首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dryland wheat is the major contributor to wheat production in the world, where water deficiency and poor soil fertility are key factors limiting wheat grain yields and nutrient concentrations. A field experiment was carried out from June 2008 to June 2011 at Shilipu (latitude 35.12°N, longitude 107.45°E and altitude 1200 m above sea level) on the Loess Plateau (a typical dryland) in China, to investigate the effects of rotation with soybean (Glycine max) green manure (GM) on grain yield, total N and total Zn concentrations in subsequent wheat (Triticum aestivum L.), and on nitrate-N and available Zn in the soil. The benefits of crop rotation with soybean GM on wheat grain yields became more evident with time. In the second and third years, the grain yields of wheat rotated with soybean GM reached 4871 and 5089 kg ha−1 at the 108 kg N ha−1 rate. These yields were 21% and 12% higher than the highest yields of wheat under a fallow-winter wheat (FW) rotation. Rotation with soybean GM reduced the amount of N fertilizer required to obtain wheat grain yields and biomass levels similar to wheat grown in the FW rotation by 20–33%. In the first 2 years, average grain N concentrations over all N rates increased by 6% and 12%, and those of Zn increased by 26% and 14% under the soybean GM-winter wheat (SW) rotation, compared with the FW rotation. The increased grain N and Zn concentrations were found to be related to the increased concentrations of nitrate-N and available Zn in the soil, particularly at the sowing of winter wheat. However, grain N and Zn concentrations were not improved by rotation with soybean GM in the third year. This was attributed to the dilution effect caused by the more grain yield increase than its nutrient export. In conclusion, planting soybean for GM in fallow fields reduced the need for N fertilizer to enhance wheat yields in this dryland region. Change in wheat grain N and Zn concentrations was related to soil nutrient concentrations, and to the balance between increased grain yield and its nutrient export.  相似文献   

2.
Yam crops (Dioscorea spp.) present a very high and unexplained interplant variability which hinders attempts at intensification. This paper aims to characterize the plant-to-plant variability in yield and to identify its underlying causes for the two major yam species (Dioscorea alata and Dioscorea rotundata). Four field experiments were carried out between 2006 and 2009 in Benin. Yams were grown using a traditional cropping method (i.e. in mounds at 0.7 plants m−2) without biotic or abiotic stresses. In order to test interplant competition, a low density treatment (0.08 plants m−2) was included for D. alata in the 2006 experiment. Throughout four years of experimentation, yields varied from 12 Mg ha−1 to 21 Mg ha−1. Both yam species presented a high interplant coefficient of variation (CV) for tuber yield (42–71%). The unbiased Gini coefficient (G′) was used to measure how steep a hierarchy is in an absolute sense. CV and G′ of individual plant biomass both confirm clear plant size hierarchies from early growth. However, no difference in the CV of plant size and plant tuber yield was observed between high and low plant density. This implies that, despite early interaction between neighbouring plants, competition was not the driving factor controlling plant variability. In fact uneven emergence proved to be the primary cause. Yam emergence takes place over a long period (e.g. it took 51 and 47 days for the 90% central range to emerge for D. alata and D. rotundata, respectively), creating an early inter-plant size hierarchy which later affected tuber production. For both species, plants which emerged early initiated their tuberization earlier in the growing season and reached higher maximum yield regardless of weather conditions (e.g. 1200 and 764 g plant−1 for early-emerging D. alata and D. rotundata plants respectively, and 539 and 281 g plant−1 for late-emerging plants). Plant size hierarchization together with its observed left-skewed distribution, led to reduce total and marketable yield by increasing the proportion of small tubers. These results highlight the need to better understand the underlying mechanisms controlling the yams’ uneven emergence before attempting to improve traditional cropping systems.  相似文献   

3.
Developing tolerant genotypes is crucial for stabilizing maize productivity under drought stress conditions as it is one of the most important abiotic stresses affecting crop yields. Twenty seven genotypes of maize (Zea mays L.) were evaluated for drought tolerance for three seasons under well watered and water stressed conditions to identify interactions amongst various tolerance traits and grain yield as well as their association with SSR markers. The study revealed considerable genetic diversity and significant variations for genotypes, environment and genotype × environment interactions for all the traits. The ranking of genotypes based on drought susceptibility index for morpho-physiological traits was similar to that based on grain yield and principal component analysis. Analysis of trait – trait and trait – yield associations indicated significant positive correlations amongst the water relations traits of relative water content (RWC), leaf water potential and osmotic potential as well as of RWC with grain yield under water stressed condition. Molecular analysis using 40 SSRs revealed 32 as polymorphic and 62 unique alleles were detected across 27 genotypes. Cluster analysis resulted in categorization of the genotypes into five distinct groups which was similar to that using principal component analysis. Based on overall performance across seasons tolerant and susceptible genotypes were identified for eventual utilization in breeding programs as well as for QTL identification. The marker-trait association analysis revealed significant associations between few SSR markers with water relations as well as yield contributing traits under water stressed conditions. These associations highlight the importance of functional mechanisms of intrinsic tolerance and cumulative traits for drought tolerance in maize.  相似文献   

4.
In recent years, the cultivation of the pseudocereal species amaranth, quinoa, and buckwheat has gained rising attention. This study was undertaken to explore nitrogen (N) fertility requirements and nitrogen use efficiency of these species. For this purpose, a 2-year field experiment with N rates of 0, 80, and 120 kg N ha−1 for amaranth and quinoa and 0, 30, and 60 kg N ha−1 for buckwheat and two cultivars of each species was conducted.Grain yield of amaranth responded to N and ranged between 1986 and 2767 kg ha−1. Nitrogen utilization efficiency (NUtE) ranged from 13.9 to 15.4 kg grain yield per kg above-ground plant N and decreased with increasing N rate. Higher grain yields and NUtEs seemed to be mainly inhibited by the low harvest index (0.22–0.23) of the investigated amaranth cultivars.Quinoa yielded between 1790 and 3495 kg grain ha−1 and responded strongly to N fertilization. NUtE averaged 22.2 kg kg−1 and did not decrease with increasing N rates.The grain yield of buckwheat did not respond to N fertilization and averaged 1425 kg ha−1. N uptake increased only slightly with N fertilization. NUtE ranged from 16.1 to 20.0 kg kg−1. Main problems occurring with the application of N to buckwheat were grain scattering and lodging.  相似文献   

5.
To identify the best practice for nitrogen (N) fertilization of overwinter processing spinach, two field experiments were carried out in the Foggia plain (Southern Italy), one of the most vocated area for leafy vegetables production. The field trials were aimed to define and suggest the proper fertilizer dose, typology and the right time of application. Experiment 1 evaluated four N fertilizer doses (0, 150, 225, 300 kg ha−1) in a two-year field trial. Experiment 2 was aimed to assess the effect of the split distribution of prilled urea fertilizer in comparison with the application of nitrification inhibitor (DMPP) containing urea fertilizer, broadcasted at sowing.Spinach yield, yield quality (nitrate – NO3 – and carotenoids content), N-use efficiency and risk of soil nitrate (NO3-N) leaching were evaluated. The processing spinach yielded 37.8 and 3.6 t ha−1 of fresh and dry yield, respectively (average of the two experiments). Fresh and dry yield among the fertilizing treatments were similar. Also the β-carotene and the lutein content of spinach leaves (19.5 and 38.1 mg kg−1, respectively) were not affected by the N fertilizer dose. Conversely, the N dose strongly influenced the NO3 content of the leafy vegetable tissues (1286 mg kg−1 on average, 58% lower than the limits imposed by the EC regulation). As expected, the different rainfall pattern influenced both the leaf NO3 content and the risk of soil NO3-N leaching. The results achieved demonstrated that, in order to get a favorable trade-off, among yield, yield quality, N-use efficiency and environmental impact, the processing spinach growers of the Foggia plain area should be encouraged to apply 225 kg N ha−1 as maximum fertilization rate. Also, the split urea fertilizer application appeared as the more effective strategy for N fertilization of overwinter spinach in comparison with the use of the nitrification inhibitor containing urea fertilizer, being the last strategy not able to adequately match the N crop demand.  相似文献   

6.
Decreasing the corn (Zea mays L.) gap between the potential yield and farm yield and reducing the risk of grain yield of drought are very important for corn production in the Corn Belt of Northeast China (CBNC). To achieve a high and stable corn yield, the effects of supplementary irrigation on yield, water use efficiency (WUE) and irrigation water use efficiency (IWUE) were studied using a modelling approach. The Root Zone Water Quality Model 2 was parameterized and evaluated using two years of experimental data in aeolian sandy soil and black soil. The evaluated model was then used to investigate responses to various irrigation strategies (rainfed, full irrigation and 12 single irrigation scenarios) using long-term weather data from 1980 to 2012. Full irrigation guarantees a high and stable corn grain yield (12.92 Mg ha−1 and has a coefficient of variation (CV) of 14.8% in aeolian sandy soil; 12.30 kg Ma−1 and CV of 11.1% in black soil), but has a low water use efficiency (19.92 and 21.81 kg ha−1 mm−1) and a low irrigation water use efficiency (10.01 and 11.03 kg ha−1 mm−1). A single irrigation can increase corn yields by 3–35% for aeolian sandy soil and 5–35% for black soil over different irrigation dates compared with no irrigation. The most suitable single irrigation date was during late June to early July for aeolian sandy soil (yield = 10.73 Mg ha−1 and WUE = 27.94 kg ha−1 mm−1) and early to mid-July for black soil (yield = 11.20 Mg ha−1 and WUE = 27.70 kg ha−1 mm−1). The lowest yield risk of falling short of the yield goal of 8, 9, and 10 Mg ha−1 were 9.1%, 18.2%, and 33.33% in aeolian sandy soil and 3.0%, 15.25, and 21.2% in black soil when an optimized single irrigation was applied in late June or early July, respectively. Therefore, an optimized single irrigation should be applied in late June to early July with the irrigation amount to refill soil water storage of root zone to field capacity in CBNC.  相似文献   

7.
An experiment was conducted in order to investigate hay yield and nitrogen harvest in binary smooth bromegrass (Bromus inermis Leyss cv. Tohum Islah) mixtures with alfalfa (Medicago sativa L. cv. Kayseri) and red clover (Trifolium pratense L. cv. Tohum Islah) in Erzurum, Turkey for 5 years between 1991 and 1995. The Hay yield, nitrogen harvest, protein concentration and land equivalent ratio (LER) in the mixtures with alternating rows of 1:1, 2:1 and 1:2 of smooth bromegrass with alfalfa and red clover were compared to those in pure legume stands without any N-fertilizer application or pure smooth bromegrass stands that received 0, 50, 100 and 150 kg ha−1 N. The mixtures had no N fertilization apart from 40 kg N ha−1 in the establishment year. The dry matter production in all the mixtures receiving no N fertilizer application was higher than in pure legume stands. Pure grass stands were sustained only with the application of 150 kg ha−1 N. The highest hay yields were obtained from the mixtures of smooth bromegrass (Sb) with red clover (Rc) (2Rc 1Sb) (14.65 t ha−1) and with alfalfa (A) (1A 1 Sb) (14.49 t ha−1). Although N application increased Sb yields in pure stands, the highest yields obtained with N fertilization were still lower than the yields in the mixtures without N application. The superiority of the mixtures was also reflected by their large N harvests (e.g. 355.9 kg N ha−1 in 2Rc 1Sb plots) compared to pure Rc (317.8 kg N ha−1), pure A (294.3 kg N ha−1) and pure Sb stands that received 150 kg N ha−1. The nitrogen harvest increased in pure Sb plots as the N doses applied increased. Furthermore, the protein concentration of the hay from the mixtures (158.2–165.7 mg g−1) was equal to that of the pure A stands (165.7 mg g−1) and higher than that of pure Sb stands (122.9 mg g−1 at 150 kg N ha−1 application) although the hay from pure Rc plots had the highest protein concentration (179.3 mg g−1). The LER values were also higher in the mixtures (e.g. 1.28 in 1A 1Sb and 1.28 in 2Rc 1Sb plots) compared with the pure stands. The mixture plots also had a more balanced temporal distribution of hay. The grass component was more productive in early spring, whereas the legume fractions grew better in the summer. In conclusion, for a sustainable production of high-quality hay and greater N harvests without using N fertilizers, binary mixtures of Sb with A in alternating rows (1A 1Sb) were recommended for long-purpose stands and in alternation with double red clover rows (2Rc 1Sb) for short purpose stands under similar conditions. N application could be eliminated in the grass–legume mixtures without any yield depression.  相似文献   

8.
Questions as to which crop to grow, where, when and with what management, will be increasingly challenging for farmers in the face of a changing climate. The objective of this study was to evaluate emergence, yield and financial benefits of maize, finger millet and sorghum, planted at different dates and managed with variable soil nutrient inputs in order to develop adaptation options for stabilizing food production and income for smallholder households in the face of climate change and variability. Field experiments with maize, finger millet and sorghum were conducted in farmers’ fields in Makoni and Hwedza districts in eastern Zimbabwe for three seasons: 2009/10, 2010/11 and 2011/12. Three fertilization rates: high (90 kg N ha−1, 26 kg P ha−1, 7 t ha−1 manure), low (35 kg N ha−1, 14 kg P ha−1, 3 t ha−1 manure) and a control (zero fertilization); and three planting dates: early, normal and late, were compared. Crop emergence for the unfertilized finger millet and sorghum was <15% compared with >70% for the fertilized treatments. In contrast, the emergence for maize (a medium-maturity hybrid cultivar, SC635), was >80% regardless of the amount of fertilizer applied. Maize yield was greater than that of finger millet and sorghum, also in the season (2010/11) which had poor rainfall distribution. Maize yielded 5.4 t ha−1 compared with 3.1 t ha−1 for finger millet and 3.3 t ha−1 for sorghum for the early plantings in the 2009/10 rainfall season in Makoni, a site with relatively fertile soils. In the poorer 2010/11 season, early planted maize yielded 2.4 t ha−1, against 1.6 t ha−1 for finger millet and 0.4 t ha−1 for sorghum in Makoni. Similar yield trends were observed on the nutrient-depleted soils in Hwedza, although yields were less than those observed in Makoni. All crops yielded significantly more with increasing rates of fertilization when planting was done early or in what farmers considered the ‘normal window’. Crops planted early or during the normal planting window gave comparable yields that were greater than yields of late-planted crops. Water productivity for each crop planted early or during the normal window increased with increase in the amount of fertilizer applied, but differed between crop type. Maize had the highest water productivity (8.0 kg dry matter mm−1 ha−1) followed by sorghum (4.9 kg mm−1 ha−1) and then finger millet (4.6 kg mm−1 ha−1) when a high fertilizer rate was applied to the early-planted crop. Marginal rates of return for maize production were greater for the high fertilization rate (>50%) than for the low rate (<50%). However, the financial returns for finger millet were more attractive for the low fertilization rate (>100%) than for the high rate (<100%). Although maize yield was greater compared with finger millet, the latter had a higher content of calcium and can be stored for up to five years. The superiority of maize, in terms of yields, over finger millet and sorghum, suggests that the recommendation to substitute maize with small grains may not be a robust option for adaptation to increased temperatures and more frequent droughts likely to be experienced in Zimbabwe and other parts of southern Africa.  相似文献   

9.
In areas of Southern Europe with very intensive pig production, most of the pig slurry (PS) is applied as fertilizer. However, in the European Union, no more than 170 kg N ha−1 year−1 can be applied in nitrate vulnerable zones (NVZs) from livestock manures. In this context, a six-year trial was conducted for a maize-triticale double-annual forage cropping rotation under rainfed conditions. Four different N rates were applied (0, 170, 250 and 330 kg N ha−1 year−1), to evaluate their effect on crop yield, N uptake, unrecovered N and soil nitrate content. The corresponding PS rates were defined as zero (PS 0), low (PSL) medium (PSM) and high (PSH). The annual average dry matter (DM) yields (maize + triticale) for the PS fertilization treatments PS0, PSL, PSM and PSH were 12.6, 17.7, 20.2 and 22.0 Mg DM ha−1, respectively. Maize DM yield was influenced mainly by weather conditions, and triticale DM yield was clearly influenced by initial soil NO3-N and PS fertilization rates. Unrecovered N was affected by PS fertilization rate and initial soil NO3-N content. A residual effect of the PS when applied to maize had an important effect on soil NO3-N and subsequent triticale DM yield. Moreover, total annual average unrecovered N, considering the sum of both crops (maize + triticale), were 91, 144, and 222 kg N ha−1 in PSL, PSM and PSH, respectively. In order to avoid part of this unrecovered N, mainly by lixiviation of nitrates, PS fertilization in triticale should be applied as side dressing at tillering. The application of N, in the form of PS, at rates higher than the legally permitted maximum of 170 kg N ha−1 year−1, may result in better yields. However, high rates of PS fertilization may originate in significantly lower N use efficiency and a higher potential environmental impact in double-cropping systems, practiced in rainfed sub-humid Mediterranean conditions.  相似文献   

10.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

11.
In Jiangsu province, Southeast China, high irrigated rice yields (6–8000 kg ha−1) are supported by high nitrogen (N) fertilizer inputs (260–300 kg N ha−1) and low fertilizer N use efficiencies (recoveries of 30–35%). Improvement of fertilizer N use efficiency can increase farmers’ profitability and reduce negative environmental externalities. This paper combines field experimentation with simulation modeling to explore N fertilizer management strategies to realize high yields, while increasing N use efficiency. The rice growth model ORYZA2000 was parameterized and evaluated using data from field experiments carried out in Nanjing, China. ORYZA2000 satisfactorily simulated yield, crop biomass and crop N dynamics, and the model was applied to explore options for different N-fertilizer management regimes, at low and high levels of indigenous soil N supply, using 43 years of historical weather data.On average, yields of around 10–11,000 kg ha−1 were realized (simulated and in field experiments) with fertilizer N rates of around 200 kg ha−1. Higher fertilizer doses did not result in substantially higher yields, except under very favorable weather conditions when yields exceeding 13,000 kg ha−1 were calculated. At fertilizer rates of 150–200 kg ha−1, and at the tested indigenous soil N supplies of 0.6–0.9 kg ha−1 day−1, high fertilizer N recovery (53–56%), partial N productivity (50–70 kg kg−1) and agronomic N use efficiency (20–30 kg kg−1) were obtained with application in three equal splits at transplanting, panicle initiation and booting. Increasing the number of splits to six did not further increase yield or improve any of the N use efficiency parameters.  相似文献   

12.
Farmers obtain high yield when proper crop management is matched with favourable weather. Nitrogen (N) fertilization is an important agronomic management practice because it affects profitability and the environment. In rainfed environments, farmers generally apply uniform rates of N without taking into account the spatial variability of soil available water or nutrient availability. Uniform application of fertilizer can lead to over or under-fertilization, decreasing the efficiency of the fertilizer use. The objective of this study was to evaluate the impact of variable rate nitrogen fertilizer application on spatial and temporal patterns of wheat grain yield. The study was conducted during the 2008/2009 and 2009/10 growing seasons in a 12 ha field near Foggia, Italy. The crop planted each year was durum wheat (Triticum durum, Desf.) cultivar Duilio. The field was subdivided into two management zones High (H), and Average (A). Three N rates were identified using a crop model tested on the same field during a previous growing season. The N rates were: low N (T1: 30 kg N ha−1), average N (T2: 70 kg N ha−1), and high N (T3: 90 kg N ha−1). The ANOVA test showed that there were no effects of the N levels for the first growing season for the H and A zone. For the 2009/10 growing season with higher rainfall there was a significant difference in grain yield for the A zone (2955 kg ha−1), but not in the H zone (3970 kg ha−1). This study demonstrates the optimal amount of N for a given management zone is not fixed but varies with the rainfall amount and distribution during the fallow and growing season.  相似文献   

13.
High rates of nitrogen (N) fertilizer may increase N leaching with drainage, especially when there is no further crop response. It is often discussed whether leaching is affected only at levels that no longer give an economic return, or whether reducing fertilization below the economic optimum could reduce leaching further. To study nitrate leaching with different fertilizer N rates (0–135 kg N ha−1) and grain yield responses, field experiments in spring oats were conducted in 2007, 2008 and 2009 on loamy sand in south-west Sweden. Nitrate leaching was determined from nitrate concentrations in soil water sampled with ceramic suction cups and measured discharge at a nearby measuring station. The results showed that nitrate leaching per kg grain produced had its minimum around the economic optimum, here defined as the fertilization level where each extra kg of fertilizer N resulted in a 10 kg increase in grain yield (85% DM). There were no statistically significant differences in leaching between treatments fertilized below this level. However, N leaching was significantly elevated in some of the treatments with higher fertilization rates and the increase in nitrate leaching from increased N fertilization could be described with an exponential function. According to this function, the increase was <0.04 kg kg−1 fertilizer N at and below the economic optimum. Above this fertilization level, the nitrate leaching response gradually increased as the yield response ceased and the increase amounted to 0.1 and 0.5 kg kg−1 when the economic optimum was exceeded by 35 and 100 kg N ha−1, respectively. The economic optimum fertilization level depends on the price relationship between grain and fertilizer, which in Sweden can vary between 5:1 and 15:1. In other words, precision fertilization that provides no more or no less than a 10 kg increase in grain yield per kg extra N fertilizer can be optimal for both crop profitability and the environment. To predict this level already at fertilization is a great challenge, and it could be argued that rates should be kept down further to ensure that they are not exceeded due to overestimation of the optimum rate. However, the development of precision agriculture with new tools for prediction may reduce this risk.  相似文献   

14.
The expansion of biogas production from anaerobic digestion in the Po Valley (Northern Italy) has stimulated the cultivation of dedicated biomass crops, and maize in particular. A mid-term experiment was carried out from 2006 to 2010 on a silt loamy soil in Northern Italy to compare water use and energy efficiency of maize and sorghum cultivation under rain fed and well-watered treatments and at two rates of nitrogen fertilization. The present work hypothesis were: (i) biomass sorghum, for its efficient use of water and nitrogen, could be a valuable alternative to maize for biogas production; (ii) reduction of irrigation level and (iii) application of low nitrogen fertilizer rate increase the efficiency of bioenergy production. Water treatments, a rain fed control (I0) and two irrigation levels (I1 and I2; only one in 2006 and 2009), were compared in a split–split plot design with four replicates. Two fertilizer rates were also tested: low (N1, 60 kg ha−1 of nitrogen; 0 kg ha−1 of nitrogen in 2010) and high (N2, 120 kg ha−1 of nitrogen; 100 kg ha−1 of nitrogen in 2010). Across treatments, sorghum produced more aboveground biomass than maize, respectively 21.6 Mg ha−1 and 16.8 Mg ha−1 (p < 0.01). In both species, biomass yield was lower in I0 than in I1 and I2 (p < 0.01), while I1 and I2 did differ significantly. Nitrogen level never affected biomass yield. Water use efficiency was generally higher in sorghum (52 kg ha−1 mm−1) than in maize (38 kg ha−1 mm−1); the significant interaction between crop and irrigation revealed that water use efficiency did not differ across water levels in sorghum, whereas it significantly increased from I0 and I1 to I2 in maize (p < 0.01). The potential methane production was similar in maize and sorghum, while it was significantly lower in I0 (16505 MJ ha−1) than in I1 and I2 (21700 MJ ha−1). The only significant effect of nitrogen fertilization was found in the calculation of energy efficiency (ratio of energy output and input) that was higher in N1 than in N2 (p < 0.01). These results support the hypothesis that (i) sorghum should be cultivated rather than maize to increase energy efficiency, (ii) irrigation level should replace up to 36% of ETr and (iii) nitrogen fertilizer rate should be minimized to maximize the efficiency in biomass production for anaerobic digestion in the Po Valley.  相似文献   

15.
Different preceding crops interact with almost all husbandry and have a major effect on crop yields. In order to quantify the yield response of winter wheat, a field trial with different preceding crop combinations (oilseed rape (OSR)–OSR–OSR–wheat–wheat–wheat), two sowing dates (mid/end of September, mid/end of October) and 16 mineral nitrogen (N) treatments (80–320 kg N ha−1) during 1993/1994–1998/1999, was carried out at Hohenschulen Experimental Station near Kiel in NW Germany. Single plant biomass, tiller numbers m−2, biomass m−2, grain yield and yield components at harvest were investigated. During the growing season, the incidence of root rot (Gaeumannomyces graminis) was observed. Additionally, a bioassay with Lemna minor was used to identify the presence of allelochemicals in the soil after different preceding crops.Averaged over all years and all other treatments, wheat following OSR achieved nearly 9.5 t ha−1, whereas the second wheat crop following wheat yielded about 0.9 t ha−1 and the third wheat crop following 2 years of wheat about 1.9 t ha−1 less compared with wheat after OSR. A delay of the sowing date only marginally decreased grain yield by 0.2 t ha−1. Nitrogen fertilization increased grain yield after all preceding crop combinations, but at different levels. Wheat grown after OSR reached its maximum yield of 9.7 t ha−1 with 210 kg N ha−1. The third wheat crop required a N amount of 270 kg N ha−1 to achieve its yield maximum of 8.0 t ha−1.Yield losses were mainly caused by a lower ear density and a reduced thousand grain weight. About 4 weeks after plant establishment, single wheat plants following OSR accumulated more biomass compared to plants grown after wheat. Plants from the third wheat crop were smallest. This range of the preceding crop combinations was similar at all sampling dates throughout the growing season.Root rot occurred only at a low level and was excluded to cause the yield losses. The Lemna bioassay suggested the presence of allelochemicals, which might have been one reason for the poor single plant development in autumn.An increased N fertilization compensated for the lower number of ears m−2 and partly reduced the yield losses due to the unfavorable preceding crop combination. However, it was not possible to completely compensate for the detrimental influences of an unfavorable preceding crop on the grain yield of the subsequent wheat crop.  相似文献   

16.
Fertiliser recommendation systems should aim at a finer tuning of non-renewable P inputs for agronomic, environmental and economic reasons. Modern decision support systems should take into account the relevant soil characteristics, the P recycling capabilities of the cropping system, and crop requirements for attainable production in a range of soil/weather conditions. Unfortunately, information is still lacking for low input cropping systems in south-western France. In 1968 INRA Toulouse set up a P experiment, which has been going on for 36 years, on a deep alluvial silty-clay/clay soil with varying CaCO3. Four P regimes (P0, P1, P2, P4) were arranged in four blocks with periodic changes in the fertiliser dressings. Wheat, maize, sunflower, sorghum and soybean were tested for grain yield (GY) and grain P concentration (GPC) response to soil Olsen P concentration. The highest GY were observed in both P2 and P4, although P1 yields were significantly lower in only 4 years out of 36. P0 resulted 32 times in lower yields than P2–P4 and 27 times in lower yields than P1. Wheat was the crop most sensitive to the absence of P fertilization (GYP0/GYPmax = 0.72); maize and sorghum were intermediate (0.77) and sunflower was the less sensitive on average (0.83). As the highest GPC values were observed in the P4 treatments, P removal was maximum for P4 (21.9 kg P ha−1 year−1) and minimal in P0 (11.7 kg P ha−1 year−1). The critical soil Olsen P values for yield responses were determined using the Cate–Nelson and Mitscherlich approaches. Although the thresholds differ for the two methods (3.3–7.2 mg P kg−1 with Cate–Nelson; 4.4–11.2 mg P kg−1 with Mitscherlich), crops ranked similarly with both methods. Critical soil P values were lowest for maize and highest for sunflower, while wheat, soybean and sorghum had intermediate values. Because of low-input management and frequent water stress, critical values fall within the lower range of published values. Only in the P4 treatment were P-Olsen values potentially hazardous for the environment (>20 mg P kg−1) 8–10 years after the beginning of the experiment. Annual P dressings of 17.5 kg P ha−1 year−1 (P1) were sufficient to achieve good yields but P dressings of 35 kg P ha−1 year−1 (P2) were necessary to stabilize soil P around the critical level in the calcareous part of the experiment.  相似文献   

17.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha−1 applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0–200 cm soil layer but soil water content also increased in the 0–160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0–160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha−1 and WUE ranged from 18.2 to 28.2 kg ha−1 mm−1. In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha−1 and WUE from 3.5 to 6.5 kg ha−1 mm−1. The potential maximum grain yield for maize was 6784 kg ha−1 with 360 kg N ha−1 applied for four years, but considerable NO3N accumulated in the soil profile. A lesser application (110 kg N ha−1) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge–furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha−1 and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment.  相似文献   

18.
The efficient use by crops of nitrogen from manures is an agronomic and environmental issue, mainly in double-annual forage cropping systems linked to livestock production. A six-year trial was conducted for a biennial rotation of four forage crops: oat-sorghum (first year) and ryegrass-maize (second year) in a humid Mediterranean area. Ten fertilization treatments were introduced: a control (without N); two minerals equivalent to 250 kg N ha−1 year−1 applied at sowing or as sidedressing; dairy cattle manure at a rate of 170, 250 and 500 kg N ha−1 year−1 and four treatments where the two lowest manure rates were supplemented with 80 or 160 kg mineral N ha−1 year−1. They were distributed according to a randomized block design with three blocks. The highest N mineral soil content was found in the summer of the third rotation, in plots where no manure was applied. The yearly incorporation of manure reduced, in successive cropping seasons, the amount of additional mineral N needed as sidedressing to achieve the highest yields. Besides, in the last two years, there was no need for mineral N application for the manure rate of 250 kg N ha−1 year−1. This amount always covered the oat-sorghum N uptake. In the ryegrass-maize sequence uptakes were as high as 336 kg N ha−1 year−1. In the medium term, the intermediate manure rate (250 kg N ha−1 year−1) optimizes nutrient recycling within the farming system, and it should be considered in the analysis of thresholds for N of organic origin to be applied to systems with high N demand.  相似文献   

19.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

20.
Data from a field experiment (1995–2000) conducted on a fertile sandy loess in the Hercynian dry region of central Germany were used to determine the energy efficiency of winter oilseed rape (Brassica napus L.) as affected by previous crop and nitrogen (N) fertilization. Depending on the previous crop, winter oilseed rate was cultivated in two different crop rotations: (1) winter barley (Hordeum vulgare L.)–winter oilseed rape–winter wheat (Triticum aestivum L.), and (2) pea (Pisum sativum L.)–winter oilseed rape–winter wheat. Fertilizer was applied to winter oilseed rape as either calcium ammonium nitrate (CAN) or cattle manure slurry. The N rates applied to winter oilseed rape corresponded to 0, 80, 160 and 240 kg N ha−1 a−1.Results revealed that different N management strategies influenced the energy balance of winter oilseed rape. Averaged across years, the input of energy to winter oilseed rape was highly variable ranging from 7.42 to 16.1 GJ ha−1. Lowest energy input occurred when unfertilized winter oilseed rape followed winter barley, while the highest value was obtained when winter oilseed rape received 240 kg N ha−1 organic fertilization and followed winter barley. The lowest energy output (174 GJ ha−1), energy from seed and straw of winter oilseed rape, was observed when winter oilseed rape receiving 80 kg N ha−1 as organic fertilizer followed winter barley. The energy output increased to 262 GJ ha−1 for winter oilseed rape receiving 240 kg N ha−1 as mineral fertilizer followed pea. The energy efficiency was determined using the parameters energy gain (net energy output), energy intensity (energy input per unit grain equivalent GE; term GE is used to express the contribution that crops make to the nutrition of monogastric beings), and output/input ratio. The most favourable N rate for maximizing energy gain (250 GJ ha−1) was 240 kg N ha−1, while that needed for minimum energy intensity (91.3 MJ GE−1) was 80 kg N ha−1 and for maximum output/input ratio (29.8) was 0 kg N ha−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号