首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
开沟播种是一种可显著提高地下滴灌春玉米出苗率的新型播种方式,为了优化该技术模式,该文通过两年田间试验分析了地下滴灌玉米出苗率与灌水后种子处土壤有效饱和度(effective saturation)的关系,并基于HYDRUS-2D构建了地下滴灌开沟播种土壤水分运动模型,以90%玉米出苗率为前提,研究了不同土质和土壤初始含水率条件下3个技术参数——开沟深度、滴灌带埋深和灌水量对种子处土壤有效饱和度的影响.结果表明:1)出苗率随土壤有效饱和度线性递增,土壤有效饱和度不小于0.77时,出苗率超过90%;2)地下滴灌开沟播种HYDRUS-2D模型模拟精度较高,模拟得到的土壤有效饱和度随开沟深度增大而增大,随滴灌带埋深增大而减小;3)满足土壤有效饱和度为0.77所需的出苗水灌水量随土壤黏粒含量、土壤初始含水率和开沟深度增大而减小,随滴灌带埋深增大而增大.当表层土壤初始含水率为40%田持~60%田持时,开沟深度每增加5cm,砂壤土的出苗水灌水量减小15~20mm,粉壤和粉黏土的出苗水灌水量减小6~18mm;滴灌带埋深由30cm增大到35cm时,砂壤土的出苗水灌水量增大16~21mm,粉壤和粉黏土的出苗水灌水量增大4~14mm.不同埋深和开沟深度下,当表层土壤初始含水率由40%田持增大到60%田持时,砂壤土的出苗水灌水量减小9~14mm,粉壤和粉黏土的出苗水灌水量减小9~19mm;4)综合考虑土壤质地、玉米根系分布、机械作业、耗能、耕作深度和土壤水深层渗漏以及土壤初始含水率,玉米地下滴灌适宜的滴灌带埋深为30~35cm,开沟深度为10~15cm,灌水量范围为25~67mm.农业生产者可以根据当地实际情况对以上3个技术参数进行合理配置.  相似文献   

2.
水平微润灌湿润体HYDRUS-2D模拟及其影响因素分析   总被引:7,自引:6,他引:1  
为探索土壤质地、初始含水率、压力水头和埋深对水平微润灌土壤湿润体特性的影响机理,利用试验数据验证了水平微润灌HYDRUS-2 D模拟结果的可靠性,模拟值与实测值非常吻合。在此基础上,模拟研究了3种土壤质地(砂壤土、壤土、粉壤土)以及壤土中不同初始含水率(0.085、0.106、0.130 cm~3/cm~3)、压力水头(0.6、1.2、1.8 m)和埋深(20、30、40 cm)条件下土壤湿润体动态变化规律。结果表明:土壤湿润锋运移距离皆符合垂直向下水平方向垂直向上的规律,湿润体在形状上差异不大,土壤含水率等值线均为近似"同心圆";土壤质地对湿润体特性有显著影响,土壤质地越黏重,湿润锋运移速率越慢,湿润体体积越小,土壤含水率等值线越密集,其"圆心"越靠近微润管,灌水结束时,壤土和砂壤土湿润体体积分别是粉壤土的1.3倍和2.5倍;在确定的土壤质地条件下,初始含水率和压力水头对湿润体特性有较大影响,湿润锋运移距离及湿润体体积均随土壤初始含水率、压力水头的增大而增大,初始含水率为0.106和0.130 cm~3/cm~3的湿润体体积分别是0.085 cm~3/cm~3的1.2倍和1.5倍,压力水头为1.2和1.8 m的湿润体体积分别是0.6 m的1.6倍和2.2倍;微润管埋深对湿润体分布位置有显著影响,埋深较浅时,湿润锋容易到达地表,埋深较深时,土壤湿润体随埋深下移而同步下移。  相似文献   

3.
不同土壤质地和含水率对炭基肥料氮素矿化的影响   总被引:1,自引:2,他引:1  
为了探究土壤特性对炭基肥料氮素矿化的影响,采用室内培养和大田小区试验,分析了炭基肥在不同土壤质地(砂质壤土、粉砂质壤土、黏土)及含水率(80%、60%、40%田间最大持水量)条件下,氮素矿化动态变化特征。结果表明:在室内培养条件下,对于不同土壤质地,炭基肥在砂质壤土条件下矿化势最高,其次为黏土,最低的为粉砂质壤土;对于不同田间持水量,在粉砂质壤土条件下,炭基肥矿化势最高的为80%田间最大持水量(80%SMC),其次为60%SMC,最低的是40%SMC;在砂质壤土和黏土条件下,炭基肥的矿化势均表现为60%SMC>80%SMC>40%SMC。培养状态下粉砂质壤土、砂质壤土、黏土条件下最大氮素有效性分别是34.12%、56.31%、41.14%,而在大田条件下,炭基肥单季氮素最大矿化率在粉砂质壤土、砂质壤土、黏土3种土壤质地下分别是50.61%、32.27%、34.29%。  相似文献   

4.
地下灌竖管灌水器直径压力对土壤水入渗特性的影响   总被引:5,自引:4,他引:1  
研究竖管灌水器地下灌溉条件下,土壤质地、压力水头和竖管直径对土壤水分入渗特性的影响。选用粉质壤土和砂质壤土2种土壤,在0.5、1.0、1.5、2.0、2.5和3.0 m压力水头,以及竖管直径为4、8、12和16 mm条件下,测定5 h内土壤水分累计入渗量,并应用Philip公式对入渗过程进行拟合,计算入渗流量。结果表明,不同土壤质地下,累计入渗量均随压力水头增加而增加,但质地越重,累计入渗量越小,压力水头在入渗初期对累计入渗量影响较大,随入渗时间延长,其影响程度减弱。入渗流量开始较大,逐渐减小,入渗流量趋于稳定的时间过程较长。当压力水头为0.5~3 m,灌水器稳定入渗流量为0.53~1.25 L/h。土壤水分累计入渗量变化随竖管直径增大而减小,逐渐趋于稳定。基于竖管直径构建了累计入渗量估算模型,经验证,模型决定系数大于0.99,表明模型的可行性。研究可为竖管地下灌溉管网系统设计及应用提供参考。  相似文献   

5.
Ploughpans, caused by puddling of soil for rice cultivation for years, are bound to affect soil water balance and the utilization of the stored soil water by dry-land crops. Loosening of the pan by increasing the plough depth is likely to increase utilization of sub-soil water and recharge of the soil profile. The effects of different tillage regimes on infiltration of two Bangladesh soils with ploughpans were studied. Cumulative infiltration rates were increased in both Sonatala and Modhupur soils owing to increase in depth of tillage. Cumulative infiltration and infiltration rates were much higher in the grey floodplain sandy loam soil compared with the red terrace clay loam soil. The cumulative infiltration of Sonatala soil in no-tillage, 7.5, 15.0 and 22.5 cm tillage depth plots were 18.8 cm in 400 min, 31.0 cm in 400 min, 36.3 cm in 300 min and 43.3 cm in 150 min, respectively. The total amount of water entering into Modhupur soil in 400 min was 14.3, 21.0, 35.5, 46.9 and 50.7 cm in no-tillage, 7.5, 12.5, 17.5 and 22.5 cm tillage depth plots, respectively. Results further revealed that although the initial infiltration was higher and different in different tillage treatments, it decreased with time and tended to be more or less similar for all the tillage depths at the end of the study period. This was true for both the soils.  相似文献   

6.
微润灌溉线源入渗湿润体特性试验研究   总被引:8,自引:0,他引:8  
为探明微润灌溉线源入渗水分运移规律,通过室内土箱试验对微润灌溉土壤水分分布进行研究,分析土壤质地和土壤密度对湿润体特性的影响。结果表明:微润灌溉湿润体是以微润带为轴心的柱状体,黏壤土为近似圆柱体,砂土湿润体横剖面为"倒梨"形,黏壤土R:X:H(R为水平运移距离,X为垂直向上运移距离,H为垂直向下运移距离)平均为1.00:0.90:0.99,砂土为1.00:0.81:0.95。湿润锋水平和垂直(向上和向下)运移距离均与灌水时间呈显著的幂函数关系,土壤密度和质地是影响湿润体特性的主要因素;微润带流量小,单位长度流量不超过210 mL/(m.h),可适应土壤含水率变化自动调整,累计入渗量与灌水时间呈线性关系;湿润体内含水率以微润管带为轴心呈同心圆面分布,大部分土壤含水率介于田间持水量的80%~90%之间,微润灌溉均匀度高,达95.62%。因此,微润灌溉技术节水效果显著,适宜旱区作物用水需求。  相似文献   

7.
为揭示不同施肥时机(全过程、前1/2和后1/2入渗水量施肥)下土壤水氮运移转化规律,以砂壤土和黏壤土质地的一维垂直肥液(尿素)入渗试验为基础,重点分析不同施肥时机下土壤水氮分布与再分布过程中的运移转化规律,并量化比较其对土壤中氮素含量的影响。结果表明,施肥时机对土壤累积入渗量和湿润体中水分分布影响微小,但对不同形态氮素运移转化影响显著;砂壤土和黏壤土入渗结束时刻,全过程和后1/2入渗水量施肥时,其尿素态氮、铵态氮(NH4+—N)和硝态氮(NO3-—N)含量均随土层深度增大而减小;前1/2入渗水量施肥时,尿素态氮和NO3-—N含量在湿润体边缘累积,NH4+—N呈先增大后减小趋势,且主要分布在5—25 cm土层;再分布阶段,全过程和后1/2入渗水量施肥时,砂壤土和黏壤土中尿素态氮分别在再分布3天和5天时基本水解完成,同时NH4+—N含量达到峰值,NO3-—N含量再分布10天内未出现下降趋势;前1/2入渗水量施肥时,尿素态氮再分布10天时基本水解完成,NH4+—N含量再分布5~10天达到峰值,NO3-—N含量则呈先增加后减小趋势;后1/2入渗水量和全过程施肥条件下,砂壤土和黏壤土再分布10天时0—40 cm土层中NH4+—N和NO3-—N含量均大于前1/2入渗水量施肥,说明其氮素潜在利用效率高,故推荐畦(沟)灌合理施肥时机为后1/2入渗水量或全过程施肥。研究结果可为农田畦(沟)灌施肥系统的设计和管理提供理论基础和技术支撑。  相似文献   

8.
对沙壤土、黏壤土进行水分入渗试验,确定4种熵方程(E-Horton、E-Kostiakov、E-Philip、E-GreenAmpt)系数并标定了一般方程(Horton、Kostiakov、Philip、Green-Ampt)系数。根据所得到的方程计算相应的入渗率,并与试验观测数据进行比较。结果表明:在沙壤土中,E-Horton、E-Kostiakov、E-Philip方程能较好地反映土壤水分入渗规律,E-Green-Ampt方程高估了土壤水分入渗率。在黏壤土中,4种熵方程拟合效果均较差。与一般方程比较,基于信息熵方法的土壤水分入渗方程更适于沙质土壤,因为该方法不需要标定方程的参数,简便可行,而且较好地反映了参数的物理意义,为优化灌溉提供理论依据。  相似文献   

9.
Abstract

Certain concepts regarding the simultaneous transport of surface ‐salts and water under transient unsaturated flow conditions vere verified for three soils using laboratory soil columns. Treatments included different water application rates (i.e., continuous ponding and controlled rates) and different initial soil water contents. Calcium chloride, spread on the soil surface to simulate a salt‐affected soil or broadcasting of a fertilizer (or other additive), was leached with chloride free water (0.01 N CaSO4). Salt and water profiles were determined by destructive sampling at 2 cm depth intervals at two stages: (i) immediately following infiltration and (ii) after Batching infiltration plus redistribution time.

Immediately following infiltration as well as after matching infiltration and redistribution time, chloride was leached more efficiently and to relatively deeper depths with slower than with faster rates of water application only in sandy and sandy loam soils. The results, thus, show that slower rates of water application nay not increase leaching efficiency over faster rates in heavy‐textured and sodic soils with very poor permeability. Regardless of water application rate, initial soil water content, redistribution time and soil type, salt front (i.e., salt peak) did not coincide with the water front but lagged behind it by a few to several centimetres. That is to say that salt peak did not occur at a depth above which total soil water storage in the profile equalled cumulative infiltration. The higher the initial soil water content, the deeper and more complete was the displacement of chloride during infiltration for a given quantity of water applied at different rates. This trend was not modified during post‐irrigation period in sandy soil, but it was entirely reversed in sandy loam soil.  相似文献   

10.
Data transformations between soil texture schemes   总被引:1,自引:0,他引:1  
Various soil texture schemes are in current use. These differ in the size ranges of their particle fractions. There is a need to establish simple methods to correlate these conventional schemes. Therefore I have defined closed-form exponential and power law functions to fit models to cumulative particle-size distribution data. I have tested the functions for their suitability (i) to represent cumulative particle-size distribution curves and (ii) to transfer data between distributions that differ in the size ranges of the particle fractions. I found that closed-form exponential functions adequately represent the cumulative particle-size distributions of fine-textured soils (clay, silty clay, silty clay loam, clay loam, silt loam and loam texture), whilst closed-form power functions better describe the cumulative particle-size distributions of coarse-textured soils (sand, loamy sand, sandy loam, sandy clay and sandy clay loam texture). The functions defined are found to be suitable to transfer data between different texture schemes. The use of this approach is illustrated by examples of data transformations between three widely used soil texture schemes: ISSS, Katschinski's and USDA.  相似文献   

11.
In Indian Punjab, rice–wheat is a dominant cropping system in four agro‐ecosystems, namely undulating subregion (zone 1), Piedmont alluvial plains (zone 2), central alluvial plains (zone 3), and southwestern alluvial plains (zone 4), varying in rainfall and temperature. Static and temporal variabilities in soil physical and chemical properties prevail because of alluvial parent material, management/tillage operations, and duration of rice–wheat rotation. A detailed survey was undertaken to study the long‐term effect of rice–wheat rotation on soil physical (soil separates, bulk density, modulus of rupture, saturated and unsaturated hydraulic conductivities, soil water content, and suction relations) and chemical (organic carbon, pH, electrical conductivity) properties of different textured soils (sandy clay loam, loam, clay loam, and silty clay loam) in these four zones of Punjab. Soil samples (of 0‐ to 30‐cm depth) from 45 sites were collected during 2006 and were analyzed for physical and chemical properties. The results showed that sand content and pH increased whereas silt and organic carbon decreased significantly from zones 1 to 4. Compared to other textures, significantly greater organic carbon, modulus of rupture, and pH in silty clay loam; greater bulk density in clay loam, and greater saturated hydraulic conductivity in sandy clay loam were observed. Irrespective of zone and soil texture, in the subsurface soil, there was a hard pan at 15–22.5 cm deep, which had high soil bulk density, modulus of rupture, more silt and clay contents (by 3–5%) and less organic carbon and hydraulic conductivity than the surface (0–15 cm) layer. These properties deteriorated with fineness of the soil texture and less organic carbon content. Continuous rice–wheat cropping had a deleterious effect on many soil properties. Many of these soils would benefit from the addition of organic matter, and crop yields may also be affected by the distinct hardpan that exists between 15 and 22.5 cm deep.  相似文献   

12.
肥液浓度对不同形态氮素在土壤中运移转化特性的影响   总被引:1,自引:1,他引:0  
为揭示肥液(尿素)浓度影响下土壤湿润体中不同形态氮素的运移转化规律,选取黏壤土和砂壤土作为肥液入渗试验供试土壤,量化分析肥液浓度对土壤累积入渗量和不同形态氮素在分布和再分布过程中运移转化特性的影响。结果表明:相同入渗时间内土壤累积入渗量随肥液浓度的增大而增加,Kostiakov公式的入渗系数与肥液浓度呈现线性关系,建立并验证了考虑肥液浓度影响的土壤累积入渗量估算公式,模拟值与实测值具有较高的一致性,两者间的相对误差绝对值均值均8.0%;入渗结束时,土壤湿润体相同位置处的尿素态氮、铵态氮(NH_4~+-N)和硝态氮(NO_3~--N)含量均随肥液浓度的增大而增加;NH_4~+-N主要分布在土壤湿润体深度20 cm以上,尿素态氮和NO_3~--N含量随着湿润体深度的增大呈现下降趋势;再分布过程中,土壤湿润体中尿素态氮含量随再分布时间的增加整体呈现减小趋势,且黏壤土和砂壤土湿润体中的尿素态氮分别在再分布5,3天时基本水解完成;NH_4~+-N含量呈现先增加后减小的趋势,黏壤土湿润体中的峰值约出现在再分布3~5天,而砂壤土约在再分布3天;黏壤土湿润体中NO_3~--N含量呈现先增加后减小的趋势,其峰值约在5~10天,而砂壤土中NO_3~--N含量在再分布10天时,始终保持在较高水平。研究结果为农田灌溉施肥系统的设计和管理提供理论基础和技术支撑。  相似文献   

13.
This study assessed the impact of compost on the hydraulic properties of three soils (sandy loam, clay loam and diesel‐contaminated sandy loam) with relatively poor physical quality typical of brownfield sites. Soils were amended with two composts at 750 t/ha. Samples were also collected from a clay‐capped brownfield site, previously amended with 250, 500 or 750 t/ha of compost. Water‐release characteristics and saturated hydraulic conductivity were determined for all soils and physical quality indicators derived. Unsaturated flow in field profiles after compost application with two depths of incorporation and two indigenous subsoils was simulated using Hydrus‐1D. Compost generally increased water retention. Hydraulic conductivity tended to decrease following compost application in sandy loam but increased in clay and clay loam, where compost addition resulted in a larger dominant pore size. Although compost improved physical quality indicators, they remained suboptimum in clay and clay loam soil, which exhibited poor aeration, and in the contaminated sandy loam, where available water capacity was limited, possibly due to changes in wettability. Increasing application rates in the field enhanced water retention at low potentials and hydraulic conductivity near saturation but did not alter physical quality indicators. Numerical simulation indicated that the 500 t/ha application resulted in the best soil moisture regime. Increasing the depth of incorporation in the clay cap improved drainage and reduced waterlogging, but incorporation in more permeable subsoil resulted in prolonged dry conditions to greater depths.  相似文献   

14.
三深度土壤水分传感器的研制及试验   总被引:5,自引:4,他引:1  
针对当前植物根区不同深度下土壤含水量测量存在的传感器安装困难、对原位土壤扰动大以及传感器间一致性差等问题,该文基于阻抗法设计了一种三深度土壤水分传感器。该传感器不仅可以同时测量3个不同深度的土壤含水量,并且在安装时对原位土壤扰动极小。试验标定结果显示,该传感器具有较高的精度,所测的土壤含水量与烘干法所得的实际含水量非常吻合,决定系数R2和均方根误差(RMSE,root mean square error)分别达到0.996和0.013 cm3/cm3;传感器可适用于多种不同质地的土壤,在3种不同质地土壤中的输出灵敏度均大于1V/(cm3/cm3)。传感器的输出与土壤体积含水量呈现良好的线性关系,对黏土、砂土及壤土的决定系数R2分别达到0.983、0.965和0.975;土壤水分入渗试验结果进一步表明,该传感器性能良好,3个不同深度的传感器电极具有较高的一致性,在壤土和砂土样本中3个深度传感器电极的输出,相对误差分别小于2%和5%。  相似文献   

15.
Soil tilth has been defined in terms of a ‘Physical Index’ based on the product of the ratings of eight physical properties — soil depth, bulk density, available water storage capacity, cumulative infiltration or apparent hydraulic conductivity, aggregation or organic matter, non-capillary pore space, water table depth and slope. The Physical Index and a tillage guide were used to identify the tillage requirements of different soils varying in texture from loamy sand to clay in the semi-arid tropics. The physical index was 0.389 for a loamy sand, 0.518 for a black clay loam and 0.540 for a red sandy loam soil and the cumulative rating indices in summer and winter seasons were 45 and 44 for loamy sand, 52 and 51 for red sandy loam and 54 and 52 for black clay loam soils, respectively. The compaction of the loamy sand by eight passes of a 490 kg tractor-driven roller (0.75 m diameter and 1.00 m length) increased the physical index to 0.658 and chiselling of the red sandy loam and black clay loam increased the physical indices to 0.686 and 0.729, respectively. The grain yields of rainfed pearl millet and guar and irrigated pearl millet, wheat and barley increased significantly over the control (no compaction) yields by compaction.

The chiselling of the soils varying in texture from loamy sand to clay at 50 to 120-cm intervals up to 30–40 cm depth, depending upon the row spacing of seedlines and depth of the high mechanical impedance layer, increased the grain yields of rainfed and irrigated maize on alluvial loamy sand, rainfed maize on alluvial sandy loam and red sandy loam, rainfed sorghum on red sandy loam and black clay loam, irrigated sorghum on black clay loam and rainfed black gram on red sandy loam, pod yield of rainfed groundnut, tuber yield of irrigated tapioca and fresh fruit yield of rainfed tomato on red sandy loam and sugarcane yield on black clay soil, significantly over the yields of no-chiselling systems of tillage such as disc harrow and country plough.  相似文献   


16.

Purpose

Understanding organic carbon mineralization and its temperature response in subtropical paddy soils is important for the regional carbon balance. There is a growing interest in factors controlling soil organic carbon (SOC) mineralization because of the potential for climate change. This study aims to test the hypothesis that soil clay content impedes SOC mineralization in subtropical paddy soils.

Materials and methods

A 160-day laboratory incubation at temperatures from 10 to 30 °C and 90% water content was conducted to examine the dynamics of SOC mineralization and its temperature response in three subtropical paddy soils with different clay contents (sandy loam, clay loam, and silty clay soils). A three-pool SOC model (active, slow, and resistant) was used to fit SOC mineralization.

Results and discussion

Total CO2 evolved during incubation following the order of clay loam > silty clay > sandy loam. The temperature response coefficients (Q 10) were 1.92?±?0.39, 2.36?±?0.22, and 2.10?±?0.70, respectively, for the sandy loam soil, clay loam soil, and silty clay soil. But the soil clay content followed the order of silty clay > clay loam > sandy loam. The sandy loam soil neither released larger amounts of CO2 nor showed higher temperature sensitivity, as expected, even though it contains lower soil clay content among the three soils. It seems that soil clay content did not have a dominant effect which results in the difference in SOC mineralization and its temperature response in the selected three paddy soils. However, dissolved organic carbon (DOC; representing substrate availability) had a great effect. The size of the active C pool ranged from 0.11 to 3.55% of initial SOC, and it increased with increasing temperature. The silty clay soil had the smallest active C pool (1.40%) and the largest Q 10 value (6.33) in the active C pool as compared with the other two soils. The mineralizable SOC protected in the silty clay soil, therefore, had even greater temperature sensitivity than the other two soils that had less SOC stabilization.

Conclusions

Our study suggests that SOC mineralization and its temperature response in subtropical paddy soils were probably not dominantly controlled by soil clay content, but the substrate availability (represented as DOC) and the specific stabilization mechanisms of SOC may have great effects.  相似文献   

17.
浑水土壤入渗具有复杂的上边界变化过程,其上边界导水能力的变化规律是研究浑水土壤入渗特性的重要基础。为研究浑水入渗形成致密层过程中导水率的变化情况,该研究进行了17组(9组正交试验处理,8组用于模型验证)浑水饱和土柱入渗试验,通过对试验结果进行多元回归构建多因素(浑水含沙率、黏粒含量及入渗时间)影响下砂土导水率动态模型;并结合浑水饱和土柱入渗特性进行合理假设,分别建立浑水砂壤土和粉壤土饱和土柱导水率动态模型并进行验证。结果表明:浑水含沙率、黏粒含量及入渗时间对砂土导水率影响极显著(P<0.01),入渗时间为砂土影响导水率变化的主要因素,其次为含沙率和黏粒含量;建立的砂土导水率动态模型决定系数为0.853,均方根误差为0.004 cm/min,表明该模型可客观反映各因素与导水率之间的关系;模型验证试验结果中均方根误差小于0.01 cm/min,相对误差绝对值均值小于7%,说明该导水率动态模型可靠性较高;砂壤土和粉壤土导水率动态模型决定系数分别为0.912和0.930,均方根误差分别为2×10-3和5×10-5 cm/min;模型验证中均方根...  相似文献   

18.
负压灌溉法是一种新近提出的节水灌溉技术,灌溉时供水水头为“负值”,即灌溉水源高程低于灌水器高程。不同材料灌水器和土壤质地是影响灌溉系统出水流量及土壤水运移的重要因素。该文研究了在高程差H为-0.5 m情况下两种灌水器及两种质地土壤对两者的影响。结果表明:灌水器相同时,累计入渗量、水平和垂直最大湿润距离随时间呈幂函数关系变化;在历时相同时黏壤土较砂壤土大;湿润体近似为六分之一的竖直椭球体,但黏壤土水平与垂直最大湿润距离之比大于砂壤土。土壤质地相同时,纤维灌水器较陶土灌水器出水流量高。试验结果进一步证明了负压灌溉的可行性,并为确定负压灌溉系统应用范围及规划设计过程中灌水器选择提供了依据。  相似文献   

19.
This experiment compared the effectiveness of the nitrification inhibitor dicyandiamide (DCD) in decreasing NO3‐N leaching from dairy cow urine (1000 kg N/ha equivalent). DCD was applied to perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) on three soil types (silt loam, sandy loam and clay) and under two precipitation regimes using intact soil monolith zero tension lysimeters (50 cm diameter by 65 cm deep). Over the two experiment years, annual precipitation (rainfall plus supplemented irrigation) covered the range 1103 to 2351 mm. Soil type affected the forms of N that leached after urine application. Most urea was lost from the clay soil in the first drainage collections after application. Ammonium‐N leached from the sandy soil. Apart from one soil type (sandy loam) giving a nil response to DCD in 1 yr, there was no strong evidence that soil type changed DCD effectiveness (the amount of NO3‐N retained, expressed as a percentage of the NO3‐N leached from untreated urine). Where DCD decreased leaching, effectiveness ranged between 6 and 57% with a mean value of 34 ± 5%. Drainage depth explained 50% of the variation in DCD effectiveness (P < 0.05) and indicated a 7% decrease per 100 mm extra drainage. Extra pasture growth and N uptake were strongly related to the amount of N saved by DCD application. We conclude that there may be scope to use rainfall/drainage as an estimate of likely DCD effectiveness at a site, but further work is required to test this across a wider range of circumstances.  相似文献   

20.
ABSTRACT

Long-term irrigation with untreated industrial sewage effluents causes accumulation of high concentrations of chromium (Cr) and other heavy metals in soil and subsequently in crop plants (especially leafy vegetables), which can be phytotoxic to plants and/or a health hazard to animals and humans. Greenhouse experiments were conducted to determine the effects of Cr application on the growth of spinach (Spinacia oleracia L.) and to develop critical toxic ranges of Cr in plants and in soil. The study involved growing of spinach variety ‘Punjab Green’ in a greenhouse on silty clay loam and sandy soils equilibrated with different levels of applied Cr (0, 1.25, 2.5, 5, 10, 20, 40, 80, 160, and 320 mg Cr kg? 1 soil). Plants were harvested at: three growth stages 45, 60, and 90 days after sowing (DAS). Critical toxic ranges were estimated by regressing and plotting data on ammoniumbicarbonate-diethylenetriaminepenta-acetic acid (AB-DTPA) extractable Cr in soil or Cr concentration in plants versus dry-matter yield (DMY) of spinach at the three growth stages. Toxic ranges, i.e., slightly toxic (80%–90%), moderately toxic (70%–80%), and extremely toxic (< 70%) in terms of DMY relative to the attainable maximum DMY, were established for both soils and for plants at all three growth stages. There was no germination of spinach with applied Cr at 320 mg Cr kg? 1 rate in silty clay loam soil and at 40 mg Cr kg? 1 rate in sandy soil due to Cr toxicity. Roots accumulated more Cr in comparison with shoots. Chromium concentrations of 0.47–1.93 mg Cr kg? 1 soil in silty clay loam soil, 0.13–0.94 mg Cr kg? 1 soil in sandy soil, 1.08–5.40 mg Cr kg? 1 plant DM in silty clay loam soil and 0.54–11.7 mg Cr kg? 1 plant DM in sandy soil were found to be toxic. The critical toxicity ranges of Cr thus established in this study could help in demarcating Cr toxicity in soils and in plants such as spinach and other leafy vegetables due to irrigation of soils with untreated sewage water contaminated with chromium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号