首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ObjectiveInvestigate physiological and sedative/anaesthetic effects of xylazine, medetomidine or dexmedetomidine combined with ketamine in free-ranging Bennett's wallabies.Study designProspective clinical trial.AnimalsTwenty-six adult free-ranging Bennett's wallabies.MethodsAnimals were darted intramuscularly with one of three treatments: xylazine and ketamine, 2.0 and 15.0 mg kg?1, respectively (XK): medetomidine and ketamine 0.1 and 5.0 mg kg?1 (MK) and dexmedetomidine and ketamine 0.05 and 5.0 mg kg?1 (DMK). Body weights were estimated. If the animal was still laterally recumbent after 45 minutes of anaesthesia, then an alpha-2 adrenoceptor antagonist, atipamezole, was administered (XK: 0.4 mg kg?1, MK: 5 mg kg?1, DMK: 2.5 mg kg?1). Heart rate (HR) and respiratory rate (fR) were recorded at 5-minute intervals and temperature at 10-minute intervals. Venous blood was taken 30 minutes after initial injection. Statistical analysis utilized anova. p < 0.05 was considered significant.ResultsAnimals became recumbent rapidly in all groups. XK animals had muscle twitches, responded to external stimuli, and three animals required additional dosing; this was not observed in the MK and DMK groups. HR (mean ± SD beats minute?1) in XK (81 ± 4) was significantly higher than MK (74 ± 2) and DMK (67 ± 4). There were no differences in fR, temperature, blood-gas and biochemical values between groups. More animals in MK (9/10) and DMK (5/6) needed antagonism of anaesthesia compared with XK (1/10). There were no adverse effects after anaesthesia.Conclusion and clinical relevanceCardio-respiratory effects were similar in all groups. There were fewer muscle twitches and reactions to external stimuli in MK and DMK. Duration of anaesthesia was shorter in XK; most animals in MK and DMK needed atipamezole to assist recovery. All three treatments provided satisfactory sedation/anaesthesia and are suitable for use in Bennett's wallabies.  相似文献   

2.
ObjectiveTo describe the pharmacokinetics, cortisol response and behavioral changes associated with administration of sub-anesthetic xylazine and ketamine prior to castration.Study designProspective, randomized experiment.AnimalsTwenty-two male beef calves (260-310 kg).MethodsCalves were randomly assigned to receive the following treatment immediately prior to surgical or simulated castration; 1) uncastrated, placebo-treated control (CONT) (n = 4), 2) Castrated, placebo treated control (CAST) (n = 6), 3) castrated with intravenous xylazine (X) (0.05 mg kg?1) (n = 6), and 4) castrated with IV xylazine (X) (0.05 mg kg?1) combined with ketamine (K) (0.1 mg kg?1) (n = 6). Blood samples collected over 10 hours post-castration were analyzed by LC-MS-MS for drug concentrations and chemiluminescent immunoassay for cortisol determination.ResultsDrug concentrations during the first 60 minutes post-castration fit a one-compartment open model with first-order elimination. The harmonic mean elimination half-lives (± pseudo SD) for X, X with K and K were 12.9 ± 1.2, 11.2 ± 3.1 and 10.6 ± 2.8 minutes, respectively. The proportion of the total area under the effect curve (AUEC) for cortisol during this period was significantly lower in the X group (13 ± 3%; p = 0.006) and the X+K group (14 ± 2%; p = 0.016) compared with the CAST calves (21 ± 2%). However, after 300 minutes the AUEC in the X group was higher than CAST. Significantly more calves demonstrated attitude that was unchanged from pre-manipulation behavior in the CONT (p = 0.021) and X+K treated calves (p = 0.0051) compared with the CAST calves.ConclusionsBehavioral changes and lower serum cortisol concentrations during the first 60 minutes post-castration were associated with quantifiable xylazine and ketamine concentrations.Clinical relevanceLow doses of xylazine and ketamine administered immediately prior to castration may offer a safe, efficacious and cost-effective systemically administered alternative or adjunct to local anesthesia.  相似文献   

3.
ObjectiveTo compare three anaesthetic protocols for umbilical surgery in calves regarding adequacy of analgesia, and cardiopulmonary and hormonal responses.Study designProspective, randomised experimental study.AnimalsThirty healthy German Holstein calves (7 female, 23 male) aged 45.9 ± 6.4 days.MethodsAll calves underwent umbilical surgery in dorsal recumbency. The anaesthetic protocols were as follows: group INH (n = 10), induction 0.1 mg kg?1 xylazine IM and 2.0 mg kg?1 ketamine IV, maintenance isoflurane in oxygen; Group INJ (n = 10), induction 0.2 mg kg?1 xylazine IM and 5.0 mg kg?1 ketamine IV, maintenance 2.5 mg kg?1 ketamine IV every 15 minutes or as required; group EPI (n = 10), high volume caudal epidural anaesthesia with 0.2 mg kg?1 xylazine diluted to 0.6 mL kg?1 with procaine 2%. All calves received peri-umbilical infiltration of procaine and pre-operative IV flunixin (2.2 mg kg?1). Cardiopulmonary variables were measured at preset intervals for up to 2 hours after surgery. The endocrine stress response was determined. Intra-operative nociception was assessed using a VAS scale. Data were compared between groups using appropriate statistical tests. A value of p < 0.05 was considered significant.ResultsAll three protocols provided adequate anaesthesia for surgery although, as judged by the VAS scale, intra-operative response was greatest with INJ. Lowest mean cortisol levels during surgery occurred in EPI. Heart rate and cardiac output did not differ between groups, but mean arterial blood pressure, systemic vascular resistance, and partial pressure of carbon dioxide were higher and arterial pH lower in groups INH and INJ than in Group EPI. Group INJ became hypoxaemic and had a significantly greater vascular shunt than did the other groups.Conclusion and clinical relevanceGroups INH and EPI both proved acceptable protocols for calves undergoing umbilical surgery, whilst INJ resulted in variable anti-nociception and in hypoxaemia. High volume caudal epidural anaesthesia provides a practical inexpensive method of anaesthesia for umbilical surgery.  相似文献   

4.
ObjectiveTo evaluate the influence of premedication with tramadol on xylazine–ketamine anaesthesia in young pigs.Study designProspective, randomized, blinded cross-over study.AnimalsTen young Niger hybrid pigs: mean weight 6.1 ± 0.6 kg.MethodsPigs were anaesthetized twice. Xylazine (2.5 mg kg?1), ketamine (25 mg kg?1) and atropine (0.04 mg kg?1) were administered by intramuscular (IM) injection, 5 minutes after either tramadol (5 mg kg?1)) (treatment XKT) or saline (treatment XKS). Time to loss of righting reflex (TLRR), duration of antinociception, duration of recumbency (DR) and recovery times (RCT) were recorded. Quality of induction of anaesthesia including ease of endotracheal intubation was assessed using a subjective ordinal rating score of 1 (worst) to 4 (best). Heart, pulse and respiratory rates, arterial oxygen saturations and rectal temperatures were determined over 60 minutes. Antinociception was assessed by the pigs’ response to artery forceps applied at the interdigital space. Data were compared with Student's t-test, Mann–Whitney's test or analysis of variance (anova) for repeated measures as appropriate and are presented as mean ± standard deviation.ResultsThe quality of anaesthetic induction was significantly better and duration of antinociception significantly longer (p < 0.05) in treatment XKT (3.1 ± 0.7 score; 43.7 ± 15.5 minutes) than in treatment XKS (2.8 ± 0.6 score; 32.0 ± 13.3 minutes). TLRR, DR and RCT did not differ significantly (p > 0.05) between treatment XKT (2.1 ± 0.8, 65.8 ± 17.0 and 13.2 ± 6.7 minutes) and treatment XKS (2.1 ± 1.3, 58.0 ± 14.8 and 10.3 ± 5.6 minutes). Physiological measurements did not differ between the treatments.Conclusion and clinical relevanceTramadol improved the quality of anaesthetic induction and increased the duration of antinociception in xylazine–ketamine anaesthetized young pigs without increasing duration of anaesthesia, nor causing additional depression of the physiological parameters measured.  相似文献   

5.
ObjectiveTo study the effects of oromucosal detomidine gel administered sublingually to calves prior to disbudding, and to compare its efficacy with intravenously (IV) administered detomidine.Study designRandomised, prospective clinical study.AnimalsTwenty dairy calves aged 12.4 ± 4.4days (mean ± SD), weight 50.5 ± 9.0 kg.MethodsDetomidine at 80 μg kg?1 was administered to ten calves sublingually (GEL) and at 30 μg kg?1 to ten control calves IV (V. jugularis). Meloxicam (0.5 mg kg?1) and local anaesthetic (lidocaine 3 mg kg?1) were administered before heat cauterization of horn buds. Heart rate (HR), body temperature and clinical sedation were monitored over 240 minutes. Blood was collected from the V. cephalica during the same period for drug concentration analysis. Pharmacokinetic variables were calculated from the plasma detomidine concentration-time data using non-compartmental methods. Statistical analyses compared routes of administration by Student’s t-test and linear mixed models as relevant.ResultsThe maximum plasma detomidine concentration after GEL was 2.1 ± 1.2 ng mL?1 (mean ±SD) and the time of maximum concentration was 66.0 ± 36.9 minutes. The bioavailability of detomidine was approximately 34% with GEL. Similar sedation scores were reached in both groups after administration of detomidine, but maximal sedation was reached earlier in the IV group (10 minutes) than in the GEL group (40 minutes). HR was lower after IV than GEL from 5 to 10 minutes after administration. All animals were adequately sedated, and we were able to administer local anaesthetic without resistance to all of the calves before disbudding.Conclusions and clinical relevanceOromucosally administered detomidine is an effective sedative agent for calves prior to disbudding.  相似文献   

6.
ObjectiveTo evaluate the anesthetic and cardiorespiratory effects of two doses of intramuscular (IM) xylazine/ketamine in alpacas, and to determine if tolazoline would reduce the anesthetic recovery time.Study designProspective randomized crossover study.AnimalsSix castrated male alpacas.MethodsEach alpaca received a low dose (LD) (0.8 mg kg−1 xylazine and 8 mg kg−1 ketamine IM) and high dose (HD) (1.2 mg kg−1 xylazine and 12 mg kg−1 ketamine IM) with a minimum of one week between trials. Time to sedation, duration of lateral recumbency and analgesia, pulse rate, respiratory rate, hemoglobin oxygen saturation, arterial blood pressure, blood-gases, and the electrocardiogram were monitored and recorded during anesthesia. With each treatment three alpacas were randomly selected to receive tolazoline (2 mg kg−1 IM) after 30 minutes of lateral recumbency.ResultsOnset of sedation, lateral recumbency and analgesia was rapid with both treatments. The HD was able to provide ≥30 minutes of anesthesia in five of six alpacas. The LD provided ≥30 minutes of anesthesia in three of six alpacas. Respiratory depression and hypoxemia occurred with the HD treatment during the first 10 minutes of lateral recumbency: two animals were severely hypoxemic and received nasal oxygen for 5 minutes. Heart rate decreased, but there were no significant changes in arterial blood pressure. Tolazoline significantly shortened the duration of recumbency with the HD.ConclusionsThe HD provided more consistent clinical effects in alpacas than the LD. Intramuscular tolazoline shortened the duration of lateral recumbency in alpacas anesthetized with the HD combination.Clinical relevanceBoth doses of the combination were effective in providing restraint in alpacas and the duration of restraint was dose dependent. Supplemental oxygen should be available if using the HD and IM administration of tolazoline will shorten the recovery time.  相似文献   

7.
8.
ObjectiveTo investigate a combination of azaperone, detomidine, butorphanol and ketamine (DBK) in pigs and to compare it with the combination of azaperone, tiletamine and zolazepam (TZ).Study designProspective, randomized, blinded, cross–over study.AnimalsTwelve clinically healthy crossbred pigs aged about 2 months and weighing 16–25 kg.MethodsPigs were pre–medicated with azaperone (4 mg kg?1). Ten minutes later anaesthesia was induced with intramuscular DBK (detomidine 0.08 mg kg?1, butorphanol 0.2 mg kg?1, ketamine 10 mg kg?1) or TZ (tiletamine and zolazepam 5 mg kg?1). The pigs were positioned in dorsal recumbency. Heart and respiratory rates, posture, anaesthesia score, PaO2, PaCO2, pH and bicarbonate concentration were measured. t–test was used to compare the areas under time–anaesthesia index curve (AUCanindex) between treatments. Data concerning heart and respiratory rates, PaO2, PaCO2 and anaesthesia score were analysed with anova for repeated measurements. Wilcoxon signed rank test was used for the data concerning the duration of sedation and anaesthesia.ResultsThe sedation, analgesia and anaesthesia lasted longer after DBK than TZ. The AUCanscore were 863 ± 423 and 452 ± 274 for DBK and TZ, respectively (p = 0.002). The duration of surgical anaesthesia lasted a median of 35 minutes (0–105 minutes) after DBK and a median of 15 minutes (0–35 minutes) after TZ (p = 0.05). Four pigs after DBK and six after TZ did not achieve the plane of surgical anaesthesia. The heart rate was lower after DBK than after TZ. Both treatments had similar effects on the other parameters measured.ConclusionsAt the doses used DBK was more effective than TZ for anaesthesia in pigs under field conditions.Clinical relevanceThe combinations can be used for sedation and minor field surgery in pigs. The doses and drugs chosen were insufficient to produce a reliable surgical plane of anaesthesia in these young pigs.  相似文献   

9.
ObjectiveTo determine the pharmacokinetics and pharmacodynamics of the neurosteroidal anaesthetic, alfaxalone, in horses after a single intravenous (IV) injection of alfaxalone, following premedication with acepromazine, xylazine and guaiphenesin.Study designProspective experimental study.AnimalsTen (five male and five female), adult, healthy, Standardbred horses.MethodsHorses were premedicated with acepromazine (0.03 mg kg?1 IV). Twenty minutes later they received xylazine (1 mg kg?1 IV), then after 5 minutes, guaiphenesin (35 mg kg?1 IV) followed immediately by IV induction of anaesthesia with alfaxalone (1 mg kg?1). Cardiorespiratory variables (pulse rate, respiratory rate, pulse oximetry) and clinical signs of anaesthetic depth were evaluated throughout anaesthesia. Venous blood samples were collected at strategic time points and plasma concentrations of alfaxalone were assayed using liquid chromatography-mass spectrometry (LC/MS) and analysed by noncompartmental pharmacokinetic analysis. The quality of anaesthetic induction and recovery was scored on a scale of 1–5 (1 very poor, 5 excellent).ResultsThe median (range) induction and recovery scores were 4 (3–5) (good: horse slowly and moderately gently attained recumbency with minimal or no rigidity or paddling) and 4 (1–5) (good: horse stood on first attempt with some knuckling and ataxia) respectively. The monitored cardiopulmonary variables were within the range expected for clinical equine anaesthesia. The mean ± SD durations of anaesthesia from induction to sternal recumbency and from induction to standing were 42.7 ± 8.4 and 47 ± 9.6 minutes, respectively. The mean ± SD plasma elimination half life (t1/2), plasma clearance (Clp) and volume of distribution (Vd) for alfaxalone were 33.4 minutes, 37.1 ± 11.1 mL minute?1 kg?1 and 1.6 ± 0.4 L kg?1, respectively.Conclusions and clinical relevanceAlfaxalone, in a 2-hydroxypropyl-beta-cyclodextrin formulation, provides anaesthesia with a short duration of recumbency that is characterised by a smooth induction and satisfactory recovery in the horse. As in other species, alfaxalone is rapidly cleared from the plasma in the horse.  相似文献   

10.
ObjectiveTo investigate the effect of metamizole on physiologic variables in calves undergoing surgical extirpation of the navel during anaesthesia using xylazine, ketamine and isoflurane.Study designDouble-blind, randomized trial.AnimalsA total of 26 calves.MethodsCalves with uncomplicated umbilical hernias and otherwise clinically healthy were randomly allocated to one of two groups: the control group (CG) and metamizole group (MG). All calves were administered meloxicam (0.5 mg kg–1) intravenously (IV) 150 minutes before skin incision (SI). Animals were premedicated with xylazine (0.2 mg kg–1) intramuscularly 50 minutes before SI. Anaesthesia was induced with ketamine (2 mg kg–1) IV 30 minutes before SI and maintained with isoflurane in oxygen. MG calves were given metamizole (40 mg kg–1) IV 60 minutes before SI. CG calves were administered an equivalent volume of saline. Heart rate (HR) and mean arterial blood pressure (MAP) were recorded from 5 minutes before SI until the end of anaesthesia (60 minutes after SI). Blood samples for determination of the plasma cortisol concentration (PCC) were drawn 60 minutes before SI and at 5, 30, 60, 150, and 510 minutes after SI.ResultsIn both groups, PCC increased during surgery and decreased after surgery. PCC was consistently lower in MG than in CG and was significantly (p = 0.0026) lower at 150 minutes after SI in the MG. Overall, the mean PCC in MG was 10.9 nmol L–1 lower than that in CG (p = 0.01). In both groups, HR decreased during anaesthesia, whereas MAP increased, albeit with no statistically significant (p > 0.05) differences between groups.Conclusions and clinical relevanceOur study results suggest that a single preoperative dose of metamizole may have a positive impact on intra- and immediate postoperative analgesia by reducing PCC when used as an indicator of nociception.  相似文献   

11.
The anesthetic and cardiorespiratory effects of a low dose (LD, 0.4 mg kg?1 xylazine and 4 mg kg?1 ketamine) and a high dose (HD, 0.8 mg kg?1 xylazine and 8 mg kg?1 ketamine) of IM xylazine–ketamine combination were compared in a randomized cross‐over study using six castrated male llamas. Three llamas in each dosage group (LDT, HDT) were assigned to receive IM tolazoline (2 mg kg?1) after 30 minutes of recumbency. All IM injections were given in the semitendinosus or semimembranosus muscles. Pulse, respiratory rate, and indirect arterial blood pressure were recorded every 10 minutes, and hemoglobin oxygen saturation was recorded every 5 minutes during lateral recumbency. Samples for arterial blood gas analysis were collected 5 minutes following recumbency and every 30 minutes thereafter. Base‐to‐apex ECG was monitored continuously. Analgesia was evaluated every 5 minutes by both a 30 minutes skin pinch and a needle prick of the toe. Most llamas breathed room air throughout anesthesia. Two llamas that developed severe hypoxemia (SpO2 < 75%) received 5 minutes of nasal oxygen insufflation, but were maintained on room air for the rest of the anesthetic period. anova for repeated measures and Tukey's test were used to analyze cardiorespiratory data. Fischer's exact test was used to compare the ability of each to provide >30 minutes of lateral recumbency and analgesia. A p‐value < 0.05 was considered significant. Both dosages provided reasonably rapid induction following injection (LD: 10.8 ± 6.3 minutes; HD: 5.0 ± 1.1 minutes; p = 0.07). Duration of lateral recumbency and analgesia were 34.7 ± 6.7 and 27.3 ± 4.6 minutes, respectively, in the LDT llamas. None of the three remaining LD llamas remained in lateral recumbency for longer than 12 minutes. Duration of lateral recumbency and analgesia were 87.3 ± 18.5 and 67.7 ± 16.0 minutes, respectively, for the HD llamas that did not receive tolazoline. The HDT llamas were recumbent for a significantly shorter time (43.3 ± 0.6 minutes; p = 0.05). The ability to provide >30 minutes of recumbency and analgesia was better in the HD group (6/6) than in the LD group (2/6) (p = 0.03). No differences between dosages were seen in pulse rate, respiratory rate, or arterial pressures. No ECG abnormalities were seen. Transient hypoxemia was seen in the first 10 minutes of lateral recumbency in the HD group by both hemoglobin oxygen saturation (84 ± 9.5%) and by blood gas PaO2 (44.5 ± 5.8 mm Hg). It was concluded that the HD provided more consistent results than the LD, but induced transient hypoxemia. Tolazoline shortened the recovery time in llamas receiving the HD.  相似文献   

12.
Objective To characterize responses to different doses of propofol in horses pre‐medicated with xylazine. Animals Six adult horses (five females and one male). Methods Each horse was anaesthetized four times with either ketamine or propofol in random order at 1‐week intervals. Horses were pre‐medicated with xylazine (1.1 mg kg?1 IV over a minute), and 5 minutes later anaesthesia was induced with either ketamine (2.2 mg kg?1 IV) or propofol (1, 2 and 4 mg kg?1 IV; low, medium and high doses, respectively). Data were collected continuously (electrocardiogram) or after xylazine administration and at 5, 10 and 15 minutes after anaesthetic induction (arterial pressure, respiratory rate, pH, PaO2, PaCO2 and O2 saturation). Anaesthetic induction and recovery were qualitatively and quantitatively assessed. Results Differences in the quality of anaesthesia were observed; the low dose of propofol resulted in a poorer anaesthetic induction that was insufficient to allow intubation, whereas the high dose produced an excellent quality of induction, free of excitement. Recorded anaesthesia times were similar between propofol at 2 mg kg?1 and ketamine with prolonged and shorter recovery times after the high and low dose of propofol, respectively (p < 0.05; ketamine, 38 ± 7 minutes; propofol 1 mg kg?1, 29 ± 4 minutes; propofol 2 mg kg?1, 37 ± 5 minutes; propofol 4 mg kg?1, 50 ± 7 minutes). Times to regain sternal and standing position were longest with the highest dose of propofol (32 ± 5 and 39 ± 7 minutes, respectively). Both ketamine and propofol reversed bradycardia, sinoatrial, and atrioventricular blocks produced by xylazine. There were no significant alterations in blood pressure but respiratory rate, and PaO2 and O2 saturation were significantly decreased in all groups (p < 0.05). Conclusion The anaesthetic quality produced by the three propofol doses varied; the most desirable effects, which were comparable to those of ketamine, were produced by 2 mg kg?1 propofol.  相似文献   

13.
ObjectiveTo describe the use of intramuscular (IM) premedication with alfaxalone alone or in combination with diazepam in pigs.Study designRandomised‐controlled trial.AnimalsTwelve healthy 2 month‐old Landrace x Large White pigs weighing 21.3 ± 2.4 kg.MethodsAnimals were distributed randomly into two groups: group A (n = 6) 5 mg kg?1 of IM alfaxalone; and group AD (n = 6) 5 mg kg?1 of IM alfaxalone + 0.5 mg kg?1 of IM diazepam mixed in the same syringe. The total volume of injectate was standardized at 14 mL by dilution in 0.9% sodium chloride. Pain on injection, the degree of sedation and the quality of and time to induction of recumbency were evaluated. Once pigs were recumbent, reflexes were evaluated. Pulse and respiratory rates and arterial oxygen saturation were recorded at 5 and 10 minutes after drug administration. Pigs were then moved to another room for subsequent anaesthesia.ResultsTwo animals of group A and one of group AD showed slight pain on drug injection. Time to lateral recumbency (in seconds) was shorter in group AD (mean 203 ± SD 45 range 140–260) than group A (302 ± 75, range 220–420; p < 0.05). In group AD sedation was deeper, and on recumbency there was better muscle relaxation. When moved for anaesthesia, two pigs in Group A showed slight resistance but did not vocalize. There were no differences in physiologic measurements between groups, although in both groups, respiratory rate was significantly lower at ten compared with five minutes post drug injection. There was no apneoa.Conclusions and clinical relevanceIM administration of alfaxalone combined with diazepam resulted in a rapid onset of recumbency and deep sedation, with minimal side effects. The combination might be useful for premedication, but volume of injectate will limit its use to small pigs.  相似文献   

14.
15.
ObjectiveTo assess anesthetic induction, recovery quality and cardiopulmonary variables after intramuscular (IM) injection of three drug combinations for immobilization of horses.Study designRandomized, blinded, three-way crossover prospective design.AnimalsA total of eight healthy adult horses weighing 470–575 kg.MethodsHorses were administered three treatments IM separated by ≥1 week. Combinations were tiletamine–zolazepam (1.2 mg kg−1), ketamine (1 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TKD); ketamine (3 mg kg−1) and detomidine (0.04 mg kg−1) (treatment KD); and tiletamine–zolazepam (2.4 mg kg−1) and detomidine (0.04 mg kg−1) (treatment TD). Parametric data were analyzed using mixed model linear regression. Nonparametric data were compared using Skillings–Mack test. A p value <0.05 was considered statistically significant.ResultsAll horses in treatment TD became recumbent. In treatments KD and TKD, one horse remained standing. PaO2 15 minutes after recumbency was significantly lower in treatments TD (p < 0.0005) and TKD (p = 0.001) than in treatment KD. Times to first movement (25 ± 15 minutes) and sternal recumbency (55 ± 11 minutes) in treatment KD were faster than in treatments TD (57 ± 17 and 76 ± 19 minutes; p < 0.0005, p = 0.001) and TKD (45 ± 18 and 73 ± 31 minutes; p = 0.005, p = 0.021). There were no differences in induction quality, muscle relaxation score, number of attempts to stand or recovery quality.Conclusions and clinical relevanceIn domestic horses, IM injections of tiletamine–zolazepam–detomidine resulted in more reliable recumbency with a longer duration when compared with ketamine–detomidine and tiletamine–zolazepam–ketamine–detomidine. Recoveries were comparable among protocols.  相似文献   

16.
Objective To investigate the cardiopulmonary effects of a xylazine–guaiphenesin–ketamine infusion combined with inter‐coccygeal extradural (lidocaine) anaesthesia in calves. Study design Prospective study. Animals Five Holstein Friesian calves (one steer, four heifers) aged 6 weeks weighing 65.2 ± 2.7 kg. Materials and methods Calves were anaesthetized with isoflurane in oxygen for instrumentation. At least 12 hours later, xylazine (0.2 mg kg?1 IM) was given. After 15 minutes, an infusion of xylazine hydrochloride (0.1 mg mL?1), guaiphenesin (50 mg mL?1) and ketamine (1 mg mL?1) (X–G–K) was infused at a rate of 1.1 mL kg?1 hour?1 IV. Oxygen (4 L minute?1) was delivered by nasotracheal tube 30 minutes later. Inter‐coccygeal (Co1–Co2) extradural anaesthesia (lidocaine 2%, 0.18 mL kg?1) was administered 30 minutes later. Cardiopulmonary variables were obtained in the unsedated standing calves 10 minutes after xylazine, 15 and 30 minutes after X–G–K without O2, 15 and 30 minutes after X–G–K with O2 and 5, 15, 30, 45 and 60 minutes after extradural anaesthesia. Data were analysed using a repeated measurement analysis of variance including an autoregressive covariance structure of order 1 (correlations at different time intervals). Results Xylazine caused significant (p < 0.05) decreases in heart rate (HR), cardiac output (Qt) and index (CI), stroke volume and stroke index, mean, systolic and diastolic arterial blood pressure (MAP, SAP, DAP), left (LVWSI) and right ventricular stroke work index (RVWSI), mean, systolic and diastolic pulmonary arterial pressure (MPAP, SPAP, DPAP), arterial pH, arterial oxygen tension (PaO2), arterial base excess, arterial HCO3? concentration, arterial saturation, packed cell volume, arterial and venous oxygen content (CaO2, CvO2), O2 consumption and O2 delivery (V?O2, ?O2). Increases in systemic vascular resistance (SVR) and pulmonary vascular resistance (PVR) were observed. During X–G–K infusion without O2, HR, Qt and CI increased gradually while SVR, PVR and MAP decreased. Left ventricular stroke work index and PaO2 remained constant, while O2 supplementation improved PaO2. Coccygeal extradural anaesthesia had little effect on cardiopulmonary variables. Respiratory rate (f) and PaCO2 significantly increased over the experiment. Conclusions and clinical relevance Xylazine caused adverse cardiopulmonary effects in calves. Improvement occurred during xylazine–guiaphenesin–ketamine infusion. Cardiac index and arterial blood pressure remained below baseline values while sustained increases in respiration rate and PaCO2 were observed. Inter‐coccygeal extradural anaesthesia had only minor effects. Oxygen supplementation proved advantageous during guiaphenesin, ketamine and xylazine infusion in healthy calves in combination with coccygeal extradural anaesthesia induced persistent cardiopulmonary depression.  相似文献   

17.
ObjectiveTo evaluate the clinical and physiological effects of epidural injection of ketamine in camels.Study designRandomized prospective study.AnimalsTen healthy immature male dromedary camels.MethodsKetamine was administered epidurally at doses of 1 and 2 mg kg?1 (five animals in each treatment). The drug was injected into the first intercoccygeal epidural space. Anti-nociception, sedation, ataxia, and effect on cardiopulmonary, rectal temperature and some selected haematological parameters were recorded at different intervals before (baseline) and after the drug administration. Data were analyzed by anova or U Mann–Whitney tests, as relevant and significance was taken as p < 0.05.ResultsEpidural ketamine at the 2 mg kg?1 dose produced complete anti-nociception in the tail, anus and perineum, whilst the 1 mg kg?1 dose produced complete anti-nociception only in the tail. Epidural ketamine resulted in mild to moderate sedation at the 1 mg kg?1 dose and deep sedation at the 2 mg kg?1 dose. Ataxia was observed in all test subjects and was severe, resulting in recumbency, in the 2 mg kg?1 group. Respiratory rate and rectal temperature did not change significantly after injection of either treatment. Following epidural injection of 2 mg kg?1 of ketamine, heart rate increased significantly from the pre-injection baseline of 55 ± 2 to 76 ± 4 (mean ± SD) beats minute?1, but after the lower dose changes were not significant. The only significant changes in measured haematologic parameters were decreases in total erythrocyte count at 45 minutes and total leukocyte count from 45–75 minutes, in the 2 mg kg?1 group.ConclusionEpidural ketamine injection was associated with caudal anti-nociception, sedation and ataxia in the dromedary camels; the intensity and duration of which was dose dependant.Clinical relevanceNeither of the doses of epidural ketamine injection in our study was applicable for standing surgical procedures in dromedary camels.  相似文献   

18.
19.
ObjectiveTo compare the sedative and clinical effects of intravenous (IV) administration of dexmedetomidine and xylazine in dromedary calves.Study designExperimental, crossover, randomized, blinded study.AnimalsA total of seven healthy male dromedary calves aged 14 ± 2 weeks and weighing 95 ± 5.5 kg.MethodsCalves were assigned three IV treatments: treatment XYL, xylazine (0.2 mg kg−1); treatment DEX, dexmedetomidine (5 μg kg−1); and control treatment, normal saline (0.01 mL kg−1). Sedation scores, heart rate (HR), respiratory rate (fR), rectal temperature (RT) and ruminal motility were recorded before (baseline) and after drug administration. Sedation signs were scored using a 4-point scale. One-way anova and Mann–Whitney U tests were used for data analysis.ResultsCalves in treatments XYL and DEX were sedated at 5–60 minutes. Sedation had waned in XYL calves, but not DEX calves, at 60 minutes (p = 0.037). Sedation was not present in calves of any treatment at 90 minutes. HR decreased from baseline in XYL and DEX at 5–90 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.017). HR was lower in DEX (p = 0.001) and XYL (p = 0.013) than in control treatment at 90 minutes. fR decreased from baseline in XYL and DEX at 5–60 minutes after drug administration and was lower in DEX than XYL at 5 minutes (p = 0.013). RT was unchanged in any treatment over 120 minutes. Ruminal motility was decreased in XYL at 5, 90 and 120 minutes and absent at 10–60 minutes. Motility was decreased in DEX at 5, 10 and 120 minutes and was absent at 15–90 minutes.Conclusion and clinical relevanceThe duration of sedation from dexmedetomidine (5 μg kg–1) and xylazine (0.2 mg kg–1) was similar in dromedary calves.  相似文献   

20.

Objective

To investigate whether an intravenous (IV) lidocaine bolus in calves premedicated with xylazine-butorphanol reduces the amount of ketamine required to allow endotracheal intubation.

Study design

Randomized, prospective clinical study.

Animals

In total, 41 calves scheduled for elective umbilical surgery.

Methods

Calves were randomly assigned to one of two groups (L: lidocaine or S: saline). The calves were administered xylazine (0.07 mg kg?1) and butorphanol (0.1 mg kg?1) intramuscularly and 10 minutes later lidocaine (2 mg kg?1; group L) or saline (group S) IV over 1 minute. After 2 minutes, ketamine (2.5 mg kg?1) was injected IV. If the depth of anaesthesia was insufficient for intubation, additional ketamine (1 mg kg?1) was administered every minute until intubation was successful. The amount of ketamine required for intubation, respiratory rate, pulse rate, arterial pressures, the depth of sedation and conditions of endotracheal intubation after induction of anaesthesia were compared between the two groups.

Results

The calves in group L were sedated more deeply than those in group S; however, neither the median (range) amount of ketamine required for intubation, 3.5 (2.5–4.5) mg kg?1 and 3.5 (2.5–3.5) mg kg?1, respectively, nor the induction quality differed significantly between the groups.

Conclusion and clinical relevance

A bolus of lidocaine (2 mg kg?1) administered 10 minutes after xylazine-butorphanol in calves deepened the degree of sedation but did not decrease the requirement of ketamine for endotracheal intubation. No adverse effects were recorded in the physiological variables measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号