首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Formulations of bacterial biocontrol agents were evaluated for the control of pea root-rot caused primarily by Pythium ultimum and Rhizoctonia solani, at different levels of disease severity in field trials. Pseudomonas fluorescens (strain PRA25) in a peat-based formulation increased yield by 17% over the untreated, in a trial with light disease infection, and by 120% in another with moderate infection. Other bacteria including P . cepacia (strain AMMD) and fluorescent pseudomonads increased seedling emergence, and decreased disease incidence and severity, but with variable effects on yield when disease level was light to moderate. Biocontrol agents resulted in only limited control when disease was severe. Control with Captan did not differ significantly from that obtained with bacterial biocontrol agents. The application of Rhizobium granular inoculum together with PRA25 granules did not differ from other treatments in disease control, indicating that Rhizobium is compatible with biocontrol agents. The population dynamics of a fluorescent pseudomonad introduced into the rhizosphere in peat or granular formulation was monitored using an antibiotic-resistant mutant marker strain. The bacterium in peat formulation established a considerably higher population than that in granular formulation in 1993 trials, and a slightly higher population in 1994 trials. The higher population may have been responsible for the efficiency of root colonization and the effectiveness of disease control.  相似文献   

2.
D. HORNBY 《EPPO Bulletin》1987,17(4):615-623
In seeking biological control of the wheat take-all fungus (Gaeumannomyces graminis var. tritici) by introduced organisms, the demonstration of satisfactory field performance is proving a formidable hurdle. A novel experimental design incorporating small plots, 37 x 31 cm, has been used in UK at Rothamsted and Woburn since 1983 to test different kinds of control for take-all and to explore some of the problems of providing adequate field tests of putative biocontrol agents. Three years of bacterial treatments, using different plots each year, provided no evidence of effective control of the disease. Of the few significant treatment effects, most occurred in spring and were temporary: at Woburn they were mostly decreases in take-all and at Rothamsted mostly decreases in growth of the wheat plant without concomitant changes in take-all.  相似文献   

3.
Gaeumannomyces graminis var. tritici was recovered from 63% of 731 winter wheat plants collected randomly from six sites where wheat had been grown in monoculture for the previous 7–22 years. Typical take-all was not evident at the time the plants were collected. The fungus was isolated by a baiting method without regard to the presence of take-all on the plants. Isolates from fields under short-term wheat cultivation (3 years or less after a break crop) were obtained by plating directly from infected roots of plants with typical take-all. Virulent isolates comprised 89 and 99% of those collected from long- and short-term wheat cultivation respectively. There was also only a slight difference in the proportions of virulent isolates among monoascosporic subcultures from the two groups of isolates. There was thus little evidence that, during prolonged wheat cultivation, declining virulence in the population of G. graminis var. tritici could account for the absence of take-all.  相似文献   

4.
Take-all disease of wheat caused by the soilborne fungus Gaeumannomyces graminis var. tritici is one of the most important root diseases of wheat worldwide. Bacteria were isolated from winter wheat from irrigated and rainfed fields in Hebei and Jiangsu provinces in China, respectively. Samples from rhizosphere soil, roots, stems, and leaves were plated onto King's medium B agar and 553 isolates were selected. On the basis of in vitro tests, 105 isolates (19% of the total) inhibited G. graminis var. tritici and all were identified as Pseudomonas spp. by amplified ribosomal DNA restriction analysis. Based on biocontrol assays, 13 strains were selected for further analysis. All of them aggressively colonized the rhizosphere of wheat and suppressed take-all. Of the 13 strains, 3 (HC9-07, HC13-07, and JC14-07, all stem endophytes) had genes for the biosynthesis of phenazine-1-carboxylic acid (PCA) but none had genes for the production of 2,4-diacetylphloroglucinol, pyoluteorin, or pyrrolnitrin. High-pressure liquid chromatography (HPLC) analysis of 2-day-old cultures confirmed that HC9-07, HC13-07, and JC14-07 produced PCA but no other phenazines were detected. HPLC quantitative time-of-flight 2 mass-spectrometry analysis of extracts from roots of spring wheat colonized by HC9-07, HC13-07, or Pseudomonas fluorescens 2-79 demonstrated that all three strains produced PCA in the rhizosphere. Loss of PCA production by strain HC9-07 resulted in a loss of biocontrol activity. Analysis of DNA sequences within the key phenazine biosynthesis gene phzF and of 16S rDNA indicated that strains HC9-07, HC13-07, and JC14-07 were similar to the well-described PCA producer P. fluorescens 2-79. This is the first report of 2-79-like bacteria being isolated from Asia.  相似文献   

5.
Cold tolerant isolates of Gaeumannomyces graminis var. graminis ( Ggg ) and Phialophora sp. (lobed hyphopodia), which produced at least comparable growth rates at 5°C to those of pathogenic G. graminis var. tritici ( Ggt ), were shown to control take-all disease in wheat effectively in 2 years of field experiments in New South Wales, Australia. The addition of oat inoculum of these fungi at the rate of 60 kg/ha to the seeding furrow significantly ( P  ≤ 0.05) reduced disease and increased grain yields by 33–45% compared to the Ggt alone treatment. The use of 30 kg/ha of oat inoculum also significantly ( P  ≤ 0.05) reduced disease and increased grain yields by 21–44%. These high levels of take-all control were obtained consistently from four field experiments on three different soil types with different pHs. A treatment inoculated with Ggg alone showed no disease symptoms and produced grain yields similar to that of untreated wheat. This fungus is, therefore, non-pathogenic to wheat. At high rates of inoculation of Ggg and Phialophora sp. (lobed hyphopodia), 65–80% of tillering wheat plants (GS 32) had root systems colonized by these fungi. In contrast, two Pseudomonas spp. and an isolate each of Ggg and Phialophora sp. (lobed hyphopodia), which did not grow at 5°C, were ineffective in controlling take-all. Take-all assessments during heading (GS 61-83) were highly correlated ( R 2=0.6047, P ≤0.0005) with the relative yield increase or decrease of inoculated treatments compared to the Ggt alone treatment. The use of a Ggg isolate (90/3B) and a Phialophora sp. (lobed hyphopodia) isolate (KY) for take-all control has been patented. These fungi are being developed for commercial use.  相似文献   

6.
ABSTRACT The role of antibiotics in biological control of soilborne pathogens, and more generally in microbial antagonism in natural disease-suppressive soils, often has been questioned because of the indirect nature of the supporting evidence. In this study, a protocol for high pressure liquid chromatography/mass spectrometry is described that allowed specific identification and quantitation of the antibiotic 2,4-diacetylphloroglucinol (Phl) produced by naturally occurring fluorescent Pseudomonas spp. on roots of wheat grown in a soil suppressive to take-all of wheat. These results provide, for the first time, biochemical support for the conclusion of previous work that Phl-producing fluorescent Pseudomonas spp. are key components of the natural biological control that operates in take-all-suppressive soils in Washington State. This study also demonstrates that the total amount of Phl produced on roots of wheat by P. fluorescens strain Q2-87, at densities ranging from approximately 10(5) to 10(7) CFU/g of root, is proportional to its rhizosphere population density and that Phl production per population unit is a constant (0.62 ng/10(5) CFU). Thus, Phl production in the rhizosphere of wheat is strongly related to the ability of the introduced strain to colonize the roots.  相似文献   

7.
The take-all fungus, Gaeumannomyces graminis var. tritici , was highly sensitive to fluquinconazole ( in-vitro EC50 0·016–0·018 mg L−1), a fungicide developed for use as a seed treatment to control take-all, and to prochloraz (EC50 0·006 mg L−1). Fungi of other genera that were commonly isolated from cereal roots were sensitive in varying degrees to prochloraz but were relatively insensitive (e.g. Fusarium culmorum , EC50 > 20 mg L−1) or slightly sensitive (e.g. Epicoccum purpurascens , EC50 0·514 mg L−1) to fluquinconazole. Gaeumannomyces graminis var. graminis and G. cylindrosporus , weak parasites that can protect roots against take-all, and an unnamed Phialophora sp., all closely related to the take-all fungus, were highly or moderately sensitive to fluquinconazole. Alternaria infectoria and E. purpurascens were most consistently effective in suppressing development of take-all on pot-grown wheat plants dual-inoculated with G. graminis var. tritici and the nonpathogen. Take-all was decreased more on dual-inoculated wheat plants grown from seed treated with fluquinconazole or fluquinconazole plus prochloraz than when only an antagonistic fungus ( A. infectoria , E. purpurascens , Fusarium culmorum or Idriella bolleyi ) or a seed treatment was applied. These fungi were less effective in combination with seed treatments on barley. Gaeumannomyces graminis var. graminis and G. cylindrosporus , tested on wheat, suppressed take-all only in the absence of fungicides. It is suggested that the performance of seed treatment containing fluquinconazole against take-all may in some circumstances be enhanced by its partial specificity for the take-all fungus.  相似文献   

8.
 蜡样芽孢杆菌(Bacillus cereus)B3-7 是一株对于小麦全蚀病具有有效生防作用的小麦内生细菌。为了研究B3-7 在小麦根内的定殖机制,本研究将含有转座子TnYLB-1 和温度敏感型复制子的质粒pMarB 转化B3-7 菌株,高温处理后TnYLB-1 插入细菌基因组中,构建转座子插入突变体库。通过筛选,获得1 株在小麦根内定殖能力显著降低的突变体B3-7-458。利用反向PCR 方法分离转座子插入位点的侧翼序列并分析其特征,发现转座子插入导致细菌鞭毛运动性相关基因mota 失活,同时发现mota 失活菌株对于小麦全蚀病的生防能力降低。通过构建互补载体对突变基因mota 进行互补分析,发现互补菌株的运动性、在小麦根系内部的定殖能力以及对于小麦全蚀病的生防能力得以恢复。本研究证明了生防菌蜡样芽孢杆菌B3-7 的mota 基因参与该菌株在小麦根系的内生定殖,也参与了该菌株对于小麦全蚀病的生物防治。  相似文献   

9.
枯草芽胞杆菌YB-05对小麦抗病性相关防御酶系的诱导作用   总被引:2,自引:0,他引:2  
本文研究了生防菌枯草芽胞杆菌YB-05和病原菌小麦全蚀病菌GGT007对小麦体内防御酶活性的影响,探讨其诱导小麦抗病性机理。以苯丙氨酸解氨酶(PAL)、过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)和多酚氧化酶(PPO)5种防御酶作为小麦抗病性反应指标,于不同时段测定各防御酶活性;以PD培养基为对照,测定生防菌YB-05及小麦全蚀病菌GGT007对小麦叶片和根部抗性相关酶的影响。结果表明,小麦经生防菌与病原菌混合处理、病原菌处理、生防菌处理后,叶片和根部与植物防御抗病相关的PPO、POD、SOD、PAL、CAT防御酶活性均比对照组高,其中生防菌与病原菌混合处理后抗性相关酶活最高,叶片中PAL、POD、SOD、PPO、CAT酶活峰值达到46.705、16 829.274、104.687、97.44和1 259.565U/g,为对照组的1.74、2.44、2.27、2.40和2.42倍。根部PAL、POD、SOD、PPO、CAT酶活峰值达到131.536、56 424.79、1 977.04、22.564和206.241U/g,为对照组的1.65、1.52、2.57、2.07、1.74倍。表明枯草芽胞杆菌YB-05和小麦全蚀病菌GGT007均能诱导小麦叶片和根部的防御酶活性增强,两者共同处理后小麦叶片和根部5种防御酶活性高于单独处理,说明枯草芽胞杆菌YB-05和小麦全蚀病菌GGT007共同诱导具有协同增效作用。  相似文献   

10.
A screening programme was used to search for biocontrol agents against Gaeumannomyces graminis causing take-all disease of wheat. Of the 1800 rhizosphere microorganisms tested, 10% controlled the disease in a secondary screen. The 30 most effective isolates were further investigated for mode of action. Although 72% of the sites sampled for antagonistic microbes were planted to continuous cereals, they yielded only 23% of the most effective isolates. Of all the isolates selected, 63% belonged to the genera Bacillus, Pseudomonas and Penicillium; Beauveria and Rhodococcus were also antagonistic. Fluorescent pseudomonads, all producing siderophores in low-iron medium, accounted for 23% of the isolates. Over 50% of strains produced β-glucanases and chitinases. Less than 50% of the strains selected by the in vivo screen inhibited G. graminis in agar plate tests. In the gnotobiotic system used, the Pseudomonas strains were faster in colonizing the wheat roots than the majority of the Bacillus and fungal strains.  相似文献   

11.
The aim of this study was to evaluate the ability of nonpathogenic F. oxysporum and Trichoderma isolates from suppressive soils in South Africa to suppress fusarium wilt of banana in the glasshouse. Several biological control agents and commercial biological control products were included in the study. The isolates were first screened in vitro on potato dextrose agar. In glasshouse evaluations, the fungal and bacterial isolates were established on banana roots before they were replanted in pathogen-infested soil, while the commercial biocontrol agents were applied as directed by the supplier. Banana plantlets were evaluated for disease development after 7 weeks. In vitro tests showed none of the nonpathogenic isolates suppressed Fusarium oxysporum f.sp. cubense ( Foc ), while slight suppression was observed with the two Trichoderma isolates. Results of the glasshouse evaluations revealed that two of the nonpathogenic F. oxysporum isolates, CAV 255 and CAV 241, reduced fusarium wilt incidence by 87·4 and 75·0%, respectively. The known biological control agent Fo47 did not suppress Foc significantly. Pseudomonas fluorescens strain WCS 417, known for its ability to suppress other fusarium wilt diseases (WCS 417), reduced disease incidence by 87·4%. These isolates should be further evaluated for potential application in the field, independently and in combination.  相似文献   

12.
Kim DS  Cook RJ  Weller DM 《Phytopathology》1997,87(5):551-558
ABSTRACT Strain L324-92 is a novel Bacillus sp. with biological activity against three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused mainly by Pythium irregulare and P. ultimum, that exhibits broad-spectrum inhibitory activity and grows at temperatures from 4 to 40 degrees C. These three root diseases are major yieldlimiting factors for wheat in the U.S. Inland Pacific Northwest, especially wheat direct-drilled into the residue of a previous cereal crop. Strain L324-92 was selected from among approximately 2,000 rhizosphere/rhizoplane isolates of Bacillus species isolated from roots of wheat collected from two eastern Washington wheat fields that had long histories of wheat. Roots were washed, heat-treated (80 degrees C for 30 min), macerated, and dilution-plated on (1)/(10)-strength tryptic soy agar. Strain L324-92 inhibited all isolates of G. graminis var. tritici, Rhizoctonia species and anastomosis groups, and Pythium species tested on agar at 15 degrees C; provided significant suppression of all three root diseases at 15 degrees C in growth chamber assays; controlled either Rhizoctonia root rot, takeall, or both; and increased yields in field tests in which one or more of the three root diseases of wheats were yield-limiting factors. The ability of L324-92 to grow at 4 degrees C probably contributes to its biocontrol activity on direct-drilled winter and spring wheat because, under Inland Northwest conditions, leaving harvest residues of the previous crop on the soil surface keeps soils cooler compared with tilled soils. These results suggest that Bacillus species with desired traits for biological control of wheat root diseases are present within the community of wheat rhizosphere microorganisms and can be recovered by protocols developed earlier for isolation of fluorescent Pseudomonas species effective against take-all.  相似文献   

13.
Relationships between take-all intensity and grain yield and quality were determined in field experiments on cereal crops using regression analyses, usually based on single-point disease assessments made during anthesis or grain-filling. Different amounts of take-all were achieved by different methods of applying inoculum artificially (to wheat only) or by using different cropping sequences (in wheat, triticale or barley) or sowing dates (wheat only) in crops with natural inoculum. Regressions of yield or thousand-grain weight on take-all intensity during grain filling were similar to those on accumulated disease (area under the disease progress curve) when these were compared in one of the wheat experiments. Regressions of yield on take-all intensity were more often significant in wheat than in the less susceptible crops, triticale and barley, even when a wide range of disease intensities was present in the latter crops. The regressions usually had most significance when there were plots in the severe disease category. Thousand-grain weight and hectolitre weight usually responded similarly to total grain yield. Decreased yield was often accompanied by a significant increase in the percentage of small grains. When severe take-all was present in wheat, regressions showed that nitrogen uptake was usually impaired. This was sometimes accompanied, however, by increased percentage nitrogen in the grain as a consequence of smaller grain size with decreased endosperm. Significant effects of take-all, both positive and negative, on Hagberg falling number in wheat sometimes occurred. Significant regressions of yield on take-all assessed earlier than usual, ie during booting rather than grain-filling in wheat and triticale and during anthesis/grain-filling rather than ripening in barley, had steeper slopes. This is consistent with observations that severe disease that develops early can be particularly damaging, whilst the crops, especially barley, can later express tolerance by producing additional, healthy roots. The regression parameters, including maximum potential yield (y-axis intercept) and the extrapolated maximum yield loss, also varied according to the different growing conditions, including experimental treatments and other husbandry operations. These differences must be considered when assessing the economic potential of a control measure such as fungicidal seed treatment.  相似文献   

14.
ABSTRACT Wheat was assessed at four crop growth stages for take-all (Gaeumannomyces graminis var. tritici) in a series of field trials that studied the effects of five wheat management practices: sowing date, plant density, nitrogen fertilizer dose and form, and removal/burial of cereal straw. An equation expressing disease level as a function of degree days was fitted to the observed disease levels. This equation was based on take-all epidemiology and depended on two parameters reflecting the importance of the primary and secondary infection cycles, respectively. Early sowing always increased disease frequency via primary infection cycle; its influence on the secondary cycle was variable. Primary infection and earliness of disease onset were increased by high density; however, at mid-season take-all was positively correlated to the root number per plant, which was itself negatively correlated to plant density. At late stages of development, neither plant density nor root number per plant had any influence on disease. A high nitrogen dose increased both take-all on seminal roots and severity of primary infection cycle but decreased take-all on nodal roots and secondary infection cycle. Ammonium (versus ammonium nitrate) fertilizer always decreased disease levels and infection cycles, whereas straw treatment (burial versus removal of straw from the previous cereal crop) had no influence.  相似文献   

15.
小麦全蚀病菌是影响小麦产量和质量的主要致病菌之一,前期研究表明枯草芽胞杆菌YB-05对小麦全蚀病菌的生长具有抑制作用。本试验拟通过研究该菌对小麦全蚀病菌相关酶系的诱导变化情况,解析其对小麦全蚀病菌的抑制作用机理。本试验以小麦全蚀病菌Gaeumannomyces gramini(Sacc.)Arx et Oliver var. tritici(Sacc.)Walker为靶标菌,加入终浓度为MIC50枯草芽胞杆菌YB-05发酵液,通过显微镜观察菌株YB-05发酵液对小麦全蚀病菌菌丝结构和形态的影响,通过酶活力测定检测菌株YB-05发酵液对小麦全蚀病菌胞内苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、过氧化氢酶(CAT)、多酚氧化酶(PPO)和超氧化物歧化酶(SOD)防御酶活的影响,同时检测菌株YB-05发酵液在离体/活体条件下对小麦全蚀病菌线粒体复合酶Ⅱ/Ⅲ活力的影响。小麦全蚀病菌经菌株YB-05发酵液处理后,显微镜观察到其菌丝变粗、断裂,顶端膨大,分枝增多;处理8 d后,胞内的PAL、POD、CAT、PPO和SOD活性比对照依次高24.52%、72.67%、81.81%、80.36%和112.48%;离体条件处理,线粒体复合酶Ⅱ和Ⅲ的活性与对照组相比差异不显著,而活体条件处理下差异显著,线粒体复合酶Ⅱ和Ⅲ分别比对照组分别降低43.95%和55.87%。菌株YB-05发酵液通过结合小麦全蚀病菌线粒体复合酶Ⅱ和Ⅲ的相关基因,从而影响该基因的表达,抑制小麦全蚀病菌线粒体复合酶Ⅱ和Ⅲ的活力,影响小麦全蚀病菌的呼吸,进而导致抑制小麦全蚀病菌菌丝畸变,从而影响小麦全蚀病菌的正常生长。  相似文献   

16.
Point pattern analysis (fitting of the beta-binomial distribution and binary form of power law) was used to describe the spatial pattern of natural take-all epidemics (caused by Gaeumannomyces graminis var. tritici ) on a second consecutive crop of winter wheat in plots under different cropping practices that could have an impact on the quantity and spatial distribution of primary inoculum, and on the spread of the disease. The spatial pattern of take-all was aggregated in 48% of the datasets when disease incidence was assessed at the plant level and in 83% when it was assessed at the root level. Clusters of diseased roots were in general less than 1 m in diameter for crown roots and 1–1·5 m for seminal roots; when present, clusters of diseased plants were 2–2·5 m in diameter. Anisotropy of the spatial pattern was detected and could be linked to soil cultivation. Clusters did not increase in size over the cropping season, but increased spatial heterogeneity of the disease level was observed, corresponding to local disease amplification within clusters. The relative influences of autonomous spread and inoculum dispersal on the size and shape of clusters are discussed.  相似文献   

17.
Kim DS  Weller DM  Cook RJ 《Phytopathology》1997,87(5):559-564
ABSTRACT Bacillus sp. L324-92 is suppressive to three root diseases of wheat, namely take-all caused by Gaeumannomyces graminis var. tritici, Rhizoctonia root rot caused by Rhizoctonia solani AG8, and Pythium root rot caused by several Pythium species. Populations of strain L324-92R(12), a rifampicin-resistant mutant of L324-92 applied as a seed treatment, were monitored in the rhizosphere and spermosphere of wheat and compared with populations of Pseudomonas fluorescens 2-79RN(10), a known, rhizosphere-competent, biocontrol agent. In growth chamber studies, the population sizes of L324-92R(12) on roots of wheat were approximately 1,000-fold smaller than those of 2-79RN(10) at 5 days after planting, but, thereafter, they increased while those of 2-79RN(10) decreased until the two were equal in size at 45 days after planting. In the field with winter wheat, the population sizes of L324-92R(12) on roots were at least 10-fold smaller than those of 2-79RN(10) during the fall (November 1993) and early spring (March 1994). Thereafter, the population of L324-92R(12) remained constant or increased slightly, while the population of 2-79RN(10) decreased until the two were roughly the same at 10(4) to 10(5) CFU/plant over the period of 150 days (April 1994) until 285 days (harvest) after planting. In growth chamber studies, strain L324-92R(12) remained confined to root sections within 3.5 cm below the seed, whereas 2-79RN(10) was recovered from all root sections ranging from 0.5 to 6.5 cm below the seed. In the field on winter wheat, both strains were recovered from root sections down to 5.0 to 6.5 cm below the seed at 75 days after planting (mid December), but only 2-79RN(10) was recovered at this depth at 90 days after planting. Both strains were recovered from the seed remnants 6 months after planting in the field. Both strains also were recovered from inside the roots and shoots, but population sizes of strain 279RN(10) were greater than those of L324 92R(12).  相似文献   

18.
Various grass species susceptible to infection by Gaeumannomyces graminis var. tritici were mixed-sown into a legume crop in order to assess their influence on density of inoculum and take-all disease in a subsequent crop of wheat.
In a pot experiment take-all inoculum increased ( P < 0.001) in all treatments containing a proportion (from 20 to 100%, in increments of 20%) of grass in subterranean clover. In a plot trial, most severe take-all occurred in the 20% legume/80% grass stands and least in the 100% legume and 80% legume/20% grass stands. Total grain weight was highest ( P <0.1) after the 100% legume stands. There was no difference in severity of take-all after pure stands of medic, subterranean clover and lupin, but there was more severe take-all after the grass-infested medic stands than after those of subterranean clover ( P < 0.1) or lupin ( P < 0.05). No significant differences ( P > 0.1) in yield occurred in wheat following any of the legumes or mixed stands.  相似文献   

19.
ABSTRACT Natural suppressiveness of soils to take-all disease of wheat, referred to as take-all decline (TAD), occurs worldwide. It has been postulated that different microbial genera and mechanisms are responsible for TAD in soils from different geographical regions. In growth chamber experiments, we demonstrated that fluorescent Pseudomonas spp. that produce the antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) play a key role in the natural suppressiveness of two Dutch TAD soils. First, 2,4-DAPG-producing fluorescent Pseudomonas spp. were present on roots of wheat grown in both of the TAD soils at densities at or above the threshold density required to control take-all of wheat; in a complementary take-all conducive soil, population densities of 2,4-DAPG-producing Pseudomonas spp. were below this threshold level. Second, introduction of 2,4-DAPG-producing strain SSB17, a representative of the dominant geno-typic group found in the Dutch TAD soils, into the take-all conducive soil at population densities similar to the densities of indigenous 2,4-DAPG producers found in TAD soils provided control of take-all similar to that observed in the TAD soil. Third, a mutant of strain SSB17 deficient in 2,4-DAPG production was not able to control take-all of wheat, indicating that 2,4-DAPG is a key determinant in take-all suppression. These results show that in addition to the physicochemically different TAD soils from Washington State, 2,4-DAPG-producing fluorescent Pseudomonas spp. are also a key component of the natural suppressiveness found in Dutch TAD soils. Furthermore, it is the first time since the initial studies of Gerlagh (1968) that at least part of the mechanisms and microorganisms that operate in Dutch TAD soils are identified. Although quantitatively similar, the genotypic composition of 2,4-DAPG-producing Pseudomonas spp. varied between the Dutch TAD soils and the TAD soils from Washington State.  相似文献   

20.
Field isolates ( n  = 144) of the wheat take-all fungus Gaeumannomyces graminis var. tritici ( Ggt ) were tested for sensitivity to silthiofam, a take-all-specific fungicide used as a seed treatment, and identified as A- or B-type by PCR–RFLP analysis of nuclear rDNA. A possible association was identified between polymorphisms in ITS2 of the nuclear rDNA and sensitivity to silthiofam. A Ggt -specific PCR assay was developed which simultaneously identified isolates of Ggt as A- or B-type, based on the polymorphisms in the nuclear rDNA. A highly significant correlation between Ggt type using the PCR assay and sensitivity to silthiofam was demonstrated in a collection of 358 isolates from three field experiments designed to test the effects of seed-treatment fungicides on take-all and Ggt populations in winter wheat. In one experiment the percentages of silthiofam-sensitive and B-type isolates were significantly less in populations from plots sown with silthiofam-treated seed in two consecutive years than in populations from plots sown with nontreated seed. However, silthiofam still provided a significant amount of control of take-all. The natural occurrence of fungicide-insensitive isolates, up to about 30% in soils in which the fungicide had never been used, is unusual. The new PCR assay provides a useful tool for studying the population structure of Ggt , and may provide a novel method for assessing the incidence of insensitivity to silthiofam (the target site for which has not yet been identified) in field populations of Ggt .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号