA, ethylene‐inducible Osm, and systemic resistance‐related GluA were up‐regulated in both the roots and hypocotyls of tomato plants after treatment of the plant roots with MgO NP. Histochemical analyses showed that β‐1,3‐glucanase and tyloses accumulated in the xylem and apoplast of pith tissues of the hypocotyls after MgO NP treatment. These results indicate that MgO NP induces systemic resistance in tomato plants against R. solanacearum.  相似文献   

11.
Mycosphaerella species that cause the ‘Sigatoka disease complex’ account for significant yield losses in banana and plantain worldwide. Disease surveys were conducted in the humid forest (HF) and derived savanna (DS) agroecological zones from 2004 to 2006 to determine the distribution of the disease and variation among Mycosphaerella species in Nigeria. Disease prevalence and severity were higher in the HF than in the DS zone, but significant (P < 0·001) differences between agroecological zones were only observed for disease severity. A total of 85 isolates of M. fijiensis and 11 isolates of M. eumusae were collected during the survey and used to characterize the pathogenic structure of Mycosphaerella spp. using a putative host differential cultivar set consisting of Calcutta‐4 (resistant), Valery (intermediate) and Agbagba (highly susceptible). Area under disease progress curve (AUDPC) was higher on all cultivars when inoculated with M. eumusae than with M. fijiensis, but significant (P < 0·05) differences between the two species were only observed on Valery. Based on the rank‐sum method, 8·3% of the isolates were classified as highly aggressive and 46·9% were classified as aggressive. About 11·5% of all the isolates were classified as least aggressive, and all of these were M. fijiensis. The majority of M. eumusae isolates (seven out of 11; 64%) were classified as aggressive. A total of nine pathotype clusters were identified using cluster analysis of AUDPC. At least one M. fijiensis isolate was present in all the nine pathotype clusters, while isolates of M. eumusae were present in six of the nine clusters. Isolates in pathotype clusters III and V were the most aggressive, while those in cluster VIII were the least aggressive. Shannon’s index (H) revealed a more diverse Mycosphaerella collection in the DS zone (H = 1·81) than in the HF (H = 1·50) zone, with M. fijiensis being more diverse than M. eumusae. These results describe the current pathotype structure of Mycosphaerella in Nigeria and provide a useful resource that will facilitate screening of newly developed Musa genotypes for resistance against two important leaf spot diseases of banana and plantain.  相似文献   

12.
The root endophytic fungus Piriformospora indica (Sebacinacea) forms mutualistic symbioses with a broad range of host plants, increasing their biomass production and resistance to fungal pathogens. This study evaluated the effect of P. indica on fusarium crown rot disease of wheat, under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium isolates under axenic culture conditions indicated no direct antagonistic activity of P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. indica and pathogenic Fusarium culmorum or F. graminearum and grown in sterilized soil‐free medium or in a non‐sterilized mix of soil and sand. Fusarium alone reduced emergence and led to visible browning and reduced root growth. Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were free of visible symptoms; seed emergence and root biomass were equivalent to the uninoculated. DNA was quantified by real‐time polymerase chain reaction (qPCR). The ratio of FusariumDNA to wheat DNA rose rapidly in the plants inoculated with Fusarium alone; isolates and species were not significantly different. Piriformospora indica inoculation reduced the ratio of Fusarium to host DNA in the root systems. The reduction increased with time. The ratio of P. indica to wheat DNA initially rose but then declined in root systems without Fusarium. With Fusarium, the ratio rose throughout the experiment. The absolute amount of FusariumDNA in root systems increased in the absence of P. indica but was static in plants co‐inoculated with P. indica.  相似文献   

13.
Colletotrichum truncatum (syn. C. capsici) has been identified as the causal agent of anthracnose on various hosts, predominantly pepper (Capsicum spp.) plants. The aim of this study was to determine whether C. truncatum isolates infecting papaya, pepper and physic nut in southeastern Mexico are morphologically, genetically and pathogenically different, in order to improve disease management strategies. A total of 113 C. truncatum isolates collected from five producer states were subjected to phenotypic characterization and divided into six different morphological groups. These morphological traits and the location of the isolates were used to select a subset of 20 isolates for further studies. Differences in the pathogenicity of the isolates were tested with a cross‐inoculation assay using pepper, papaya and physic nut. The pathogenicity tests revealed that all isolates could infect the three hosts and produce typical anthracnose symptoms, indicating a lack of host specificity for this species and therefore its pathogenic potential on other plants. Phylogenetic analysis using internal transcribed spacer (ITS) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) sequences of the C.   truncatum isolates from this study and reference strains was performed, grouping the isolates into a monophyletic clade. This study reports for the first time the characterization of C. truncatum causing anthracnose disease on three different hosts in Mexico.  相似文献   

14.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

15.
X. Li  Y. Liu  L. Cai  H. Zhang  J. Shi  Y. Yuan 《Plant pathology》2017,66(8):1345-1356
Tobacco bacterial wilt caused by Ralstonia solanacearum is a serious disease affecting tobacco cultivation in southwest China. The response surface methodology was employed to evaluate the optimal conditions of tobacco bacterial wilt, and green fluorescent protein gene (gfp) labelling was applied to monitor the location and survival dynamics of R. solanacearum (Rs::gfp) on tobacco roots and in soil under these optimal conditions. The results showed that the highest wilt incidence was 91.13%, which occurred when the population reached 6.6 × 106 CFU/g soil, the temperature was 30.55 °C, and the humidity was >81.42%. The Rs::gfp densely colonized the root tips and root hairs, and cells of Rs::gfp were observed intermittently in the elongation zone or at the point of the emerging lateral roots. The Rs::gfp number in the rhizosphere soil was 10.75‐, 73.13‐ and 74.86‐times higher than that in the bulk soil at 10, 15 and 20 days after transplantation, respectively. Increased colonization by Rs::gfp was related to the population of the pathogen, the environmental temperature and the humidity in the soil. These three conditions determined whether R. solanacearum would induce tobacco wilt. This is the first study to investigate factors affecting the virulence of a tobacco wilt bacterial pathogen, which is important for conducting field diagnosis and biocontrol of tobacco bacterial wilt.  相似文献   

16.
Cherry leaf roll virus (CLRV) isolates from Malus domestica, Ribes rubrum, Rubus idaeus, Rumex obtusifolius and Vaccinium darrowii were characterized based on nucleotide sequences of a 371 bp fragment of the 3′ untranslated region (UTR) of their genomic RNAs, symptoms in the herbaceous hosts, Chenopodium amaranticolor, Chenopodium quinoa, Nicotiana benthamiana, Nicotiana occidentalis and Nicotiana tabacum, and seed transmission in N. occidentalis. The different isolates induced a range of localized and systemic disease symptoms, of varying severity, in the herbaceous hosts. The isolates from M. domestica, R. rubrum, R. obtusifolius and V. darrowii all showed greater than 80% seed transmission in Noccidentalis, but no seed transmission was observed for the R. idaeus isolate. Based on symptoms and seed transmission, the isolates appear to be biologically distinct strains of CLRV. Phylogenetic analysis of the nucleotide sequences from the 3′ UTR, commonly used to detect CLRV, showed that four isolates from M. domestica, R. rubrum, R. idaeus and V. darrowii were almost identical but an isolate from R. obtusifolius exhibited a pairwise nucleotide difference of up to 5·4% when compared to these isolates. There was no obvious correlation between sequence differences and symptomatology.  相似文献   

17.
The soilborne fungi Sclerotinia sclerotiorum, Rhizoctonia solani and the oomycete Pythium ultimum are among the most destructive pathogens for lettuce production. The application of the biocontrol agent Paenibacillus alvei K165 to the transplant soil plug of lettuce resulted in reduced S. sclerotiorum, R. solani and P. ultimum foliar symptoms and incidence compared to untreated controls, despite the suppressive effect of the pathogens on the rhizosphere population of K165. In vitro, K165 inhibited the growth of S. sclerotiorum and R. solani but not P. ultimum. Furthermore, the expression of the pathogenesis‐related (PR) gene PR1, a marker gene of salicylic acid (SA)‐dependent plant defence, and of the Lipoxygenase (LOX) and Ethylene response factor 1 (ERF1) genes, markers of ethylene/jasmonate (ET/JA)‐dependent plant defence was recorded. K165‐treated plants challenged with P. ultimum showed up‐regulation of PR1, whereas challenge with R. solani resulted in up‐regulation of LOX and ERF1, and challenge with S. sclerotiorum resulted in up‐regulation of PR1, LOX and ERF1. This suggests that K165 triggers the SA‐ and the ET/JA‐mediated induced systemic resistance against P. ultimum and R. solani, respectively, while the simultaneous activation of the SA and ET/JA signalling pathways is proposed for S. sclerotiorum.  相似文献   

18.
Growth room experiments were conducted to assess the interaction of soil type, biofungicides, soil compaction and pathotype/host on infection and symptom development caused by Plasmodiophora brassicae, the cause of clubroot on Brassica spp. In two initial experiments, four soil types (peat soil, mineral soil, non‐calcareous sand, soil‐less mix), two biofungicides (Bacillus subtilis, Clonostachys rosea), and two pathotypes (3 and 6, Williams’ differential set) were assessed. Differences in clubroot severity associated with soil type were unexpectedly small and variable. Prestop (C. rosea) was often more effective than Serenade (B. subtilis) at reducing clubroot levels on peat and mineral soils, but less effective than Serenade on sand. Inoculation with pathotype 3 often resulted in a slightly higher mean severity than pathotype 6. The interaction of soil type × biofungicide was similar on both canola (B. napus) and Shanghai pak choy (B. rapa subsp. chinensis), whether the soil was kept saturated or allowed to drain after inoculation. The impact of soil type on biofungicide efficacy might explain, in part, why biofungicides are more effective in one location than another. The observation that clubroot severity in soil‐less mix was affected by compaction led to an investigation of soil bulk density. Severity was higher in soil‐less mix that was more compacted than in the initial experiments, and was lower in peat and mineral soils when soil bulk density was reduced by adding soil‐less mix. In this study, soil bulk density had a larger impact on clubroot than soil type, organic matter or pathotype.  相似文献   

19.
Leaf blotch is a globally important disease of barley crops and other grasses that is caused by at least five host‐specialized species in the fungal genus Rhynchosporium. The pathogen R. commune (specialized to barley, brome‐grass and Italian ryegrass) has long been considered to reproduce only by asexual means, but there has been accumulating evidence for recombination and gene flow from population genetic studies and the detection of complementary MAT1‐1 and MAT1‐2 isolates in a c. 1:1 ratio in the field. Here, it is demonstrated that 28 isolates of the closely related species R. agropyri (on couch‐grass) and R. secalis (on rye and triticale), collected from Europe, were also either of MAT1‐1 or MAT1‐2 genotype and that the distribution of mating types did not deviate significantly from a 1:1 ratio. Evidence is then provided for MAT1‐1‐1 and MAT1‐2‐1 gene expression during mycelial growth for all three species. By contrast, 27 isolates of the more distantly related R. orthosporum (on cocksfoot) and R. lolii (on Italian and perennial ryegrasses) from Europe were exclusively of the MAT1‐1 genotype, and expression of the MAT1‐1‐1 gene could not be detected during mycelial growth. These data suggest that cryptic sexual cycles are more likely to exist for R. commune, R. agropyri and R. secalis than for either R. orthosporum or R. lolii. A phylogenetic analysis of partial MAT1‐1 idiomorph sequences resolved these five species into two distinct groups (R. commune, R. agropyri and Rsecalis versus R. orthosporum and R. lolii) but provided only limited resolution within each group.  相似文献   

20.
Eighty stone fruit nurseries located in different regions of Poland were examined for the presence of crown gall affected plants. The disease was observed in 39 nurseries, and galls were sampled for bacterial isolation. Out of 1213 isolates, 409 were pre‐identified as Agrobacterium/Rhizobium spp. with 23S rDNA‐based multiplex PCR, and out of these, 315 were pathogenic when tested on sunflowers. Sequence analysis of three housekeeping genes (fusA, recA, rpoD) revealed that 366 strains belonged to Rhizobium rhizogenes, 23 to Agrobacterium tumefaciens species complex, and the rest of the strains were allocated to new phylogenetic lineages. Of these, the most numerous was the lineage allocated in the Pararhizobium genus. Positive results obtained from pathogenicity tests were generally in agreement with results obtained by PCR with primers complementary to T‐DNA except for two strains, which were positive for PCR but negative for the pathogenicity test. All detected Ti plasmids were nopaline‐type. Independent of their pathogenicity, 59% of tested strains were not sensitive to agrocin 84 in in vitro tests. Analysis of biochemical and physiological features distinguished 50 groups with different phenotypic profiles, but the tested traits were not consistent for strains classified to one taxon. This finding shows limited value of biochemical tests in identification procedures. The bacteria causing tumours were heterogeneous and strains classified to different taxa were found even in a single tumour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号