共查询到10条相似文献,搜索用时 84 毫秒
1.
2.
3.
Interactions between Serratia plymuthica A30 and a blackleg‐causing biovar 3 Dickeya sp. were examined. In a potato slice assay, S. plymuthica A30 inhibited tissue maceration caused by Dickeya sp. IPO2222 when co‐inoculated at a density at least 10 times greater than that of the pathogen. In glasshouse experiments, population dynamics of the antagonist and of the pathogen in planta were studied by dilution plating and confocal laser scanning microscopy (CLSM) using fluorescent protein‐tagged strains. Pathogen‐free minitubers were vacuum‐infiltrated with DsRed‐tagged Dickeya sp. IPO2222 and superficially treated during planting with a water suspension containing GFP‐tagged S. plymuthica A30. A30 reduced the blackleg incidence from 55% to 0%. Both the pathogen and the antagonist colonized the seed potato tubers internally within 1 day post‐inoculation (dpi). Between 1 and 7 dpi, the population of A30 in tubers increased from 101 to c. 103 CFU g?1 and subsequently remained stable until the end of the experiment (28 dpi). Populations of A30 in stems and roots increased from c. 102 to c. 104 CFU g?1 between 7 and 28 dpi. Dilution plating and CLSM studies showed that A30 decreased the density of Dickeya sp. populations in plants. Dilution plating combined with microscopy allowed the enumeration of strain A30 and its visualization in the vascular tissues of stem and roots and in the pith of roots, as well as its adherence to and colonization of the root surface. The implications of these finding for the use of S. plymuthica A30 as a biocontrol agent are discussed. 相似文献
4.
Contrasting canopy and fibrous root damage on Swingle citrumelo caused by ‘Candidatus Liberibacter asiaticus’ and Phytophthora nicotianae
下载免费PDF全文

Huanglongbing (HLB), associated with the phloem‐limited bacterium ‘Candidatus Liberibacter asiaticus’ (Las), is devastating trees in citrus orchards of Florida. Additionally, Phytophthora nicotianae, omnipresent in citrus soils, causes root rot that reduces water and nutrient uptake by fibrous roots. To investigate fibrous root damage and replacement and canopy size in relation to infection of fibrous roots by Las and P. nicotianae, rootstock seedlings of Swingle citrumelo (Citrus paradisi × Poncirus trifoliata) were inoculated with Las or P. nicotianae in two greenhouse pot trials. Phytophthora nicotianae caused root damage within 5 weeks post‐inoculation, which led to greater reduction of canopy size than for Las‐infected seedlings by the end of the experiment. Las increased accumulation of fibrous root biomass at 5 weeks post‐root trimming (wpt) in the 2014 trial and at 11 wpt in the 2015 trial. New root length was not consistently increased by Las. Reduced total leaf area of symptomless Las‐infected seedlings compared to noninoculated controls might be due to the combined effect of altered carbohydrate allocation between shoots and roots and altered leaf morphology. 相似文献
5.
Since the 1980s a new disease has been affecting Australian lychee. Pepper spot appears as small, black superficial lesions on fruit, leaves, petioles and pedicels and is caused by Colletotrichum gloeosporioides, the same fungus that causes postharvest anthracnose of lychee fruit. The aim of this study was to determine if a new genotype of C. gloeosporioides is responsible for the pepper spot symptom. Morphological assessments, arbitrarily‐primed PCR (ap‐PCR) and DNA sequencing studies did not differentiate isolates of C. gloeosporioides from anthracnose and pepper spot lesions. The ap‐PCR identified 21 different genotypes of C. gloeosporioides, three of which were predominant. A specific genotype identified using ap‐PCR was associated with the production of the teleomorph in culture. Analysis of sequence data of ITS and β‐tubulin regions of representative isolates did not group the lychee isolates into a monophyletic clade; however, given the majority of the isolates were from one of three genotypes found using ap‐PCR, the possibility of a lychee specific group of C. gloeosporioides is discussed. 相似文献
6.
Transmission of ‘Candidatus Phytoplasma pyri’ by naturally infected Cacopsylla pyri to peach,an approach to the epidemiology of peach yellow leaf roll (PYLR) in Spain
下载免费PDF全文

Peach orchards in the northeast of Spain were severely affected in 2012 by a previously unreported disease in this area. The symptoms included early reddening, leaf curling, decline, abnormal fruits, and in some cases death of the peach trees. All the infected peach samples were positive for ‘Candidatus Phytoplasma pyri’, but none were infected by the ‘Ca. Phytoplasma prunorum’. In this work, potential vectors able to transmit ‘Ca. Phytoplasma pyri’ from pear to peach and between peach trees were studied and their infective potential was analysed at different times of the year. Transmission trials of the phytoplasma with potential vectors to an artificial feeding medium for insects and to healthy peach trees were conducted. Additionally, isolated phytoplasmas were genetically characterized to determine which isolates were able to infect peach trees. Results showed that the only insect species captured inside peach plots that was a carrier of the ‘Ca. Phytoplasma pyri’ phytoplasma was Cacopsylla pyri. Other insect species captured and known to be phytoplasma transmitters were present in very low numbers, and were not infected with ‘Ca. Phytoplasma pyri’ phytoplasma. A total of 1928 individuals of C. pyri were captured in the peach orchards, of which around 49% were phytoplasma carriers. All the peach trees exposed to C. pyri in 2014, and 65% in 2015, were infected by ‘Ca. Phytoplasma pyri’ 1 year after exposure, showing that this species is able to transmit the phytoplasma to peach. Molecular characterization showed that some genotypes are preferentially determined in peach. 相似文献
7.
Incidence and distribution of ‘Candidatus Phytoplasma prunorum’ and its vector Cacopsylla pruni in Spain: an approach to the epidemiology of the disease and the role of wild Prunus
下载免费PDF全文

‘Candidatus Phytoplasma prunorum’ is the causal agent of the European stone fruit yellows (ESFY) disease. This phytoplasma affects wild and cultivated species of Prunus to different degrees, depending on their susceptibility. ‘Candidatus Phytoplasma prunorum’ is present in the four regions of Spain surveyed in this study (Aragon, Catalonia, Extremadura and Valencia) with a variable incidence. Results showed that ‘Ca. Phytoplasma prunorum’ was detected in all of the cultivated Prunus species studied, except P. avium and P. dulcis, and was widespread in Spain. The most affected species was P. salicina, with symptoms including early bud break and blooming, leaf curling and yellowing, collapse, and a major decrease in production. In some plots in the Baix Llobregat area of Barcelona province (Catalonia), the incidence of ESFY on P. salicina was as high as 80%. The insect vector, Cacopsylla pruni, was present in all four of the regions studied, with the highest captures in yellow sticky traps in Catalonia on P. mahaleb and in Extremadura in peach orchards. In Baix Llobregat, large populations of C. pruni were present on infected P. mahaleb bushes, and with high infection rates. This was a key factor in the local pathogenic cycle that caused a major ESFY outbreak in the nearby P. salicina orchards. In the Ebro valley (Lleida and Aragon) and Valencia, the surveys showed very low incidences of the disease and low C. pruni populations. 相似文献
8.
Characterization of Pseudomonas syringae pv. actinidiae (Psa) isolated from France and assignment of Psa biovar 4 to a de novo pathovar: Pseudomonas syringae pv. actinidifoliorum pv. nov.
下载免费PDF全文

A. Cunty F. Poliakoff C. Rivoal S. Cesbron M. Fischer‐Le Saux C. Lemaire M. A. Jacques C. Manceau J. L. Vanneste 《Plant pathology》2015,64(3):582-596
Since 2008, bacterial canker of kiwifruit (Actinidia deliciosa and A. chinensis) caused by Pseudomonas syringae pv. actinidiae (Psa) has resulted in severe economic losses worldwide. Four biovars of Psa can be distinguished based on their biochemical, pathogenicity and molecular characteristics. Using a range of biochemical, molecular and pathogenicity assays, strains collected in France since the beginning of the outbreak in 2010 were found to be genotypically and phenotypically diverse, and to belong to biovar 3 or biovar 4. This is the first time that strains of biovar 4 have been isolated outside New Zealand or Australia. A multilocus sequence analysis based on four housekeeping genes (gapA, gltA, gyrB and rpoD) was performed on 72 strains representative of the French outbreak. All the strains fell into two phylogenetic groups: one clonal corresponding to biovar 3, and the other corresponding to biovar 4. This second phylogenetic group was polymorphic and could be divided into four lineages. A clonal genealogy performed with a coalescent approach did not reveal any common ancestor for the 72 Psa strains. Strains of biovar 4 are substantially different from those of the other biovars: they are less aggressive and cause only leaf spots whereas Psa biovars 1, 2 and 3 also cause canker and shoot die‐back. Because of these pathogenic differences, which were supported by phenotypic, genetic and phylogenetic differences, it is proposed that Psa biovar 4 be renamed Pseudomonas syringae pv. actinidifoliorum pv. nov. Strain CFBP 8039 is designated as the pathotype strain. 相似文献
9.
Methodology of virulence screening and race characterization of Plasmopara halstedii,and resistance evaluation in sunflower – a review
下载免费PDF全文

Sunflower downy mildew is a disease of high global economic impact as well as a causal agent that is extremely difficult to eradicate. During the past decades, several approaches for the determination of Plasmopara halstedii (Ph) races have been used worldwide and are discussed in this review. Procedures of isolation, cultivation and maintenance of Ph isolates, as well as the screening of sunflower for resistance, are also critically reviewed. The predominant, globally used resistance screening protocol is a ‘whole seedling immersion’ inoculation. ‘Soil drench’ inoculation allows more precise control of the number of Ph zoosporangia applied to a single sunflower seedling. A detached leaf assay has been described, but it has been used mainly for Ph subcultivation and fungicide tests. For race determination, a differential set consisting of nine sunflower genotypes has been used since 1988, coupled with a numerical triplet code for virulence phenotyping of Ph. The increasing variability in global Ph populations has demonstrated the inadequacy of the current set of differentials, and several researchers have proposed additional public lines as new differentials. Furthermore, bulk isolates may show different results in repeated tests, as Ph may contain genetically distinct zoospores within a single zoosporangium. For precise race determination, single zoosporangia or single zoospore isolates are advisable. However, due to low success of isolation, approximately 1–2%, this method cannot be applied in routine Ph race screening. Methods surveyed in this review have a broad spectrum of applications, including taxonomic studies. 相似文献
10.
V. M. Freitas V. R. Correa F. C. Motta M. G. Sousa A. C. M. M. Gomes M. D. G. Carneiro D. B. Silva J. K. Mattos M. Nicole R. M. D. G. Carneiro 《Plant pathology》2014,63(4):738-746
Meloidogyne enterolobii has been reported in some states of Brazil and other countries causing severe damage on commercial guava (Psidium guajava). The use of resistant varieties is the most effective way to manage nematode parasitism. This study screened 51 accessions of Psidium spp. selected from the Psidium Germplasm Collection (Embrapa) to look for resistance against M. enterolobii. Six months after inoculation, nematode reproduction factor (RF) was used to assess resistance. The following species were resistant to M. enterolobii: P. cattleianum (yellow guava), P. friedrichsthalianum (Costa Rican guava), Acca sellowiana (feijoa) and P. rufum (purple guava). All 43 wild accessions of P. guajava were susceptible, as well as three accessions of P. guineense (Brazilian guava), one of P. acutangulum (pear guava) and the susceptible control P. guajava cv. Paluma. When used as rootstocks under greenhouse conditions, P. cattleianum and P. friedrichsthalianum were compatible with cv. Paluma; however, in greenhouse and field conditions only 50% of both scions survived. No apparent hypersensitive response (HR) was seen in the resistant guava P. cattleianum and P. friedrichsthalianum. Juveniles were able to develop normal feeding sites similar to those in susceptible roots 6–13 days after inoculation (dai). From 27 to 32 dai, giant cell deterioration was observed and nematodes showed arrested development. The majority of nematodes failed to reach maturity and did not begin laying eggs in resistant roots. These results suggested that the induction of resistance is relatively late in this pathosystem. 相似文献