首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Girdling effects on fruitlet abscission, leaf chlorophyll, chlorophyll a fluorescence and carbohydrate concentration in various flowering and vegetative shoots were studied during natural fruit drop in two Citrus cultivars. Irrespective of shoot type, girdling delayed fruitlet abscission, but only fruitlets borne on leafy shoots had increased final fruit set. Chlorophyll a fluorescence analysis revealed differences in quantum yield efficiency of photosystem II of light adapted leaves (Phi(PSII)) among shoot types and in response to girdling. In young leaves of vegetative shoots, girdling decreased Phi(PSII), whereas Phi(PSII) increased from Day 30 after girdling in young leaves of leafy flowering shoots; however, Phi(PSII) did not change in mature leaves during fruit set in either control or girdled trees. Girdling altered leaf carbohydrate concentrations and the photosynthetic performance of the various shoot types. Our results indicate that, in Citrus, several carbohydrate-based regulatory mechanisms of photosynthesis coexist during carbohydrate accumulation brought about by girdling. It is concluded that the delay in fruitlet abscission and the increase in Phi(PSII )observed in girdled leafy flowering shoots are the mechanisms underlying the enhancement of fruit set after girdling.  相似文献   

2.
To assess competition for photoassimilates among developing inflorescences, fruitlets and vegetative shoots in avocado (Persea americana Mill.), the distribution of recent photoassimilates was examined before and during flowering, fruit set, and the transition from sink to source of developing vegetative shoots. Mature leaves, located proximal to developing reproductive organs, and developing leaves, located distal to those organs, were exposed to a one-hour pulse of (14)CO(2). Translocation of radiolabeled assimilates was monitored over time and among organs. Overall distribution of assimilates was dependent on dry mass of tissues regardless of organ type. Flowers and fruitlets did not demonstrate greater sink strength than non-autotrophic leaves. Organs receiving assimilates were in phyllotactic alignment with source leaves. Photoassimilates were never limiting, although flower and fruitlet abscission occurred during and long after this competitive period. Carbohydrate availability was sufficient to support the growth of both developing fruitlets and leaves during early stages of reproductive development, and it did not limit fruitlet growth or stimulate fruitlet abscission.  相似文献   

3.
We analyzed the effects of nitrate availability on growth of Navelina (Citrus sinensis (L.) Osbeck) scions grafted on three citrus rootstocks differing in salt tolerance: Carrizo citrange (Citrus sinensis (L.) Osbeck x Poncirus trifoliata (L.) Raf.), Citrus macrophylla Wester and Cleopatra mandarin (Citrus reshni Hort. ex Tanaka). Salt stress reduced total plant biomass by 27-38%, whereas potassium nitrate supplementation partially counteracted this effect by increasing dry matter and new leaf area. Salinized Carrizo citrange had the greatest response to nitrate supplementation, whereas the effects on salinized Cleopatra mandarin and C. macrophylla were less apparent. Nitrogen and chlorophyll contents and photosynthetic activity also increased in leaves of the nitrate-supplemented salinized plants. In salinized plants, nitrate supplementation reduced leaf abscission, stimulated photosynthetic activity and increased growth of new leaves. The nitrate treatment did not modify chloride concentration in leaves, but it reduced chloride concentrations in Carrizo and Macrophylla roots. Therefore, in both rootstocks, chloride content was similar in mature leaves, higher in immature leaves and lower in roots of the nitrate-supplemented salinized plants compared with salinized plants unsupplemented with nitrate. We suggest that the nitrate-induced stimulation of growth reduced chloride concentration in roots through the reallocation of chloride to new leaves.  相似文献   

4.
To further characterize carbohydrate physiology in grapevine flowers, we examined inflorescence autotrophy in the 'Gewurztraminer' and 'Pinot noir' cultivars, which differ in sensitivity to flower abscission. In both cultivars, positive net photosynthesis occurred in inflorescences. The rate of photosynthesis gradually decreased throughout flower development and there was no net carbon assimilation at fruit set. The rate of photosynthesis was positively correlated with chlorophyll concentration but not to stomatal conductance. Throughout flower development, the internal CO2 concentration increased in inflorescence tissues, suggesting that assimilates are also formed through refixation of respiratory CO2 by the phosphoenolpyruvate carboxylase (PEPC) pathway. Significant differences between the two cultivars were recorded during meiosis, when photosynthesis was higher in 'Gewurztraminer'. We conclude that the inflorescence of grapevine contributes to its own carbon nutrition by photosynthesizing throughout flower development. Moreover, the differential patterns of photosynthesis in the inflorescences of 'Gewurztraminer' and 'Pinot noir' might account for their differing fertilization rates and sensitivity to flower abscission.  相似文献   

5.
We analyzed annual carbohydrate storage and mobilization of bearing ("on") and non-bearing ("off") 'Kerman' pistachio (Pistacia vera L.) trees growing on three different rootstocks. On all rootstocks, carbohydrate storage in shoots and branches of "on" and "off" trees was lowest following the spring growth flush. In "off" trees, stored carbohydrates increased and remained high after the initial growth flush. In "on" trees, stem carbohydrates increased temporarily in early summer, but were mobilized in mid-season during kernel fill, and then increased again after nut harvest. During the dormant season, the only substantial differences in carbohydrate storage between previously "on" and "off" trees were found in the roots of the weakest rootstock. The annual carbohydrate storage and mobilization pattern in canopy branches of heavily cropped pistachio trees appeared to be driven by carbohydrate demands related to nut development and untempered by tree vigor. Mobilization of carbohydrates from current-season and 1- and 2-year-old stem wood of "on" trees during the primary period of kernel fill corresponded with the period of inflorescence bud abscission. Thus, the alternate bearing pattern associated with inflorescence bud abscission in 'Kerman' pistachio may be a function of mid-season mobilization of stored carbohydrates in current-season stems resulting in stimulation of inflorescence bud abscission.  相似文献   

6.
细菌性穿孔病是李主要病害之一。分布范围广,危害严重。叶片、果实、和枝条均可发病,如防治不及时,常造成大量落叶、落果,削弱树势,影响产量,严重者发生绝产甚至死树。本文从园地选择、品种、砧木、清除病源、科学用药、控制树势等几个方面探讨了李细菌性穿孔病的综合防治技术。  相似文献   

7.
张微  张锐 《林业科学》1992,28(1):76-79,T001
沙棘果实成熟与衰老时均不脱落,甚至干缩在果枝上,为了研究沙棘不落果原因,寻求促进落果的有效方法,我们进行了下列实验。一、材料与方法 (一)外施乙烯与ABA于果实完熟前期(9月中下旬)剪取中国沙棘(Hippophaerhamnoides L.Subsp.Sinesis)、西藏沙棘(H.thibetana Schlechtend)带叶果枝,将下端分别浸于装有500、1000ppm乙烯利,50、100ppm ABA与50、100ppm6-康基氨基腺  相似文献   

8.
The effects of shoot defoliation, decapitation, and disbudding on carbon mobilization were investigated in rooted cuttings of Populus maximowiczii x nigra L. 'MN9'. Ten days after complete shoot defoliation or decapitation, the stem starch concentration of treated plants declined to one-half that of intact plants, and there were similar or greater reductions in the concentrations of glucose, fructose, sucrose, galactose, and shikimic acid. Partial shoot defoliation (50%) and complete disbudding had no effect on stem starch concentration, but stem sucrose concentration was reduced in all treatments. Sucrose depletion preceded and may have induced other changes in the carbon status of plants subjected to leaf or shoot removal. Four days after shoot decapitation, the sucrose concentration of roots of treated plants was reduced to 25% of that of intact plants. However, the concentrations of fructose and glucose increased in the roots of treated plants and was followed by the accumulation of shikimic acid, salicyl alcohol, unknown compound A and salicin. The possible role of increased concentrations of root organic solutes in the water relations and regrowth process of decapitated plants is discussed.  相似文献   

9.
To examine how rates of net photosynthesis and N uptake of red oak seedlings respond to defoliation under contrasting conditions of N availability, nitrogen-deficient plants were grown in sand culture and subjected to partial defoliation and increased N availability under low light conditions. Both photosynthesis and N uptake rates were measured regularly before and after the treatments. Defoliation resulted in elevated rates of net photosynthesis in both low-N and high-N trees, but the high-N trees were able to maintain the high photosynthetic rates for a longer period of time. Nitrogen availability did not affect the photosynthetic rate of the undefoliated plants. Nitrogen uptake was not affected by the defoliation treatment, but was increased by increasing N availability in both the defoliated and undefoliated plants. Nitrogen uptake rates increased less than would be expected on the basis of N availability alone, but the uptake rates were apparently not limited by carbon supply in the short term. Suboptimal concentrations of N in plant tissues resulted in a strong sink for N even in the absence of refoliation.  相似文献   

10.
Increased climatic variability, including extended periods of drought stress, may compromise on the health of forest ecosystems. The effects of defoliating pests on plantations may also impact on forest productivity. Interactions between climate signals and pest activity are poorly understood. In this study, we examined the combined effects of reduced water availability and defoliation on maximum photosynthetic rate (A(sat)), stomatal conductance (g(s)), plant water status and growth of Eucalyptus globulus Labill. Field-grown plants were subjected to two water-availability regimes, rain-fed (W-) and irrigated (W+). In the summer of the second year of growth, leaves from 75% of crown length removed from trees in both watering treatments and physiological responses within the canopies were examined. We hypothesized that defoliation would result in improved plant water status providing a mechanistic insight into leaf- and canopy-scale gas-exchange responses. Defoliated trees in the W+ treatment exhibited higher A(sat) and g(s) compared with non-defoliated trees, but these responses were not observed in the W- treatment. In contrast, at the whole-plant scale, maximum rates of transpiration (E(max)) and canopy conductance (G(Cmax)) and soil-to-leaf hydraulic conductance (K(P)) increased in both treatments following defoliation. As a result, plant water status was unaffected by defoliation and trees in the defoliated treatments exhibited homeostasis in this respect. Whole-plant soil-to-leaf hydraulic conductance was strongly correlated with leaf scale g(s) and A(sat) following the defoliation, providing a mechanistic insight into compensatory up-regulation of photosynthesis. Above-ground height and diameter growth were unaffected by defoliation in both water availability treatments, suggesting that plants use a range of responses to compensate for the impacts of defoliation.  相似文献   

11.
Activities of NAD(+)-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) in 'Encore' peach (Prunus persica L.) fruits and developing shoot tips were assayed during the growing season to determine whether carbohydrate metabolizing enzymes could serve as indicators of sink strength. In fruit flesh, SS activity was detected during Stage I of growth, when cells were actively dividing, and SDH activity was detected during Stage III, when cells were actively enlarging. Acid invertase activity was detected during Stage I and showed a closer correlation with relative increase in fruit weight during the growing season than SS activity. During seed filling and pit hardening (Stage II), when relative fruit growth rate was slowest, activities of carbohydrate metabolizing enzymes in fruit flesh were not detectable. No SOX activity was detected during Stages I and II. The highest sucrose content occurred near the end of fruit development when the activities of sucrose metabolizing enzymes were low. In developing shoot tips, the sorbitol:sucrose ratio was 2:1 (w/w) and SDH activity was low at the beginning and end of the season when vegetative growth was slowest. The sorbitol:sucrose ratio changed to 1:1 (w/w) along with an increase in SDH activity in shoot tips during the mid-growing season. In 'Nemaguard' peach, SDH exhibited higher activity in root tips than in other organs. Among the sorbitol- and sucrose-metabolizing enzyme activities, only SDH activity was positively correlated with shoot growth in 'Nemaguard' plants.  相似文献   

12.
Vegetative buds of peach (Prunus persica L. Batsch.) trees act as strong sinks and their bud break capacity can be profoundly affected by carbohydrate availability during the rest period (November-February). Analysis of xylem sap revealed seasonal changes in concentrations of sorbitol and hexoses (glucose and fructose). Sorbitol concentrations decreased and hexose concentrations increased with increasing bud break capacity. Sucrose concentration in xylem sap increased significantly but remained low. To clarify their respective roles in the early events of bud break, carbohydrate concentrations and uptake rates, and activities of NAD-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX) and cell wall invertase (CWI) were determined in meristematic tissues, cushion tissues and stem segments. Only CWI activity increased in meristematic tissues shortly before bud break. In buds displaying high bud break capacity (during January and February), concentrations of sorbitol and sucrose in meristematic tissues were almost unchanged, paralleling their low rates of uptake and utilization by meristematic tissues, and indicating that sorbitol and sucrose play a negligible role in the bud break process. Hexose concentrations in meristematic tissues and glucose imported by meristematic tissues correlated positively with bud break capacity, suggesting that hexoses are involved in the early events of bud break. These findings were confirmed by data for buds that were unable to break because they had been collected from trees deprived of cold. We therefore conclude that hexoses are of greater importance than sorbitol or sucrose in the early events of bud break in peach trees.  相似文献   

13.
Coconut (Cocos nucifera L.) is a perennial tropical monocotyledon that produces fruit continuously. The physiological function of the large amounts of sucrose stored in coconut stems is unknown. To test the hypothesis that reserve storage and mobilization enable the crop to adjust to variable sink-source relationships at the scale of the whole plant, we investigated the dynamics of dry matter production, yield and yield components, and concentrations of nonstructural carbohydrate reserves in a coconut plantation on Vanuatu Island in the South Pacific. Two treatments were implemented continuously over 29 months (April 2002 to August 2004): 50% leaf pruning (to reduce the source) and 100% fruit and inflorescence pruning (to reduce the sink). The pruning treatments had little effect on carbohydrate reserves because they affected only petioles, not the main reserve pool in the stem. Both pruning treatments greatly reduced dry matter production of the reproductive compartment, but vegetative growth and development were negligibly affected by treatment and season. Leaf pruning increased radiation-use efficiency (RUE) initially, and fruit pruning greatly reduced RUE throughout the experiment. Changes in RUE were negatively correlated with leaflet soluble sugar concentration, indicating feedback inhibition of photosynthesis. We conclude that vegetative development and growth of coconut show little phenotypic plasticity, assimilate demand for growth being largely independent of a fluctuating assimilate supply. The resulting sink-source imbalances were partly compensated for by transitory reserves and, more importantly, by variable RUE in the short term, and by adjustment of fruit load in the long term. Possible physiological mechanisms are discussed, as well as modeling concepts that may be applied to coconut and similar tree crops.  相似文献   

14.
Defoliation of conifers occasionally precedes bark beetle attacks, suggesting that a severe loss of foliage and ensuing reductions in carbohydrate availability may enhance host tree susceptibility. To shed light on this question, different degrees of defoliation on young Picea abies were simulated by removing whole whorls of branches from below, the trees retaining 100, 50, or 25% of their original crown biomass. After one week or one year, the trees were inoculated with Ophiostoma polonkum, a tree‐killing fungus transmitted by Ips typographus.

Fungal proliferation and tree mortality increased with increasing levels of pruning. Pruning reduced stem diameter growth, but not carbohydrate reserves in foliage and bark. Foliar N, P, and Ca increased with increasing pruning. The results lend support to the hypothesis that a reduction in the photosynthesis capacity increases host tree susceptibility to a beetle‐fungus attack, and that induced defence against infection depends on efficient translocation of assimilates to the sites of infection.  相似文献   

15.
“碧玉”猕猴桃果实生长动态及相关性分析   总被引:2,自引:0,他引:2  
以山东省淄博市"碧玉"猕猴桃为研究对象,观测果实生长动态,并进行相关性分析,结果表明:5月下旬花凋落后幼果开始生长,直至9月上旬停止生长;5月31日—6月21日(22 d)为快速生长高峰期,果实纵径从3.81 cm增长到6.16 cm,宽横径从2.33 cm增长到4.01 cm;随后进入缓慢生长阶段,呈逐渐上升单曲线,生长规律符合二次曲线。纵径净增长出现2次生长高峰,宽横径净增长出现3次生长高峰,生长曲线为双"S"形。随着果实发育,果形指数逐渐变小,果形由长圆形逐渐向椭圆形变化,横向逐渐膨大。  相似文献   

16.
Gleason SM  Ares A 《Tree physiology》2004,24(10):1087-1097
Fraxinus uhdei (Wenz.) Lingelsh (tropical ash), a species introduced to Hawaii from Mexico, invades forests of the endemic tree Acacia koa A.Gray (koa). We examined physiological and morphological characteristics of koa and tropical ash to explore possible mechanisms that may facilitate invasion of koa forests by tropical ash. Seedlings of both species were grown in a greenhouse in three light treatments: 100% photosynthetic photon flux (PPF); 18% PPF; and 2% PPF inside the greenhouse. Light compensation point, maximum CO2 assimilation rate and dark respiration rate of seedlings differed significantly among light treatments, but were similar between species. A defoliation experiment indicated that tropical ash was better able to survive defoliation than koa, especially under high-light conditions. Tropical ash seedlings allocated more carbon (C) and nitrogen (N) to storage per unit PPF than koa seedlings. Total nonstructural carbohydrates were positively correlated with plant survival in both species. The patterns of C and N allocation associated with tropical ash seedlings favor their survival in high light, under intense herbivory and on sites where N availability is seasonal or highly variable. Variation in carbohydrate storage between koa and tropical ash greatly exceeded variation in photosynthetic performance at the leaf level.  相似文献   

17.
Carbohydrate reserve storage in trees is usually considered a passive function, essentially buffering temporary discrepancies between carbon availability and demand in the annual cycle. Recently, however, the concept has emerged that storage might be a process that competes with other active sinks for assimilate. We tested the validity of this concept in Hevea brasiliensis Müll. Arg. (rubber) trees, a species in which carbon availability can be manipulated by tapping, which induces latex regeneration, a high carbon-cost activity. The annual dynamics of carbohydrate reserves were followed during three situations of decreasing carbon availability: control (no tapping), tapped and tapped with Ethephon stimulation. In untapped control trees, starch and sucrose were the main carbohydrate compounds. Total nonstructural carbohydrates (TNC), particularly starch, were depleted following bud break and re-foliation, resulting in an acropetal gradient of decreasing starch concentration in the stem wood. During the vegetative season, TNC concentration increased. At the end of the vegetative season, there were almost no differences in TNC concentration along the trunk. In tapped trees, the vertical gradient of starch concentration was locally disturbed by the presence of the tapping cut. However, the main effect of tapping was a dramatic increase in TNC concentration, particularly starch, throughout the trunk and in the root. The difference in TNC concentration between tapped and untapped trees was highest when latex production was highest (October); the difference was noticeable even in areas of the trees that are unlikely to be directly involved in latex regeneration, and it was enhanced by Ethephon stimulation, which is known to increase latex metabolism and flow duration. Thus, contrary to what could be expected if reserves serve as a passive buffer, a decrease in carbohydrate availability resulted in a net increase in carbohydrate reserves at the trunk scale. Such behavior supports the view that trees tend to adjust the amount of carbohydrate reserves stored to the level of metabolic demand, at the possible expense of growth.  相似文献   

18.
乙烯利及NAA对红富士疏花疏果的效应   总被引:3,自引:0,他引:3  
在红富士苹果花蕾期、盛花蓁落花后三个时期喷施乙烯利配合NAA,结果表明,在盛花期取得明显效果,尤以乙烯利400mg.L^-1和600mg.L^-1及乙烯利800mg.L^-1配合两组处理效果最好,百花序坐果数达到46-99个,单用乙烯利800mg.L^-1x疏除过量,百花序做果仅25个,配合NAA10mg.L^-1可降低乙烯利的疏除效应,使得效果更为稳妥。  相似文献   

19.
The hypothesis that carbohydrate partitioning is driven by competition among individual plant organs, based on each organ's growth potential, was used to develop a simulation model of the carbon supply and demand for reproductive and vegetative growth in peach trees. In the model, photosynthetic carbon assimilation is simulated using daily minimum and maximum temperature and solar radiation as inputs. Carbohydrate is first partitioned to maintenance respiration, then to leaves, fruits, stems and branches, then to the trunk. Root activity is supported by residual carbohydrate after aboveground growth. Verification of the model was carried out with field data from trees that were thinned at different times. In general, the model predictions corresponded to field data for fruit and vegetative growth. The model predicted that resource availability limited fruit and stem growth during two periods of fruit growth, periods that had been identified in earlier experimental studies as resource-limited growth periods. The model also predicted that there were two periods of high carbohydrate availability for root activity. The fit between model predictions and field data supports the initial hypothesis that plants function as collections of semiautonomous, interacting organs that compete for resources based on their growth potentials.  相似文献   

20.
对《中国木本植物种子》一书及多篇文献进行总结归纳,综述了中国木本植物花期、果实成熟期、结果期、果实脱落期、果实成熟到果实脱落时间等方面的规律。木本植物经过长期的自然选择,为适应复杂多变的环境,从基因水平形成了自我调控机制,生长、发育、繁殖和分布规律均受内、外2方面因子影响。外界环境因子的复杂多样致使植物各时期的表现型也复杂多样。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号