首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
3.
Margaret A.  Blaik  DVM  R. Reid  Hanson  DVM  Steven A.  Kincaid  DVM  MS  PhD  John T.  Hathcock  DVM  MS  Judith A.  Hudson  DVM  PhD  Debra K.  Baird  DVM  PhD 《Veterinary radiology & ultrasound》2000,41(2):131-141
The objective of this study was to define the normal gross anatomic appearance of the adult equine tarsus on a low-field magnetic resonance (MR) image. Six radiographically normal, adult, equine tarsal cadavers were utilized. Using a scanner with a 0.064 Tesla magnet, images were acquired in the sagittal, transverse and dorsal planes for T1-weighted and the sagittal plane for T2-weighted imaging sequences. Anatomic structures on the MR images were identified and compared with cryosections of the imaged limbs. Optimal image planes were identified for the evaluation of articular cartilage, subchondral bone, flexor and extensor tendons, tarsal ligaments, and synovial structures. MR images provide a thorough evaluation of the anatomic relationships of the structures of the equine tarsus.  相似文献   

4.
Magnetic resonance imaging was conducted on previously frozen left carpi from six normal dogs using a 1.5 Tesla magnet in combination with a transmit/receive wrist coil. Three-millimeter thick T1-weighted spin-echo images and 1-mm thick T2*-weighted gradient-recalled 3-D images were obtained in dorsal and sagittal planes. Carpi were embedded, sectioned, and stained. Anatomic structures on the histologic sections were correlated with the MR images. All of the carpal ligaments plus the radioulnar articular disc and the palmar fibrocartilage were identified on MR images. The accessorio-quartile ligament, which had not been well described previously in dogs, was also identified. It originated on the accessory carpal bone and inserted on the fourth carpal bone. The T2*-weighted gradient echo imaging technique provided better images than T1-weighted technique, largely because thinner slices were possible (1 mm vs. 3 mm), resulting in less volume averaging of thin ligaments with surrounding structures. Although MRI is currently the imaging modality of choice to identify ligamentous injury in humans, further studies are needed to determine if abnormalities can be detected in canine carpal ligaments using MRI.  相似文献   

5.
This study was intended to document normal ultrasonographic appearance of the equine shoulder and anatomic landmarks useful in clinical imaging. Both forelimbs of five equine cadavers and both forelimbs of six live adult horses were used. To facilitate understanding of the images, a zoning system assigned to the biceps brachii and to the infraspinatus tendon was developed. Ultrasonography was performed with a real-time B-mode semiportable sector scanner using 7.5- and 5-MHz transducers. On one cadaver limb, magnetic resonance imaging (MRI) was performed using a system at 1.5 Tesla, T1-weighted spin-echo sequence. Ultrasonography images were compared to frozen specimens and MRI images to correlate the ultrasonographic findings to the gross anatomy of the shoulder. Ultrasonography allowed easy evaluation of the biceps brachii and the infraspinatus tendon and their bursae, the supraspinatus muscle and tendons, the superficial muscles of the shoulder, and the underlying humerus and scapula. Only the lateral and, partially, the caudal aspects of the humeral head could be visualized with ultrasound. Ultrasonographic appearance, orientation, and anatomic relationships of these structures are described. Ultrasonographic findings correlated well with MRI images and with gross anatomy in the cadavers' limbs.  相似文献   

6.
The shoulder joint is the most mobile of all main limb joints. While its primary motion is in a sagittal plane, the shoulder has a significant amount of abduction and adduction, and internal and external rotation. Its stability is ensured by the joint capsule, by its specialized bands (medial and lateral glenohumeral ligaments), and by large tendons located inside (eg, tendon of origin of the biceps brachii muscle) or immediately outside the joint (eg, supraspinatus, infraspinatus, teres minor, and subscapularis). Sprains or strains of all supporting structures of the canine shoulder have now been reported and the shoulder pathology resembles the pathology of the human shoulder that includes strains and tears of the rotator cuff muscles, adhesive capsulitis, and calcific tendonitis.  相似文献   

7.
The technical feasibility of performing magnetic resonance imaging (MRI) in domestic pigeons was investigated. Imaging was performed with a 1.5 Tesla magnet using a human knee surface coil. The head and coelomic cavity of isoflurane-anesthetized birds were imaged in the dorsal, sagittal, and transverse planes to produce T1-weighted, T2-weighted, and contrast-enhanced T1-weighted images. The birds were then euthanatized, formalin perfused, frozen, and sectioned in the corresponding anatomic planes. The anatomy defined by MRI was correlated with gross anatomic sections made from the same birds. The following CNS structures were identified: cerebral hemispheres, cerebellum, optic chiasm, optic lobes, brain stem, and cranial spinal cord. The cornea, lens, and vitreous were also well differentiated in dorsal section MRI's. The abdominal organs identified included proventriculus, ventriculus, intestines, cloaca, liver, kidneys, spleen, testes, and ovary. The hepatic and renal vasculature were well defined.  相似文献   

8.
The objective of this study was to provide a detailed multiplanar computed tomographic (CT) anatomic reference for the bovine tarsus. The tarsal regions from twelve healthy adult cow cadavers were scanned in both soft and bone windows via a 16‐slice multidetector CT scanner. Tarsi were frozen at ?20o C and sectioned to 10‐mm‐thick slices in transverse, dorsal and sagittal planes respecting the imaging protocol. The frozen sections were cleaned and then photographed. Anatomic structures were identified, labelled and compared with the corresponding CT images. The sagittal plane was indispensable for evaluation of bone contours, the dorsal plane was valuable in examination of the collateral ligaments, and both were beneficial for assessment of the tarsal joint articulations. CT images allowed excellent delineation between the cortex and medulla of bones, and the trabecular structure was clearly depicted. The tarsal soft tissues showed variable shades of grey, and the synovial fluid was the lowest attenuated structure. This study provided full assessment of the clinically relevant anatomic structures of the bovine tarsal joint. This technique may be of value when results from other diagnostic imaging techniques are indecisive. Images presented in this study should serve as a basic CT reference and assist in the interpretation of various bovine tarsal pathology.  相似文献   

9.
Objective— To evaluate the diagnostic potential of magnetic resonance imaging (MRI) compared with a reference standard, arthroscopic and/or open surgery, in dogs with soft tissue shoulder pathology. Study Design— Retrospective study. Animals— Dogs (n=21). Methods— Magnetic resonance (MR) images were retrospectively evaluated in 21 dogs that had surgically identified soft tissue shoulder pathology. The musculotendinous units of the biceps, infraspinatus, teres minor, supraspinatus, subscapularis, and the medial and lateral glenohumeral ligaments (MGHL and LGHL) were graded as either normal or abnormal. Abnormal structures were further classified as being either inflamed, partially torn, or fully torn. Impingement of the biceps tendon was also evaluated. Results were reported in terms of agreement and concordance between MRI findings and surgical findings. Agreement was defined as the percentage of times MRI findings concurred with surgical findings with respect to a structure being either normal or abnormal. Concordance was defined as the percentage of times MRI concurred with the exact surgically assessed pathology when abnormality was identified. Results— The findings were biceps tendon: 90% agreement with 100% concordance; subscapularis: 95% agreement with 62% concordance; MGHL: 84% agreement with 83% concordance; LGHL: 88% agreement with 100% concordance; infraspinatus: 100% both agreement and concordance; biceps tendon impingement: 90% agreement with 100% concordance. Conclusions— Soft tissue abnormalities of the canine shoulder were readily identified on preoperative MR images. Clinical Relevance— MRI shows great potential as a diagnostic tool in the evaluation of canine shoulder disease.  相似文献   

10.
Computed tomographic (CT) imaging of eight normal cadaveric canine stifles was performed before and after intra-articular administration of iodinated contrast medium. Transverse CT images were reconstructed in dorsal, parasagittal, and oblique planes. The following ligamentous structures were identified on transverse CT images in all stifles: cranial cruciate ligament, caudal cruciate ligament, medial meniscus, lateral meniscus, and the medial and lateral collateral ligaments. The following ligamentous structures were identified on transverse computed tomographic arthrography (CTA) images in all stifles: cranial cruciate ligament, caudal cruciate ligament, medial meniscus, lateral meniscus, meniscofemoral ligament, cranial meniscotibial ligaments, caudal meniscotibial ligaments, intermeniscal (transverse) ligament, and the medial and lateral collateral ligaments. The patellar tendon was identified on transverse and reconstructed dorsal and sagittal CT and CTA images in all stifles. Multiplanar reconstructions enabled further evaluation of the continuity of the cranial and caudal cruciate ligaments and menisci. The medial and lateral collateral ligaments were not clearly identified on CT or CTA multiplanar reconstructed images.  相似文献   

11.
An anatomic study of the equine digit using magnetic resonance imaging (MRI) was performed. Seventeen isolated forelimbs and one hindleg of nine warmblood horses were imaged in transverse, sagittal, and dorsal planes with a 1.5 Tesla magnet using T1-, T2- proton density-weighted spin echo sequences as well as T2 gradient echo sequences. One scan plane in each horse was compared with corresponding anatomic and histologic sections. The best imaging planes to visualize various anatomic structures were determined. Fibrocartilage was visualized in the insertion of the deep digital flexor tendon and the suspensory ligament as well as in the distal sesamoidean ligaments. The correlation of MRI images with anatomic and histologic sections confirmed that all of the anatomic structures in the equine digit could be evaluated in PD and T2 studies.  相似文献   

12.
The aim of this study was to describe the appearance of the ligamentous structures of the occipitoatlantoaxial (OAA) region in the normal horse by 3 tesla (3T) magnetic resonance imaging (MRI). The MRI images of the longitudinal odontoid ligament, tectorial membrane, dorsal and ventral atlantoaxial ligaments, dorsal atlantooccipital membrane with its reinforcing ligaments, and the lateral atlantooccipital ligaments of 10 horse cadavers were evaluated. All ligaments and membranes were identified in all planes, except for the lateral atlantooccipital ligament in the sagittal plane due to its cranioventrolateral course. All were iso to mildly hypointense to musculature of the neck in T1W with the exception of the tectorial membrane that was moderately hypointense; moderately hypointense in PD‐SPIR, and markedly hypointense (isointense to cortical bone) in T2W. The PD‐SPIR was the best sequence to identify all ligaments and membranes from their cranial and caudal attachments. The longitudinal odontoid ligament, ventral atlantoaxial ligament, and reinforcing bands of the dorsal atlantooccipital membrane presented a characteristic striped heterogeneous signal behavior thought to be due to fibrocartilaginous content. The remaining ligaments and membranes showed homogeneous signal intensity. Special anatomical features in this species such as the fan‐shaped longitudinal odontoid ligament, absence of the transverse ligament and presence of the ventral atlantoaxial ligament were documented. Ligamentous structures that stabilize the equine OAA region were described with MRI in this study and these findings could serve as an anatomic reference for those cases where instability of this region is suspected.  相似文献   

13.
Soft tissue injuries of the shoulder are an important cause of forelimb lameness in dogs. The objectives of this canine cadaver study were to describe normal anatomy of shoulder soft tissue structures using computed tomography (CT) and computed tomographic arthrography (CTA) and to determine the effects of positioning on visualization of shoulder soft tissue structures. Thirteen forelimbs were removed from eight canine cadavers. Two forelimbs were used for contrast dose optimization. For the remaining 11 forelimbs, shoulder CT and CTA were performed using three defined joint angles (140°, 90°, and 70°). For three forelimbs, CT and CTA images were compared with frozen anatomic sections to describe normal anatomy. Ten forelimbs were used for analysis of positioning effects. Soft tissue structures evaluated were the joint capsule, cartilage, ligaments, tendons, and muscles. A visual assessment score was assigned to each structure using a consensus of two observers. The range and mode of scores were calculated and compared for each modality and limb position. The shoulder joint capsule and medial and lateral glenohumeral ligaments were completely visible with CTA. All tendons and muscles were visualized in all the examinations except for the teres minor muscle tendon and the coracobrachialis muscle, which were not visible on all scans. Positioning the limb in an extended position significantly improved visualization of most soft tissue shoulder structures. Shoulder cartilage was best seen with CTA and with neutral or flexed positioning of the shoulder. Findings indicated that both CT and CTA are feasible imaging techniques for visualization of soft tissue structures of the canine shoulder.  相似文献   

14.
Objective-To compare anatomic features of cross-sectional specimens with those of MRI images of the heads of loggerhead sea turtles (Caretta caretta). Animals-5 cadavers of juvenile female loggerhead sea turtles. Procedures-Spin-echo T1-weighted and T2-weighted MRI scans were obtained in sagittal, transverse, and dorsal planes with a 0.2-T magnet and head coil. Head specimens were grossly dissected and photographed. Anatomic features of the MRI images were compared with those of gross anatomic sections of the heads from 4 of these turtles. Results-In the MRI images, anatomic details of the turtles' heads were identified by the characteristics of signal intensity of various tissues. Relevant anatomic structures were identified and labeled on the MRI images and corresponding anatomic sections. Conclusions and Clinical Relevance-The MRI images obtained through this study provided valid information on anatomic characteristics of the head in juvenile loggerhead sea turtles and should be useful for guiding clinical evaluation of this anatomic region in this species.  相似文献   

15.
Feline carpal ligament injuries are often diagnosed indirectly using palpation and stress radiography to detect whether there is instability and widening of joint spaces. There are currently no reports describing normal feline carpal ligament anatomy and the magnetic resonance imaging (MRI) appearance of the carpal ligaments. The objective of this prospective, anatomic study was to describe normal feline carpal ligament anatomy using gross plastinated specimens and MRI. We hypothesized that MRI could be used to identify the carpal ligaments as previously described in the dog, and to identify species specific variations in the cat. The study was conducted using feline cadaver antebrachii that were radiographed prior to study inclusion. Three limbs were selected for MRI to confirm repeatability of anatomy between cats. The proton density weighted pulse sequence was used and images were acquired in transverse, dorsal, and sagittal planes. Following MRI, the limbs were plastinated and a collagen stain was used to aid in identification of carpal ligament anatomy. These limbs were sliced in sagittal section, and a further six paired limbs were included in the study and sliced in transverse and dorsal planes. Anatomic structures were initially described using MRI and then subjectively compared with gross plastinated specimens. Readers considered the transverse MRI plane to be most useful for visualizing the majority of the carpal ligaments. Findings indicated that MRI anatomy of the carpal ligaments was comparable to plastinated anatomy; therefore MRI appears to be a beneficial imaging modality for exploration of feline carpal pathology.  相似文献   

16.
17.
The purpose of this study was to define normal gross anatomic structures in the equine stifle with magnetic resonance images. Magnetic resonance (MR) images were made in sagittal, 15° supinated, transverse, and dorsal planes of two equine stifles. The MR images were scrutinized by comparing MR images to dissection specimens and frozen cross sections of stifle joints. Sagittal and 15° supinated images were the most valuable in assessing articular cartilage, subchondral bone, and soft tissue structures within the joint. Cranial and caudal cruciate ligaments, medial and lateral menisci, meniscotibial and meniscofemoral ligaments, long digital extensor tendon, and patellar ligaments were easily evaluated. MR images provided substantially more gross anatomical information than the currently available imaging modalities.  相似文献   

18.
19.
The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号