首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability to produce indole-3-acetic acid (IAA) through the indole-3-acetamide (IAM) pathway as well as cytokinins is a common trait of Pseudomonas savastanoi populations causing disease on oleander and olive. These phytohormones are required for the induction and development of an outgrowth of plant cell tissue termed a knot. However, in myrtle orchards of Sardinia (Italy), strains of P. savastanoi unable to produce cytokinins were found coexisting with cytokinin-producing strains. Data presented here show that the ability to produce IAA through the IAM pathway is also a variable trait within this population, raising questions on the exact role of these plant growth substances in the disease process on myrtle. Three P. savastanoi strains were selected based on their differential ability to produce phytohormones in vitro, and their interaction with the host was investigated over a period of 8 months using histological methods. All strains successfully invaded the infected twigs, moving systemically (unhalted by host defences) upward and downward from the inoculation point, both by completely degrading the cell walls and by taking advantage of the xylem vessels and intercellular spaces. Moreover, all strains induced the development of cankers, which slowly evolved into typical knots only on the twigs inoculated with the phytohormone-producing strains. This study further demonstrates that cytokinins and IAA are essential for knot development; moreover, it ascertains that bacterial production of cytokinins is not necessary for host colonization and for the expression of pathogenicity (i.e. the ability to cause disease) of P. savastanoi on myrtle.  相似文献   

2.
Phytophthora austrocedrae is a recently discovered pathogen that causes severe mortality of Austrocedrus chilensis in Patagonia. The high level of susceptibility of the host tree, together with the distribution pattern of the pathogen, have led to the hypothesis that P. austrocedrae was introduced into Argentina. The aim of this study was to assess the population structure of Paustrocedrae isolates from Argentina in order to gain an understanding of the origin and spread of the pathogen. Genetic diversity was determined based on amplified fragment length polymorphisms (AFLPs). In total, 48 isolates of Paustrocedrae were obtained from infected A. chilensis trees, representing the geographical range of the host. Four primer combinations were used for the AFLP analysis. Of the 332 scored bands, 12% were polymorphic. Gene diversity (h) ranged from 0·01 to 0·03; the Shannon index (I) ranged from 0·01 to 0·04. A high degree of genetic similarity was observed among the isolates (pairwise S values = 0·958–1; 0·993 ± 0·009, mean ± SD). A frequency histogram showed that most of the isolate pairs were identical. Principal coordinate analysis using three‐dimensional plots did not group any of the isolates based on their geographical origin. The low genetic diversity (within and between sites) and absence of population structure linked to geographic origin, together with the aggressiveness of the pathogen and the disease progression pattern, suggest that Paustrocedrae might have been introduced into Argentina.  相似文献   

3.
Signs and symptoms of a disease similar to those of armillaria root rot have recently been observed on various native woody plants on the foothills of Table Mountain in South Africa, one of the most botanically diverse natural environments globally. This is of concern because the root rot fungus Armillaria mellea has previously been shown to be an alien pathogen of European origin in planted gardens in the City of Cape Town. An aim of this study was to identify the cause of the root rot disease on infected plants. Based on DNA‐sequence phylogeny, it was shown that isolates collected from at least 16 native tree and woody shrub species represented the non‐native A. mellea. Microsatellite markers were then used to determine the genetic diversity and population structure of the A. mellea isolates from Table Mountain and two planted gardens where the pathogen has previously been found. Population genetic analyses revealed low levels of gene diversity and no population differentiation amongst the three populations. The results provide the first firm evidence that A. mellea has escaped the planted environment and invaded a sensitive and ecologically important natural woody environment in South Africa. This is only the second definitive case of a non‐native tree pathogen invading a natural ecosystem in the country.  相似文献   

4.
Tomato yellow leaf curl disease is one of the most devastating viral diseases affecting tomato crops worldwide. This disease is caused by several begomoviruses (genus Begomovirus, family Geminiviridae), such as Tomato yellow leaf curl virus (TYLCV), that are transmitted in nature by the whitefly vector Bemisia tabaci. An efficient control of this vector‐transmitted disease requires a thorough knowledge of the plant–virus–vector triple interaction. The possibility of using Arabidopsis thaliana as an experimental host would provide the opportunity to use a wide variety of genetic resources and tools to understand interactions that are not feasible in agronomically important hosts. In this study, it is demonstrated that isolates of two strains (Israel, IL and Mild, Mld) of TYLCV can replicate and systemically infect A. thaliana ecotype Columbia plants either by Agrobacterium tumefaciens‐mediated inoculation or through the natural vector Bemisia tabaci. The virus can also be acquired from A. thaliana‐infected plants by B. tabaci and transmitted to either A. thaliana or tomato plants. Therefore, A. thaliana is a suitable host for TYLCV–insect vector–plant host interaction studies. Interestingly, an isolate of the Spain (ES) strain of a related begomovirus, Tomato yellow leaf curl Sardinia virus (TYLCSV‐ES), is unable to infect this ecotype of A. thaliana efficiently. Using infectious chimeric viral clones between TYLCV‐Mld and TYLCSV‐ES, candidate viral factors involved in an efficient infection of A. thaliana were identified.  相似文献   

5.
Coffee leaf rust is the most limiting disease for coffee cultivation in Brazil. Despite its importance, relatively little is known about the genetic diversity of Hemileia vastatrix, the rust causal agent. In this work, the DNA from 112 monopustule isolates from different geographic locations and coffee genotypes were analysed by amplified fragment length polymorphisms (AFLP). The objectives were to assess the influence of the host and geographic origin on the diversity and population differentiation in H. vastatrix. The fungal population showed a low level of genotypic diversity. Gene diversity (h) was 0·027 and the hypothesis of random mating in the total population was rejected, but evidence for recombination was found for two subpopulations (São Paulo and Paraná). The analysis of molecular variance revealed that 90% of the genetic distribution of the pathogen occurs among isolates within the subpopulation (states or host of origin). There was no correlation between geographic and genetic distance (= ?0·024, = 0·74), which together with the high number of migrants and the low degree of differentiation in populations of Hvastatrix, is consistent with the fact that the inoculum is probably easily dispersed by wind over long distances, allowing dispersal of the pathogen among coffee growing areas in Brazil. Therefore, it is difficult to predict the durability of resistant sources to coffee rust. The recommendation for the breeding programmes is thus to incorporate multigenic resistance as a control strategy.  相似文献   

6.
Botrytis cinerea isolates from pear blossoms (Pyrus communis) in South Africa were collected from four orchards in two production areas in the Western Cape. The cryptic species status based on vegetative‐incompatibility alleles of the Bc‐hch gene indicated that all the isolates belonged to B. cinerea. A microsatellite analysis of B. cinerea populations was performed to assess the genetic population structure. Total gene diversity (H) was high, with a mean of 0.69 across all populations. Some genotype flow was evident between orchards as indicated by the spread of microsatellite multilocus genotypes, in agreement with the moderate, but significant population differentiation among orchards (mean φPT = 0.118, = 0.001). Index of association analyses (IA and r?d) suggest that the populations reproduce mostly asexually, even though mating type distribution did not differ significantly from a 1:1 ratio, suggesting frequency‐dependent selection. Isolates resistant to benomyl were evident in one orchard only. This orchard was also significantly differentiated from all other populations, suggesting infrequent localized selection for benomyl resistance. Overall, the findings of this study highlight the dangers of a mixed reproduction system, and stress the importance of regularly monitoring fungicide resistance levels towards developing more efficient management practices.  相似文献   

7.
Stripe rust of wheat caused by Puccinia striiformis f. sp. tritici has recently become a production problem on wheat in Alberta, Canada, and stripe rust of barley caused by Pstriiformis f. sp. hordei occurs regularly. A total of 261 isolates of Pstriiformis were collected from wheat, barley, Hordeum jubatum and triticale plants in Alberta, Canada from 2007 to 2012, and compared to isolates from other provinces and the USA. The genetic diversity of the pathogen was assessed using 11 simple sequence repeat (SSR) markers and by examining a length polymorphism in the ribosomal DNA (rDNA) intergenic spacer 1 (IGS1) region. A total of 28 SSR genotypes were detected within Alberta. The 13 genotypes common on wheat (Pstriiformis f. sp. tritici) were distinct from the 15 genotypes common on barley (Pstriiformis f. sp. hordei). Four SSR genotypes, two within each forma specialis, represented 85% of the isolates recovered. Genotypic diversity was low, population genetic analysis indicated a clonal structure, and the genotypes were widely dispersed. In both formae speciales, the dominant genotype varied between years. The second most common Pstriiformis f. sp. hordei genotype was found to be more closely related to older Pstriiformis f. sp. tritici genotypes from the USA than to other Pstriiformis f. sp. hordei genotypes.  相似文献   

8.
An important constraint for crop production in Colombia is the high incidence of anthracnose caused by Colletotrichum species. Although several studies have focused on these fungi, the relationship between the different fungal species within the genus and their hosts and whether they display any host preference or host specificity has yet to be examined. In Colombia, diseases caused by Colletotrichum species are particularly severe in mango (Mangifera indica) and tree tomato (Solanum betaceum) crops. In a previous investigation, the Colletotrichum phylogenetic species attacking these crops were identified. The present study aimed to determine whether isolates collected from tree tomato and mango showed host preference or host specificity by assessing aggressiveness, spore density, latent period, and fitness of each strain on the two hosts. In the departments of Cundinamarca and Tolima, Colombia, isolates were collected from plants that presented typical anthracnose symptoms and were identified as C. acutatum, C. asianum, C. boninense, C. gloeosporioides, C. tamarilloi and C. theobromicola. Inoculation of conidia of each isolate onto both hosts showed isolates had no host preference and only the C. gloeosporioides isolate showed host specificity. However, in general, isolates produced a higher spore density when inoculated on the alternate host, which may indicate a difference in the degree of adaptation to each host. Statistical analyses of the assessed parameter values revealed that isolates use different infection strategies when infecting each host. In light of these results, the implications of using quantitative estimations of fitness when studying fungal pathogens are discussed.  相似文献   

9.
The fungal genus Alternaria comprises a large number of asexual taxa with diverse ecological, morphological and biological modes ranging from saprophytes to plant pathogens. Understanding the speciation processes affecting asexual fungi is important for estimating biological diversity, which in turn affects plant disease management and quarantine enforcement. This study included 106 isolates of Alternaria representing five phylogenetically defined clades in two sister sub‐generic groups: section Porri (A. dauci, A. solani and A. limicola) and section Alternaria (A. alternata/tenuissima and A. arborescens). Species in section Porri are host‐specific while species in section Alternaria have wider host ranges. For each isolate, DNA sequences of three genes (Alt a1, ATPase, Calmodulin) were used to estimate phylogenies at the population and species levels. Three multilocus haplotypes were distinguished among A. dauci isolates and only one haplotype among A. solani and A. limicola isolates, revealing low or no differentiation within each taxon and strong clonal structure for taxa in this section. In contrast, 37 multilocus haplotypes were found among A. alternata/tenuissima isolates and 21 multilocus haplotypes among A. arborescens isolates, revealing much higher genotypic diversity and multiple clonal lineages within taxa, which is not typical of asexual reproducing lineages. A species tree was inferred using a Yule Speciation model and a strict molecular clock assumption. Species boundaries were well defined within section Porri. However, species boundaries within section Alternaria were only partially resolved with no well‐defined species boundaries, possibly due to incomplete lineage sorting. Significant association with host specificity seems a driving force for speciation.  相似文献   

10.
Species‐ and population‐specific differences in fungicide resistance and aggressiveness within Botrytis makes basic data on genetic diversity important for understanding disease caused by this fungus. Genetic diversity of Botrytis was surveyed between 2008 and 2012 from grapes from five New Zealand wine‐growing regions. A total of 1226 isolates were gathered from symptomless flower buds at the start of the growing season and 1331 isolates from diseased fruit at harvest. Two species were found, B. cinerea and B. pseudocinerea. Botrytis pseudocinerea was common in both Auckland vineyards sampled, and infrequent elsewhere. However, even in Auckland, it was rarely isolated from diseased fruit. The presence of the Boty and Flipper transposons was assessed. Isolates with all four transposon states (Boty only, Flipper only, both Boty and Flipper, no transposons) were found for both species. Both vineyards in the Auckland region had high numbers of Flipper‐only isolates at flowering; both vineyards from the Waipara region had high numbers of Boty‐only isolates at flowering. Most isolates from diseased fruit at harvest contained both transposons. These observations suggest that B. pseudocinerea, and isolates with one or both of the transposons missing, may be less aggressive than B. cinerea, or than isolates with both transposons present. Two clades were resolved within B. pseudocinerea, only one of which has been reported from European vineyards. Phylogenetic diversity within B. cinerea in New Zealand was similar to that known from Europe, including isolates that appear to match Botrytis ‘Group S’. The taxonomic implications of this genetic diversity are discussed.  相似文献   

11.
Exserohilum turcicum is the causal agent of northern leaf blight, a devastating foliar disease of maize and sorghum. Specificity of Eturcicum to either maize or sorghum has been observed previously, but molecular evidence supporting host specialization is lacking. The aim of this study was to compare the genetic structure of Eturcicum isolates collected from adjacent maize and sorghum fields in Delmas and Greytown in South Africa. In addition, the mode of reproduction of this pathogen was investigated. Isolates from maize (N = 62) and sorghum (N = 64) were screened with 12 microsatellite markers as well as a multiplex mating type PCR assay. No shared haplotypes were observed between isolates from different hosts, although shared haplotypes were detected between isolates from maize from Delmas and Greytown. Population structure and principal coordinate analyses revealed genetic differentiation between Eturcicum isolates from maize and sorghum. Analysis of molecular variance indicated higher among‐population variation when comparing populations from different hosts, than comparing populations from different locations. Lack of shared haplotypes, high proportion of private alleles, greater among‐population variance between hosts than locations and significant pairwise population differentiation indicates genetic separation between isolates from maize and sorghum. The high haplotypic diversity in combination with unequal mating type ratios and significant linkage equilibrium indicates that both sexual and asexual reproduction contributes to the population genetic structure of Eturcicum in South Africa.  相似文献   

12.
Cherry leaf roll virus (CLRV) isolates from Malus domestica, Ribes rubrum, Rubus idaeus, Rumex obtusifolius and Vaccinium darrowii were characterized based on nucleotide sequences of a 371 bp fragment of the 3′ untranslated region (UTR) of their genomic RNAs, symptoms in the herbaceous hosts, Chenopodium amaranticolor, Chenopodium quinoa, Nicotiana benthamiana, Nicotiana occidentalis and Nicotiana tabacum, and seed transmission in N. occidentalis. The different isolates induced a range of localized and systemic disease symptoms, of varying severity, in the herbaceous hosts. The isolates from M. domestica, R. rubrum, R. obtusifolius and V. darrowii all showed greater than 80% seed transmission in Noccidentalis, but no seed transmission was observed for the R. idaeus isolate. Based on symptoms and seed transmission, the isolates appear to be biologically distinct strains of CLRV. Phylogenetic analysis of the nucleotide sequences from the 3′ UTR, commonly used to detect CLRV, showed that four isolates from M. domestica, R. rubrum, R. idaeus and V. darrowii were almost identical but an isolate from R. obtusifolius exhibited a pairwise nucleotide difference of up to 5·4% when compared to these isolates. There was no obvious correlation between sequence differences and symptomatology.  相似文献   

13.
Pseudomonas savastanoi pv. savastanoi (Psav) is a member of P. syringae sensu lato, and causes olive knot disease, a disease first reported over 2000 years ago. Analysing 124 isolates of Psav from 15 countries by rep‐PCR, the population genetic structure of Psav was investigated. A total of 113 distinct fingerprints were detected. Cluster analysis revealed the existence of two clusters and four subclusters. These clusters were associated with the geographic origin of isolates, which in turn correspond to historic human migration events and trade routes across the Mediterranean Sea. In contrast, multilocus sequence typing (MLST) of 2788 bp of the gapA, gltA, gyrB and rpoD genes found only one variable site among 77 representative isolates. Virulence variation was observed within the Psav population, with the most virulent strains generating knots that had a weight that was 10‐fold greater than those generated by the least virulent strains. Taken together, these data suggest that today's Psav population is the result of clonal expansion of a single strain, that moderate migration of the pathogen occurred between countries, and that changes in virulence arose during its evolution.  相似文献   

14.
In 2012, Colletotrichum isolates were collected from field‐grown safflower (Carthamus tinctorius) crops in central Italy from plants exhibiting typical anthracnose symptoms. Colletotrichum isolates were also collected from seed surfaces and from within seeds. The genetic variability of these isolates was assessed by a multilocus sequencing approach and compared with those from Colletotrichum chrysanthemi and Colletotrichum carthami isolates from different geographic areas and other Colletotrichum acutatum sensu lato‐related isolates. Phylogenetic analysis revealed that all of the strains isolated from C. tinctorius belonged to the species described as C. chrysanthemi, whereas all of the strains belonging to C. carthami had been isolated from Calendula officinalis. Phenotypic characterization of isolates was performed by assessing growth rates at different temperatures, morphology of colonies on potato dextrose agar (PDA) and the size of conidia. All C. chrysanthemi isolates from safflower had similar growth rates at different temperatures, comparable colony morphologies when grown on PDA and conidial sizes consistent with previously described C. chrysanthemi isolates. Pathogenicity tests were performed by artificially inoculating both seeds and plants and confirmed the seedborne nature of this pathogen. When inoculated on plants, C. chrysanthemi caused the typical symptoms of anthracnose on leaves. This is the first record of this pathogen on C. tinctorius in Italy, and it presents an updated characterization of Colletotrichum isolates pathogenic to safflowers in Europe.  相似文献   

15.
Pineapple heart rot disease, caused by Phytophthora nicotianae (syn. P. parasitica), is responsible for significant annual reductions in crop yield due to plant mortality. In Ecuador, new infections arise during the rainy season and increase production costs due to the need for biocontrol and fungicide applications. Studies of P. nicotianae population structure suggest that certain genetic groups are associated with host genera; however, it is not clear how many host‐specific lineages of the pathogen exist or how they are related. The objectives of this study were to determine the level of genetic variation in the P. nicotianae population causing heart rot disease of pineapple in Ecuador and compare the genotypes found on pineapple to those previously reported from citrus, tobacco and ornamentals. Thirty P. nicotianae isolates collected from infected pineapple leaves from four farms were genotyped using nine simple sequence repeat loci. In addition, the DNA sequences of mitochondrial loci cox2 + spacer and trnG‐rns were analysed. Together, these loci supported a single clonal lineage with two multilocus genotypes differing in a single allele and low mitochondrial diversity. This lineage was distinct but closely related to isolates collected from vegetables and ornamentals in Italy. The results support the hypothesis of host specialization of P. nicotianae in intensive cropping systems and contribute to the understanding of population structure of this important pathogen.  相似文献   

16.
South Africa holds the greatest diversity of Encephalartos species globally. In recent years several reports have been received of Encephalartos species in the country dying of unknown causes. The aim of this study was to investigate the presence of, and identify the causal agents of, diseases of Encephalartos species in the Gauteng and Limpopo Provinces of South Africa. Plant material with symptoms and insects were collected from diseased plants in private gardens, commercial nurseries and conservation areas in these regions. Insects collected were identified based on morphology, and microbial isolates based on morphology and DNA sequence data. Insect species identified infesting cultivated cycads included the beetle Amorphocerus talpa, and the scale insects Aonidiella aurantii, Aspidiotus capensis, Chrysomphalus aonidum, Lindingaspis rossi, Pseudaulacaspis cockerelli, Pseudaulacaspis pentagona and Pseudococcus longispinus. Fungal species isolated from diseased plants included species of Diaporthe, Epicoccum, Fusarium, Lasiodiplodia, Neofusicoccum, Peyronellaea, Phoma, Pseudocercospora and Toxicocladosporium. The plant pathogen Phytophthora cinnamomi was identified from E. transvenosus plants in the Modjadji Nature Reserve. Artificial inoculation studies fulfilled Koch's postulates, strongly suggesting that P. cinnamomi is responsible for the deaths of these plants under field conditions.  相似文献   

17.
Brown rot is a devastating disease of stone fruits caused by Monilinia spp. This study was conducted to investigate the disease aetiology on blossoms and fruit in peach, apricot, sweet cherry and plum orchards, in Greece. In total, 1433 isolates obtained from orchards located in the main stone fruit production regions of Greece were identified to species based on the presence/size of a cyt b intron. Monilinia laxa and M. fructicola were detected at frequencies of 59 and 41%, respectively, while M. fructigena was absent. Monilinia fructicola was more common on fruit whereas M. laxa occurred in similar frequency on blossoms and fruit. Monilinia laxa was replaced by M. fructicola in fruit infections of peach in both regions investigated and in fruit infections of plum in the Imathia region. Assessments of aggressiveness of 30 isolates of both species on the petals and fruits of the hosts showed that M. fructicola isolates were more aggressive. This suggests that the predominance of M. laxa on the blossoms cannot be explained by higher aggressiveness. Measurements of the effect of temperature on mycelial growth showed that M. laxa isolates had a higher growth rate than M. fructicola at the lowest temperature tested of 5°C, whereas M. fructicola isolates showed higher growth rates at higher temperatures. The observed high frequency of M. fructicola in Greece represents a major threat for stone fruit production. Furthermore, the information obtained about delineation of species and plant organ preference could be useful for the implementation of disease management strategies.  相似文献   

18.
Colletotrichum truncatum (syn. C. capsici) has been identified as the causal agent of anthracnose on various hosts, predominantly pepper (Capsicum spp.) plants. The aim of this study was to determine whether C. truncatum isolates infecting papaya, pepper and physic nut in southeastern Mexico are morphologically, genetically and pathogenically different, in order to improve disease management strategies. A total of 113 C. truncatum isolates collected from five producer states were subjected to phenotypic characterization and divided into six different morphological groups. These morphological traits and the location of the isolates were used to select a subset of 20 isolates for further studies. Differences in the pathogenicity of the isolates were tested with a cross‐inoculation assay using pepper, papaya and physic nut. The pathogenicity tests revealed that all isolates could infect the three hosts and produce typical anthracnose symptoms, indicating a lack of host specificity for this species and therefore its pathogenic potential on other plants. Phylogenetic analysis using internal transcribed spacer (ITS) and glyceraldehyde 3‐phosphate dehydrogenase (GAPDH) sequences of the C.   truncatum isolates from this study and reference strains was performed, grouping the isolates into a monophyletic clade. This study reports for the first time the characterization of C. truncatum causing anthracnose disease on three different hosts in Mexico.  相似文献   

19.
This study aimed to assess the extent and distribution of Fusarium graminearum species complex (FGSC) diversity in rice seeds produced in southern Brazil. Four species and two trichothecene genotypes were detected among 89 FGSC isolates, based on a multilocus genotyping assay: F. asiaticum (69·6%) with the nivalenol (NIV) genotype, F. graminearum (14·6%) with the 15‐acetyldeoxynivalenol (ADON) genotype, and F. cortaderiae (14·6%) and F. meridionale (1·1%), both with the NIV genotype. Seven selected F. asiaticum isolates from rice produced NIV in rice‐based substrate in vitro, at levels ranging from 4·7 to 84·1 μg g?1. Similarly, two F. graminearum isolates from rice produced mainly 15‐ADON (c. 15–41 μg g?1) and a smaller amount of 3‐ADON (c. 6–12 μg g?1). One F. meridionale and two F. cortaderiae isolates did not produce detectable levels of trichothecenes. Two F. asiaticum isolates from rice and two from wheat (from a previous study), and one F. graminearum isolate from wheat, were pathogenic to both crops at various levels of aggressiveness based on measures of disease severity in wheat spikes and rice kernel infection in a greenhouse assay. Fusarium asiaticum and the reference F. graminearum isolate from wheat produced NIV, and deoxynivalenol and acetylates, respectively, in the kernels of inoculated wheat heads. No trichothecene was produced in kernels from inoculated rice panicles by any of the isolates. These findings constitute the first report of FGSC composition in rice outside Asia, and confirm the dominance of F. asiaticum in rice agroecosystems.  相似文献   

20.
Xanthomonas campestris pathovars are widely distributed throughout the globe and have a broad host range, causing severe economic losses in the food and ornamental crucifers markets. Using an approach based on multilocus sequence typing, phylogenetic diversity and population structure of a set of 75 Portuguese and other Xanthomonas campestris isolates from several cruciferous hosts were assessed. Although this population displayed a major clonal structure, neighbour‐net phylogenetic analysis highlighted the presence of recombinational events that may have driven the ecological specialization of X. campestris with different host ranges within the Brassicaceae family. A high level of genetic diversity within and among X. campestris pathovars was also revealed, through the establishment of 46 sequence types (STs). This approach provided a snapshot of the global X. campestris population structure in cruciferous host plants, correlating the existing pathovars with three distinct genetic lineages. Phylogenetic relationships between the founder genotype and remaining isolates that constitute the X. campestris pv. campestris population were further clarified using goeBURST algorithm. Identification of an intermediate link between X. campestris pv. campestris and X. campestris pv. raphani provided new insights into the mechanisms driving the differentiation of both pathovars. Wide geographic distribution of allelic variants suggests that evolution of X. campestris as a seedborne pathogen was not shaped by natural barriers. However, as Portuguese isolates encompass 26 unique STs and this country is an important centre of domestication of Brassica oleracea crops, a strong case is made for its role as a diversification reservoir, most probably through host–pathogen coevolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号