首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The soil-borne fungus Fusarium oxysporum can cause both Fusarium yellows and Fusarium root rot diseases with severe yield losses in cultivated sugar beet. These two diseases cause similar foliar symptoms but different root response and have been proposed to be caused by two distinct F. oxysporum formae speciales. Fusarium yellows, caused by F. oxysporum f. sp. betae, presents vascular discoloration, whereas Fusarium root rot, due to F. oxysporum f. sp. radicis-betae, appears as black rot visible on the root surface. The aim of this work was to study the host-pathogen interaction between sugar beet lines and isolates originally characterized as Fusarium oxysporum f. sp. betae. Eight susceptible sugar beet lines, selected by the USDA-ARS (US) and UNIPD (University of Padova, Italy) breeding programs, were inoculated with three different isolates of F. oxysporum f. sp. betae, the causal agent of Fusarium yellows, representing different genetic groups. All inoculated lines developed symptoms, but severity, expressed as area under the disease progress curve (AUDPC), differed significantly (P < 0.05) among lines. Two lines from UNIPD, 6 and 9, were the most susceptible to the disease, whereas the other lines showed similar levels. The three isolates of F. oxysporum f. sp. betae differed significantly (P < 0.05) in disease severity. Five weeks after inoculation the plants were harvested and roots examined. Surprisingly, severe root rot was observed in the susceptible UNIPD lines when inoculated with all three isolates, while this symptom was never observed in the USDA germplasm. The development of this disease symptom obviously depends on the plant genotype.  相似文献   

2.
Pink root rot of squash (Cucurbita moschata) caused by Setophoma terrestris was found in Maebashi, Gunma Prefecture, Japan in July 2007. Cucumber grafted on the squash first developed wilt and finally blight. These symptoms followed a severe pink root rot of the squash rootstock. The fungal isolates from diseased roots were identified as S. terrestris based on morphological characteristics and nucleotide sequences. One isolate induced a similar pink root rot but not entire wilting of the cucumber vine. We propose the name “pink root rot” (koshoku-negusare-byo in Japanese) of squash for the new disease.  相似文献   

3.
The pathogen Fusarium oxysporum f. sp. cepae inducing the Fusarium basal rot mainly spreads in warmer cultivation regions due to its adaptibility to high temperature. Meanwhile the pathogen occurs in Germany as well, especially in years with relatively high average temperature during the growing season. Phytopathological investigations of 300 symptomless onion bulbs showed a contamination rate of approximately 10% with regard to Fusarium spp, with F.?oxysporum proving to be the predominant species. Onion sets planted in these fields were latently infected with F.?oxysporum at rates of 19?C98%. Unexpectedly, the contaminated sets did not indispensably lead to a high occurrence of plants exhibiting characteristic symptoms of Fusarium basal rot such as wet and dry rot. Presumably, the development of symptoms is particularly affected by given climatic conditions. The results of pathogenicity tests of isolated Fusarium spp. isolates under controlled conditions support this assumption. The inoculation of the substrate with selected Fusarium spp. isolates resulted in a reduction of emergence by up to 70% under controlled conditions, which are suboptimal with regard to the cultivation of onions. The emergence of plants was not affected by Fusarium spp. under optimal cultivation of onions. However, under optimal cultivation conditions a reduction of plant growth occurred in a subsequent growth stage. Beside F.?oxysporum, F.?proliferatum could be detected in onion bulbs as well as seeds. The proportion of contaminated seeds accounted to 62%. Both species F.?oxysporum and F.?proliferatum proved to be pathogenic in onion although their isolates varied much in their virulence.  相似文献   

4.
In recent years in Finland, Fusarium infections in onions have increased, both in the field and in storage, and Fusarium species have taken the place of Botrytis as the worst pathogens causing post‐harvest rot of onion. To study Fusarium occurrence, samples were taken from onion sets, harvested onions and also from other plants grown in the onion fields. Isolates of five Fusarium species found in the survey were tested for pathogenicity on onion. Fusarium oxysporum was frequently found in onions and other plants, and, of the isolates tested, 31% caused disease symptoms and 15% caused growth stunting in onion seedlings. Fusarium proliferatum, a species previously not reported in Finland, was also identified. Over 50% of the diseased onion crop samples were infected with F. proliferatum, and all the F. proliferatum isolates tested were pathogenic to onion. Thus, compared to F. oxysporum, F. proliferatum seems to be more aggressive on onion. Also some of the F. redolens isolates were highly virulent, killing onion seedlings. Comparison of the translation elongation factor 1α gene sequences revealed that the majority of the aggressive isolates of F. oxysporum f. sp. cepae group together and are distinct from the other isolates. Incidence and relative proportions of the different Fusarium species differed between the sets and the mature bulbs. More research is required to determine to what extent Fusarium infections spoiling onions originate from infected onion sets rather than the field soil.  相似文献   

5.
Fusarium oxysporum isolates collected from onions in the UK and other countries were characterized using sequences of the transfer elongation factor 1‐α (TEF) gene and compared with published sequence data for 10 other isolates. Isolates associated with diseased onion bulbs in the UK formed two clades. Isolates from both clades were selected for pathogenicity testing and to develop a rapid seedling assay to screen commercial onion cultivars for resistance to F. oxysporum f. sp. cepae (FOC), the cause of basal rot. Differences in the levels of aggressiveness between isolates were observed and isolates from both clades were pathogenic. Differences in resistance/susceptibility were also observed amongst 10 commercial onion cultivars, with cvs Ailsa Craig Prizewinner and White Lisbon showing the highest levels of resistance. The results from the seedling assay were supported by those from a subsequent onion bulb rot assay. Thus, this study reports the development of a rapid, simple and repeatable seedling assay that can be used to screen large numbers of onion cultivars for resistance to FOC and which is indicative of resistance at the bulb stage.  相似文献   

6.
Wilt and root rot disease in plants has been caused mainly by Fusarium species. Previous studies reported that members of the Fusarium oxysporum species complex (FOSC) were usually associated with this disease, but there has been no report of it being caused in rice by specific Fusarium species. However, in this study, Fusarium commune was identified and characterized as a causal agent of wilt and root rot disease of rice. Four Fusarium isolates (BD005R, BD014R, BD019R, and BD020R) were obtained from different parts (root, stem, and seeds) of diseased rice plants. In morphological studies, these isolates produced key characteristics of F. commune, such as long and slender monophialides, polyphialides, and abundant chlamydospores. In molecular studies, the isolates were identified as F. commune based on sequences of the translation elongation factor 1-α (TEF1) gene that had 99.7%–100% sequence identity with the reference strain F. commune NRRL 28058. The phylogenetic tree showed that all four isolates belonged to the F. commune clade. A mating type test determined that three isolates carried MAT1-2. Their teleomorph stage was still unknown. Pathogenicity assays showed that all the isolates produced wilt and root rot symptoms and the isolate BD019R was observed as the most virulent among the isolates. To our knowledge, this is the first report of F. commune causing wilt and root rot disease on rice.  相似文献   

7.
Greenhouse and field evaluations of onion for resistance to Fusarium basal rot caused byFusarium oxysporum f.sp.cepae were conducted on cultivars ‘Akgün 12’ and ‘Rossa Savonese’ previously described as resistant at the seedling stage. In the greenhouse experiments inoculations were carried out on seeds or soil; in the field experiments evaluation was performed on onion sets from plants grown in naturally infested soils. Akgün 12 and to a lesser extent Rossa Savonese were resistant to the disease at the bulb stage in all experiments. Results were also consistent with those obtained from a previous screening at the seedling stage. Onion sets were also extracted and fractionated by thin layer chromatography to determine their content of antifungal compounds. Extracts were characterized by the expression of distinct antifungal components, which may be involved in resistance to the pathogen. http://www.phytoparasitica.org posting July 14, 2004.  相似文献   

8.
Potential antagonists ofFusarium solani f. sp.pisi (Fsp) were selected from soil samples with varying degrees of receptivity to this pathogen. They were tested against Fsp isolate 48 (Fs48), in increasingly complex systems. Most species testedin vitro were able to antagonize Fs48. No relation could be establishedin vitro between the receptivity of the soil from which an isolate originated and its antagonism to Fs48. In soils naturally infested with pea root rot pathogens, which were stored humid at 4°C for a period longer than a year, various isolates ofFusarium, Gliocladium andPenicillium spp. were able to reduce root rot. After sterilization of these soils, onlyGliocladium roseum isolates, added at 105 conidia g–1 dry soil, significantly reduced disease severity and prevented root weight losses caused by Fs48 at 104 conidia g–1 dry soil. In soils in which the biota were activated by growing peas before the assays, doses of 106 and 107 ofG. roseum were required to reduce root rot. In these soils, the antagonistic effects of fluorescent pseudomonad strains from soil of low receptivity to Fsp were variable. Some strains of fluorescent pseudomonads, from soil moderately receptive to Fsp and from highly infested soils, were also able to reduce root rot. Disease suppression by pseudomonad strains was more evident in the absence than in the presence ofAphanomyces euteiches in the root rot pathogen complex. The role of receptiveness of the soil with regard to potential antagonists is discussed.  相似文献   

9.
The infection of above-ground tissues of Brassica napus by Leptosphaeria maculans is well understood. However, root infection (root rot) under field conditions, the development of root rot over time and its relationship to other disease symptoms caused by L. maculans has not been described. A survey of B. napus crops was conducted in Australia to investigate the incidence and severity of root rot. Additionally, the pathway of root infection was examined in field experiments. Root rot was present in 95% of the 127 crops surveyed. The severity and incidence of root rot was significantly correlated with that of crown canker; however, the strength of this relationship was dependent on the season. Root rot symptoms appeared before flowering and increased in severity during flowering and at maturity, a pattern similar to crown canker suggesting that the infection of the root is an extension of the crown canker phase of the L. maculans lifecycle. All isolates of L. maculans tested in glasshouse experiments caused root rot and crown canker in B. napus and Brassica juncea. In the field, the main pathway of root infection is via invasion of cotyledons or leaves by airborne ascospores, rather than from inoculum in the soil. Root rot was present in crops in fields that had never been sown to B. napus previously, in plants grown in fumigated fields, and in glasshouse-grown plants inoculated in the hypocotyl with L. maculans.  相似文献   

10.
Poinsettia plants growing in ebb-and-flow irrigation systems developed wilting and root rot during the summer growing seasons of 2010 in Gifu Prefecture and 2011 in Aichi Prefecture. Pythium species were isolated from roots with rot symptoms. The isolates were identified as P. helicoides and P. myriotylum on the basis of morphological characteristics and sequence homologies in the rDNA internal transcribed spacer regions. In pathogenicity tests, these isolates caused severe wilting and root rot. This is the first report of poinsettia root rot disease caused by P. helicoides and P. myriotylum, although P. aphanidermatum was reported as a pathogen of poinsettia root rot. To better understand these diseases, we performed an epidemiological study of three high-temperature-tolerant Pythium species, P. aphanidermatum, P. helicoides and P. myriotylum. Disease incidence as a percentage of diseased plants was greatest at 35 °C for all three species. Disease severity using the rating scale of root rot was also highest at 35 °C, particularly with high zoospore inoculum densities (100.0 zoospores/mL). Although the disease incidence and severity were reduced at lower temperatures, the three Pythium species were able to cause disease at temperatures as low as 20 °C.  相似文献   

11.

Chitinase-producing Trichoderma species have been recognized long ago against the phytopathogenic fungi. In this study, we evaluated the production of chitinase enzyme for seventeen isolates of Trichoderma isolated from onion growing districts of Punjab and assessed their bio-efficacy against damping-off in onion. In vitro, these Trichoderma isolates were screened for their antagonistic activity against the damping-off pathogen Fusarium oxysporum f.sp. cepae by dual culture assay. These isolates were also screened for their chitinase enzyme activity; it was found that isolates T5 and T8 are showing higher antagonistic activity on Fusarium oxysporum f.sp. cepae and also produced large amounts of chitinase enzymes in the presence of commercial colloidal chitin. The selected chitinolytic isolates were used in field studies to confirm the feasibility of their biological control efficacy against onion damping-off. In the field experiment, the seed+soil treatment of chitinolytic isolate (T8) showed a critical decrease of damping-off in onion by 88.75% over control.

  相似文献   

12.
Sorghum is an important drought tolerant crop cultivated for food and fodder purposes. Anthracnose disease caused by Colletotrichum graminicola is a major constraint in sorghum productivity in India. Certain antagonistic fungi, that were isolated in the previous study from the rhizosphere and rhizoplane of perennial grasses in India, were studied for their antagonism in vitro to C. graminicola, root colonization ability and rhizosphere competence. Out of 138 isolates tested, 89 were antagonistic. Fifteen fungal isolates with greater than 70 % in vitro inhibition zone to the pathogen tested positive for root and rhizosphere colonization abilities. Three isolates – Chaetomium globosum isolate 57, Trichoderma harzianum isolate 184 and Fusarium oxysporum (NSF isolate 9) with prominent biocontrol potentials were tested for the control of sorghum anthracnose in greenhouse and field. Chaetomium globosum, Trichoderma harzianum and Fusarium oxysporum isolates decreased seedling mortality, and incidence and severity of disease at different growing stages. They promoted plant growth (dry biomass- 45.3, 40.0 and 46.7 %) and increased yield (grain biomass- 33.3, 23.8 and 49.2 %) respectively, over control in field. The population of the above fungi in soil was moderately high at harvest stage. The present investigation revealed that fungal isolates from rhizosphere and rhizoplane of perennial grasses could be employed to manage anthracnose and enhance plant growth and yield potentialities in sorghum, at the same time.  相似文献   

13.
Fusarium oxysporum and Fusarium proliferatum are important causal agents of crown and root rot of asparagus. In order to detect differences in pathogenicity and aggressiveness, two F. proliferatum and five F. oxysporum single spore isolates from asparagus spears from plantings in Austria and Germany, 55 pure cultures of F. oxysporum from asparagus roots from a planting in Hesse, Germany, and a single F. oxysporum isolate from an asparagus shoot collected in Austria were evaluated in a 28-day quick test on Hoagland??s agar in glass culture tubes. Plantlets were inoculated with spore suspensions from each respective isolate after 14 days of growth under sterile, controlled conditions in a growth chamber. A severity scale was used to assess symptoms on roots two weeks after inoculation. The effects of the single-spore isolates on root and shoot fresh weights of the plantlets were also determined. The pathogenicity of the majority of the F. proliferatum and F. oxysporum isolates included in this study was confirmed. Inoculation with pure and single-spore cultures resulted in elevated disease severity in comparison to non-inoculated controls. In particular, the two F. proliferatum isolates were found to be more aggressive than the F. oxysporum isolates. Moreover, all single spore isolates caused a reduction in fresh weight of roots and shoots in comparison to the controls. With respect to differences among asparagus cultivars, ??Ramos??, was found to be more susceptible than ??Ravel??. Overall, the quick test method was found to be capable of evaluating the pathogenicity and aggressiveness of the tested F. oxysporum and F. proliferatum isolates towards asparagus within 28 days.  相似文献   

14.
In 1995, Fusarium root rot of crisp head lettuce, caused by Fusarium oxysporum f. sp. lactucae, was simultaneously found in the Shiojiri and Kawakami areas of Nagano Prefecture, Japan. The Shiojiri and Kawakami isolates differed in pathogenicity to lettuce cultivars. Because of this distinct physiological specialization, these Shiojiri and Kawakami isolates should be designated as race 1 and race 2, respectively, using lines VP1010 (highly resistant to race 1), VP1013 (highly resistant to race 2) and variety Patriot (highly susceptible to both races) as differential varieties. This is the first report of races of Fusarium oxysporum f. sp. lactucae, Received 21 September 2000/ Accepted in revised form 21 March 2001  相似文献   

15.
Stem rot of Anoectochilus formosanus (Af) caused by Fusarium oxysporum (Fo) is a major limiting factor to jewel orchid production in Taiwan. Fo causes discoloration in vascular tissues. However, some newly collected Fo isolates from Af stem rot do not cause vascular discoloration, suggesting changes may have occurred in the pathogen. Among recent Fo isolates from Af there are two colony types, the cottony alba (CA) and the sporodochial (S). In order to confirm that both colony types cause Af stem rot, 200 isolates were obtained from diseased stems in Nantou County and characterized by colony type and whether or not the infected plants had vascular discoloration. Isolates of both the CA and S types caused stem rot of Af; some isolates in each colony type caused vascular discoloration whilst others did not. Pathogenicity tests with 22 isolates resulted in stem rot disease severity ratings on Af of 3·1–4·0 and 2·1–4·0 with CA and S type colonies, respectively. The same isolates failed to cause disease on Cattleya, Dendrobium or Phalaenopsis plants. Phylogenetic analysis of partial intergenic spacer sequences showed that these isolates were distinguishable from other formae speciales of Fo and could be separated into two groups correlated with the CA or S type colonies with high bootstrap. Based on pathogenic, morphological and molecular characterizations, the Fo that causes stem rot of Af is proposed to be a new forma specialis, F. oxysporum f. sp. anoectochili, with different pathotypes.  相似文献   

16.
The objective of this study was to estimate the effects of tillage systems and cover crops on the incidence of root rot in melon and to identify the fungal pathogens associated with the disease. Two consecutive trials were carried out in a randomized complete block design with four replications in each trial. The treatments were arranged in split-plots. Two tillage systems (no-tillage (NT) and conventional tillage (CT)) were assigned in the main plots and in the subplot the six types of ground cover crops were tested (sunn hemp, pearl millet, sunn hemp + pearl millet, corn + brachiaria, spontaneous vegetation, spontaneous vegetation + polyethylene film) or bare soil. At the end of the trials all melon plants were collected and assessed for disease incidence, isolations from symptomatic plants were made for fungal identification. Root rot incidence was lower in the NT treatments with sunn hemp, pearl millet, and spontaneous vegetation. The main fungi isolated from symptomatic roots were Fusarium solani, Macrophomina phaseolina, Monosporascus cannonballus and Rhizoctonia solani, but F. solani was the most frequently isolated fungus in both tillage systems. The results suggest that the NT system has the potential to control incidence of root rot of muskmelon, but is necessary to realize crop rotation between the planting cycles.  相似文献   

17.
Sterilized root residues of asparagus added at a rate of up to 20gkg-1 fresh soil did not influence severity of root and crown rot caused by Fusarium oxysporum f.sp. asparagi (Foa). Root residues accumulated in field soil during asparagus growing for 10 years did not influence disease severity either. Inoculation of this soil with laboratory-prepared Foa after treatment at 65°C (30min), at which the indigenous pathogen was killed but toxic substances present in asparagus root residues were left undamaged, led to the same disease severity as inoculation of similarly-treated fresh soil.
On soil extract agar, aqueous root extracts of asparagus but not those of other crops retarded growth of 31 out of 112 fungal isolates from a range of taxa. Sensitive fungi included Gliocladium spp. and Trichoderma harzianum , but not Foa.
Colonization of Foa-infested soil by Fusarium species was greatly enhanced by addition of root material from asparagus, Brussels sprouts, and chicory, but not by that from strawberry and perennial rye grass. As the fraction of Foa amongst the Fusarium population was small, it is concluded that competitive saprophytic ability of the pathogen is far less than that of the nonpathogenic Fusarium species. Fungistasis to Foa was not or was only slightly reduced in soils amended with root residues.
In contrast to data reported in the literature, the present results do not suggest an appreciable increase of Foa root rot., or of the Foa population in soils, due to substances present in root residues.  相似文献   

18.
Soybean (Glycine max) is the most important crop in Argentina. At present Fusarium graminearum is recognized as a primary pathogen of soybean in several countries in the Americas, mainly causing seed and root rot and pre‐ and post‐emergence damping off. However, no information about infections at later growth stages of soybean development and pathogenicity of F. graminearum species complex is available. Therefore, the objectives of this study were to compare the pathogenicity of F. graminearum and F. meridionale isolates towards soybean under field conditions and to evaluate the degree of pathogenicity and trichothecene production of these two phylogenetic species that express different chemotypes. Six isolates of F. graminearum and F. meridionale were evaluated during 2012/13 and 2013/14 soybean growing seasons for pod blight severity, percentage of seed infected in pods and kernel weight reduction. The results showed a higher aggressiveness of both F. graminearum and F. meridionale species during the 2013/14 season. However, the differences in pathogenicity observed between the seasons were not reflected in a distinct trichothecene concentration in soybean seeds at maturity. Fusarium meridionale isolates showed similar pathogenicity to F. graminearum isolates but they were not able to produce this toxin in planta during the two field trials.  相似文献   

19.
Seventy isolates of Fusarium oxysporum (Schlechtend: Fr.) f. sp. melongenae Matuo and Ishigami (Fomg), the causal agent of eggplant Fusarium wilt, were tested for their interaction with different lines and cultivars to determine whether there was race-specific interaction. Also, a total of 13 cultivars were tested under greenhouse conditions to evaluate the presence of resistance to Fusarium wilt. The disease severity (%) and the area under disease progress curve (AUDPC) for each of the Fomg isolates were calculated by scale values. Results showed that neither of the resistant lines (LS1934 and LS2436) exhibited wilting symptoms, whereas susceptible local cultivars (cvs. ‘Kemer’ and ‘Hadrian’) displayed severe disease symptoms. There was no significant variation in the virulence, indicating the occurrence of a race or races among 70 Fomg isolates tested on resistant lines and susceptible cultivars. This may indicate a genetically homogeneous population structure of Fomg in Turkey. The eggplant cultivars Amadeo, Anatolia, Angela, Brigitte, Corsica, Hawk, Koksal, Nouma, Sharapova and Yula exhibited various degrees of susceptibility to three virulent Fomg isolates, but disease severity for AGR-703 was significantly different and lower among the tested eggplant cultivars, as well as rootstocks. Therefore, it is considered as the most appropriate for rootstock purposes in eggplant cultivations where Fusarium wilt is present in the soil.  相似文献   

20.
The development of new maize hybrids with resistance to Fusarium infection is an effective means of minimizing the risk of mycotoxin contamination. Several maize hybrids have been investigated for Fusarium ear rot and accumulation of fumonisin B1 (FB1), fumonisin B2 (FB2), beauvericin (BEA) and fusaproliferin (FP) after artificial inoculation in the field with toxigenic strains of Fusarium verticillioides and Fusarium proliferatum. The year of inoculation had a significant influence on the disease severity and mycotoxin accumulation in maize kernels. Of all the hybrids tested, only Mona exhibited resistance to ear rot caused by F. verticillioides and produced low levels of fumonisins during three years of experiments. In Fusarium-damaged kernels (FDK), fumonisin B1, fumonisin B2, beauvericin and fusaproliferin were detected at concentrations much higher (up to 10–20 times) than in healthy-looking kernels (HLK). Animal and human exposure to these mycotoxins can be drastically reduced by removing mouldy and visibly damaged kernels from the commodity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号