首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: To evaluate the effects of medetomidine and its antagonism with atipamezole in goats. STUDY DESIGN: Prospective randomized crossover study with 1 week between treatments. ANIMALS: Six healthy 3-year-old neutered goats (three male and three female) weighing 39.1-90.9 kg (60.0 +/- 18 kg, mean +/- SD). METHODS: Goats were given medetomidine (20 microg kg(-1), IV) followed, 25 minutes later, by either atipamezole (100 microg kg(-1), IV) or saline. Heart and respiratory rate, rectal temperature, indirect blood pressure, and mechanical threshold were measured, and sedation and posture were scored and blood samples obtained to measure epinephrine, norepinephrine, free fatty acids, glucose, and cortisol concentrations at baseline (immediately before medetomidine), 5 and 25 minutes after medetomidine administration, and at 5, 30, 60, and 120 minutes after the administration of antagonist or saline. Parametric and nonparametric tests were used to evaluate data; p < 0.05 was considered significant. RESULTS: Medetomidine decreased body temperature, heart rate, and respiratory rate and increased mean arterial blood pressure, cortisol, and glucose. Recumbency occurred 89 +/- 50 seconds after medetomidine administration. All goats were standing 86 +/- 24 seconds after atipamezole administration whereas all goats administered saline were sedate and recumbent at 2 hours. Tolerance to compression of the withers and metacarpus increased with medetomidine. From 5 to 120 minutes after saline or atipamezole administration, there were differences in body temperature, glucose, and cortisol but none in heart rate or blood pressure. Three of the six goats receiving saline developed bloat; five of six urinated. After atipamezole, four of six goats developed piloerection and all goats were agitated and vocalized. CONCLUSION: At the doses used, atipamezole antagonized the effects of medetomidine on recumbency, sedation, mechanical threshold, and the increase in glucose. Atipamezole increased the rate of return of cortisol toward baseline, and prevented further decline in rectal body temperature. CLINICAL RELEVANCE: Atipamezole may be used to antagonize some, but not all effects of medetomidine.  相似文献   

2.
Effects of intravenous yohimbine and atipamezole on haemodynamics and electrocardiogram (ECG) were studied after lumbosacral subarachnoid administration of medetomidine in eight goats. All goats received lumbosacral subarachnoid medetomidine at a dosage of 0.01 mg/kg followed by yohimbine (0.25 mg/kg) or atipamezole (0.005 mg/kg) intravenously 45 min after administration of medetomidine, in a randomized crossover design, in right lateral recumbency keeping a gap of 1 week between each trial. Heart rate, respiratory rate, rectal temperature, mean arterial pressure (MAP), mean central venous pressure (MCVP) and ECG were determined. Goats were observed for sedation and urination. All goats showed sedation and depression after medetomidine administration became alert within 2-5 min after reversal. Bradycardia and bradypnoea were the consistent findings after medetomidine injection. Tachycardia and tachypnoea were recorded within 2-5 min after reversal in both groups. A decrease in MAP and an increase in MCVP were seen after medetomidine administration in both groups. Effects of yohimbine and atipamezole on the reversal of MAP and MCVP were more or less the same and statistically non-significant (P > 0.05) in all animals. The ECG changes were non-significant (P > 0.05) in both groups. It is concluded that in the given dose rates both yohimbine (0.25 mg/kg) and atipamezole (0.005 mg/kg) produced equal reversal of the sedation, CNS depression, cardiopulmonary and ECG changes induced by subarachnoid administration of medetomidine in goats indicating that most of the actions of medetomidine were mediated via activation of alpha2-adrenergic receptors.  相似文献   

3.
The sedative and physiological effects of intramuscular medetomidine (20 and 40 μg/kg) in dogs were compared with those of xylazine (2 mg/kg). The efficacy of atipamezole (200 μg/kg), as an antagonist given 15 or 45 minutes after medetomidine (40 μg/kg) was studied. Following medetomidine, onset of sedation was rapid, and depth and duration of sedation were dose dependent. The higher dose produced jaw relaxation, depression of the pedal reflex, downward rotation of the eye and dogs could be positioned for radiography of the hips. Side effects were similar after either medetomidine or xylazine, and included bradycardia, a fall in respiratory rate and muscle tremor. Vomiting during induction was less frequent after medetomidine than after xylazine. Intramuscular administration of atipamezole rapidly reversed the sedative effects of medetomidine. Signs of arousal were seen within three minutes; all dogs could stand within 10 minutes and appeared clinically normal. Heart and respiratory rates rose, but did not return to presedation values. Relapse to sedation was not noted.  相似文献   

4.
OBJECTIVE: To assess the sedative and cardiopulmonary effects of medetomidine and xylazine and their reversal with atipamezole in calves. ANIMALS: 25 calves. PROCEDURES: A 2-phase (7-day interval) study was performed. Sedative characteristics (phase I) and cardiopulmonary effects (phase II) of medetomidine hydrochloride and xylazine hydrochloride administration followed by atipamezole hydrochloride administration were evaluated. In both phases, calves were randomly allocated to receive 1 of 4 treatments IV: medetomidine (0.03 mg/kg) followed by atipamezole (0.1 mg/kg; n = 6), xylazine (0.3 mg/kg) followed by atipamezole (0.04 mg/kg; 7), medetomidine (0.03 mg/kg) followed by saline (0.9% NaCl; 6) solution (10 mL), and xylazine (0.3 mg/kg) followed by saline solution (10 mL; 6). Atipamezole or saline solution was administered 20 minutes after the first injection. Cardiopulmonary variables were recorded at intervals for 35 minutes after medetomidine or xylazine administration. RESULTS: At the doses evaluated, xylazine and medetomidine induced a similar degree of sedation in calves; however, the duration of medetomidine-associated sedation was longer. Compared with pretreatment values, heart rate, cardiac index, and PaO(2) decreased, whereas central venous pressure, PaCO(2), and pulmonary artery pressures increased with medetomidine or xylazine. Systemic arterial blood pressures and vascular resistance increased with medetomidine and decreased with xylazine. Atipamezole reversed the sedative and most of the cardiopulmonary effects of both drugs. CONCLUSIONS AND CLINICAL RELEVANCE: At these doses, xylazine and medetomidine induced similar degrees of sedation and cardiopulmonary depression in calves, although medetomidine administration resulted in increases in systemic arterial blood pressures. Atipamezole effectively reversed medetomidine- and xylazine-associated sedative and cardiopulmonary effects in calves.  相似文献   

5.
Ten desert tortoises (Gopherus agassizii) were given i.m. injections of 150 microg/kg of medetomidine. Sedation was achieved in all tortoises by 20 min postinjection and was accompanied by a significant decrease in mean heart and respiratory rates, systolic, diastolic, and mean ventricular pressures, and mean ventricular partial pressure of oxygen (PO2). There was no change in mean blood pH, HCO3, Na+, K+, ionized calcium values, and mean ventricular partial pressure of carbon dioxide (PCO2). There were statistically significant but clinically insignificant changes in mean base excess and pH-corrected ionized calcium values. Atipamezole given to five of the tortoises at 0.75 mg/kg i.m. significantly reversed the sedative effects of the medetomidine, with all tortoises returning to a normal state by 30 min after administration of the reversal agent. In comparison, the other five tortoises given an equal volume of physiologic saline in place of atipamezole (control group) remained significantly sedated for the duration of the study. In addition, the heart rate and ventricular PO2 returned to baseline, but the respiratory rate and ventricular blood pressures were not significantly altered by the atipamezole as compared with those of the control group. These cardiopulmonary and physiologic effects are similar to those seen in some domestic mammals. Medetomidine can be used to safely induce sedation in desert tortoises. For procedures lasting greater than 120 min, supplemental oxygen should be provided. Atipamezole will reverse the sedation but not all of the cardiopulmonary effects, thus necessitating continued monitoring after reversal. Future studies should address the anesthetic and cardiopulmonary effects of medetomidine in combination with other agents such as ketamine and/or butorphanol.  相似文献   

6.
The effects of medetomidine and atipamezole were examined in rainbow trout. Medetomidine proved to be an effective sedative but not an anaesthetic; its effects were antagonised by atipamezole. The clinical signs of medetomidine sedation were rapid settling to the bottom of the tank followed by progressive ataxia. The sedative effect was dose-dependent: at 1 mg/l, one of 6 fish rested on its side after 10 min, whereas at 20 mg/l all 6 rested on their sides. No loss of consciousness occurred. Atipamezole at 6 times the medetomidine concentration antagonised sedation. The average time before fish exposed to medetomidine alone showed avoidance reactions was 10 h, more than 5 times longer than the mean time in fish exposed to medetomidine and then atipamezole. During exposure to medetomidine (5 mg/l) opercular movement rate decreased from 80/min to 20/min. The nature of opercular excursions also changed from being rapid and shallow to slow and deep. Respiratory movements increased after transfer to the bath containing atipamezole. Medetomidine had a marked effect upon skin colour, with fish becoming very pale a few min after exposure. Normal pigmentation was not restored until 4.5 days after exposure to medetomidine alone, but returned to normal after 10 min exposure to atipamezole solution. The half-life (t1/2 lambdaz) for medetomidine was 5.5 h. For atipamezole, it was 8.6 h.  相似文献   

7.
OBJECTIVE: To determine sedative and cardiorespiratory effects of i.m. administration of medetomidine alone and in combination with butorphanol or ketamine in dogs. DESIGN: Randomized, crossover study. ANIMALS: 6 healthy adult dogs. PROCEDURES: Dogs were given medetomidine alone (30 micrograms/kg [13.6 micrograms/lb] of body weight, i.m.), a combination of medetomidine (30 micrograms/kg, i.m.) and butorphanol (0.2 mg/kg [0.09 mg/lb], i.m.), or a combination of medetomidine (30 micrograms/kg, i.m.) and ketamine (3 mg/kg [1.36 mg/lb], i.m.). Treatments were administered in random order with a minimum of 1 week between treatments. Glycopyrrolate was given at the same time. Atipamezole (150 micrograms/kg [68 micrograms/lb], i.m.) was given 40 minutes after administration of medetomidine. RESULTS: All but 1 dog (given medetomidine alone) assumed lateral recumbency within 6 minutes after drug administration. Endotracheal intubation was significantly more difficult when dogs were given medetomidine alone than when given medetomidine and butorphanol. At all evaluation times, percentages of dogs with positive responses to tail clamping or to needle pricks in the cervical region, shoulder region, abdominal region, or hindquarters were not significantly different among drug treatments. The Paco2 was significantly higher and the arterial pH and Pao2 were significantly lower when dogs were given medetomidine and butorphanol or medetomidine and ketamine than when they were given medetomidine alone. Recovery quality following atipamezole administration was unsatisfactory in 1 dog when given medetomidine and ketamine. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggested that a combination of medetomidine with butorphanol or ketamine resulted in more reliable and uniform sedation in dogs than did medetomidine alone.  相似文献   

8.
Each of two dogs presented for multiple skin biopsies were sedated with intravenous medetomidine and lignocaine was injected subcutaneously to provide local anaesthesia for skin biopsy. One dog had a seizure during skin biopsy and again immediately following reversal of medetomidine with atipamezole. The other dog developed seizures 2 h following skin biopsy at which time the medetomidine was reversed with atipamezole. Both dogs were neurologically normal with no history of seizures prior to the procedure and remained neurologically normal for 14 weeks and 9 months, respectively, following the procedure. A drug interaction between the α2-adrenergic agonist medetomidine and lignocaine is suspected and highlights the potential for seizures following the subcutaneous administration of relatively large doses of lignocaine under medetomidine sedation.  相似文献   

9.
ObjectiveTo determine the effects of intramuscular (IM) administration of medetomidine and xylazine on intraocular pressure (IOP) and pupil size in normal dogs.Study designProspective, randomized, experimental, crossover trial.AnimalsFive healthy, purpose-bred Beagle dogs.MethodsEach dog was administered 11 IM injections of, respectively: physiological saline; medetomidine at doses of 5, 10, 20, 40 and 80 μg kg−1, and xylazine at doses of 0.5, 1.0, 2.0, 4.0 and 8.0 mg kg−1. Injections were administered at least 1 week apart. IOP and pupil size were measured at baseline (before treatment) and at 0.25, 0.50, 0.75, 1, 2, 3, 4, 5, 6, 7, 8 and 24 hours post-injection.ResultsA significant decrease in IOP was observed at 6 hours after 80 μg kg−1 medetomidine compared with values at 0.25 and 0.50 hours, although there were no significant changes in IOP from baseline. In dogs treated with 8.0 mg kg−1 xylazine, significant reductions in IOP were observed at 4 and 5 hours compared with that at 0.25 hours after administration. In dogs treated with 5, 10, 20 and 40 μg kg−1 medetomidine and 0.5, 1.0 and 2.0 mg kg−1 xylazine, there were no significant changes in IOP. Pupil size did not change significantly after any of the medetomidine or xylazine treatments compared with the baseline value.Conclusions and clinical relevanceLow or moderate doses of medetomidine or xylazine did not induce significant changes in IOP or pupil size. In contrast, high doses of medetomidine or xylazine induced significant changes up to 8 hours after treatment, but values remained within the normal canine physiological range. The results of this study suggest a lack of significant change in IOP and pupil size in healthy dogs administered low or moderate doses of xylazine or medetomidine.  相似文献   

10.
The pharmacokinetics of two potent α2-adrenoceptor agents that can be used for immobilization (medetomidine) and reversal (atipamezole) of the sedation in mammals, were studied in three reindeer ( Rangifer tarandus tarandus) in winter and again in summer. Medetomidine (60 μg/kg) was injected intravenously (i.v.), followed by atipamezole (300 μg/kg) intravenously 60 min later. Drug concentrations in plasma were measured by HPLC. The administration of atipamezole resulted in an immediate 2.5–3.5 fold increase in the medetomidine concentration in plasma. Clearance for medetomidine (median 19.3 mL/min·kg) was lower than clearance for atipamezole (median 31.0 mL/min·kg). The median elimination half-lives of medetomidine and atipamezole in plasma were 76.1 and 59.9 min, respectively. The animals became resedated 0.5–1 h after the reversal with atipamezole. Resedation may be explained by the longer elimination half-life of medetomidine compared to atipamezole.  相似文献   

11.
Medetomidine is the most potent and selective alpha2-agonist used in veterinary medicine and its effects can be antagonized by the alpha2-antagonist atipamezole. The pharmacokinetics of medetomidine and atipamezole were studied in a cross-over trial in eight lactating dairy cows. The animals were injected intravenously (i.v.) with medetomidine (40 microg/kg) followed by atipamezole i.v. (200 microg/kg) or saline i.v. after 60 min. Drug concentrations in plasma were measured by HPLC. After the injection of atipamezole, the concentration of medetomidine in plasma increased slightly, the mean increment being 2.7 ng/mL and the mean duration 12.1 min. However, atipamezole did not alter the pharmacokinetics of medetomidine. It is likely that the increase in medetomidine concentration is caused by displacement of medetomidine by atipamezole in highly perfused tissues. The volume of distribution at steady state (Vss) for medetomidine followed by saline and medetomidine followed by atipamezole was 1.21 and 1.32 L/kg, respectively, whereas the total clearance (Cl) values were 24.2 and 25.8 mL/min x kg. Vss and Cl values for atipamezole were 1.77 mL/kg and 48.1 mL/min x kg, respectively. Clinically, medetomidine significantly reduced heart rate and increased rectal temperature for 45 min. Atipamezole reversed the sedative effects of medetomidine. However, all the animals, except one, relapsed into sedation at an average of 80 min after injection of the antagonist.  相似文献   

12.
Blood chemistry was studied in 8 adult female reindeer, of which 5 were pregnant. Half of them received only medetomidine (150 micrograms/kg i.m.) and half of them medetomidine and atipamezole (750 micrograms/kg) in March. Three weeks later the drug regimens were reversed. The same procedure was carried out during the next September and October. Seasonal differences in pretreatment values could be seen in serum urea, phosphorous, and cholesterol, with the highest concentrations during the autumn; and creatinine, ASAT, ALAT, and CK values, which were higher in the non-pregnant reindeer in late winter. Their low-protein and low-energy diet during the winter explains most of the differences. Increased enzyme activities in serum indicate decreased membrane stability of certain organs in late winter, possibly due to nutritional deficiencies. Treatment effects could be seen in several parameters. The increase in blood glucose and decrease in serum FFA were most probably due to alpha 2-adrenoceptor activation, which inhibits insulin release and lipolysis. These effects were partly or totally inhibited after treatment with the antagonist atipamezole. The earlier increase in serum CK and ASAT activities in those receiving atipamezole can be explained by increased tissue perfusion due to atipamezole itself and the fact that these animals stood up and began to move much earlier than did those which received medetomidine only. A significant decrease in serum Na+, K+, Cl-, Pi, cholesterol, total Ca, and total protein concentration observed during the first 10 to 40 min of the medetomidine sedation could be explained by possible haemodilution and diuresis. More effective metabolism of medetomidine in autumn could explain the shorter recovery times of reindeer receiving only medetomidine and most of the differences in treatment effects between the seasons: faster increase in protein and cholesterol concentrations after the decrease, and the antagonistic effect of atipamezole on glucose and Pi changes in autumn. Based on these results, medetomidine seems to be a good sedation agent for reindeer both in autumn and in late winter; the effects of medetomidine can be rather effectively antagonized by atipamezole.  相似文献   

13.
Two hundred and twelve dogs were treated either intravenously or intramuscularly with either dexmedetomidine or medetomidine in a randomised double-blinded multicentre clinical study during procedures such as dental care, radiography and otitis treatment. Sedative, analgesic and cardiorespiratory parameters and body temperature were assessed for three hours after the treatments. Approximately half the dogs were given atipamezole intramuscularly after the completion of the procedure, and the other dogs were allowed to recover spontaneously. Dexmedetomidine and medetomidine induced similar clinical effects, and the procedure was completed successfully in 97 per cent of cases. There were few adverse side effects, but they included prolonged sedation, hypothermia, apnoea and bradycardia; no adverse effects were observed after the administration of atipamezole, which effectively reversed all the clinical effects of dexmedetomidine and medetomidine.  相似文献   

14.
OBJECTIVE: To determine cardiopulmonary effects of total IV anesthesia with propofol and medetomidine in ponies and effect of atipamezole on recovery. ANIMALS: 10 ponies. PROCEDURE: After sedation was induced by IV administration of medetomidine (7 microg/kg of body weight), anesthesia was induced by IV administration of propofol 12 mg/kg) and maintained for 4 hours with infusions of medetomidine (3.5 microg/kg per hour) and propofol 10.07 to 0.11 mg/kg per minute). Spontaneous respiration was supplemented with oxygen. Cardiopulmonary measurements and blood concentrations of propofol were determined during anesthesia. Five ponies received atipamezole (60 microg/kg) during recovery. RESULTS: During anesthesia, mean cardiac index and heart rate increased significantly until 150 minutes, then decreased until cessation of anesthesia. Mean arterial pressure and systemic vascular resistance index increased significantly between 150 minutes and 4 hours. In 4 ponies, PaO2 decreased to < 60 mm Hg. Mean blood propofol concentrations from 20 minutes after induction onwards ranged from 2.3 to 3.5 microg/ml. Recoveries were without complications and were complete within 28 minutes with atipamezole administration and 39 minutes without atipamezole administration. CONCLUSIONS AND CLINICAL RELEVANCE: During total IV anesthesia of long duration with medetomidine-propofol, cardiovascular function is comparable to or better than under inhalation anesthesia. This technique may prove suitable in equids in which prompt recovery is essential; however, in some animals severe hypoxia may develop and oxygen supplementation may be necessary.  相似文献   

15.
A combination of medetomidine hydrochloride (medetomidine) and ketamine hydrochloride (ketamine) was evaluated in 16 boma-confined and 19 free-ranging impalas (Aepyceros melampus) to develop a non-opiate immobilisation protocol. In free-ranging impala a dose of 220 +/- 34 microg/kg medetomidine and 4.4 +/- 0.7 mg/kg ketamine combined with 7500 IU of hyaluronidase induced recumbency within 4.5 +/- 1.5 min, with good muscle relaxation, a stable heart rate and blood pH. PaCO2 was maintained within acceptable ranges. The animals were hypoxic with reduced oxygen saturation and low PaO2 in the presence of an elevated respiration rate, therefore methods for respiratory support are indicated. The depth of sedation was adequate for minor manipulations but additional anaesthesia is indicated for painful manipulations. Immobilisation was reversed by 467 +/- 108 microg/kg atipamezole hydrochloride (atipamezole) intramuscularly, but re-sedation was observed several hours later, possibly due to a low atipamezole:medetomidine ratio of 2:1. Therefore, this immobilisation and reversal protocol would subject impalas to possible predation or conspecific aggression following reversal if they were released into the wild. If the protocol is used on free-ranging impala, an atipamezole:medetomidine ratio of 5:1 should probably be used to prevent re-sedation.  相似文献   

16.
ObjectiveTo determine the efficacy of medetomidine for immobilisation of captive juvenile crocodiles over a range of temperatures, and its reversibility with atipamezole.Study designProspective experimental study.AnimalsForty male estuarine crocodiles (body weight 2.0 to 4.8 kg).MethodsEach crocodile was randomly assigned to one of four temperature groups: Group 1:32 °C; Group 2:27 °C; Group 3:22 °C; and Group 4:17 °C (n = 10 for each group). Medetomidine (0.5 mg kg?1) was administered intramuscularly (IM) into the thoracic limb of all crocodiles. After 50 minutes, all animals from each group received 2.5 mg kg?1 atipamezole IM in the opposite thoracic limb and time to recovery was documented. Heart and respiratory rates and the degree of immobilisation were monitored every 5 minutes until recovery, and behaviour monitored for 7 subsequent days.ResultsOnset of immobilisation occurred at 15 ± 10 minutes in Group 1, and at 30 ± 10 minutes in Groups 2 and 3. In Group 4, animals were not immobilised. Recovery following atipamezole was 10 ± 5 minutes at all temperatures. One-way analysis of variance (anova) demonstrated a significant difference in induction times between groups (p < 0.01) but not in recovery times following atipamezole administration (p < 0.25). Heart and respiratory rates decreased markedly following medetomidine administration and increased markedly following atipamezole reversal.Conclusions and clinical relevanceMedetomidine administered in the thoracic limb of juvenile captive estuarine crocodiles provides profound sedation or immobilisation at temperatures of 22 °C and above. Atipamezole administered in the contralateral thoracic limb results in consistent reversal of the effects of medetomidine and a return to normal behaviour within 15–20 minutes regardless of temperature. Even though immobilisation is not induced at 17 °C, profound reversible sedation does occur reliably and repeatably.  相似文献   

17.
Medetomidine/ketamine sedation in calves and its reversal with atipamezole   总被引:1,自引:0,他引:1  
Atipamezole was used to reverse the sedation induced in calves by medetomidine/ketamine. Thirteen claves subjected to umbilical surgery received medetomidine 20 μg/kg bodyweight (bwt) and ketamine 0.5 mg/kg bwt intravenously (iv) from a mixture of the drugs in one syringe. Atipamezole was given at doses of 20 to 60 μg/kg iv and intramuscularly (im) to the calves at the end of the operation. Following the administration of medetomidine and ketamine, PaCO2 increased whereas pH, PaO2 and heart rate decreased. Reversing the effects of medetomidine with atipamezole did not cause undesirable effects; recovery was rapid and smooth, most of the animals reached a standing position within 1 to 3 mins after the atipamezole injection.  相似文献   

18.
The quality and duration of anaesthesia, cardiorespiratory effects and recovery characteristics of a morphine, medetomidine, ketamine (MMK) drug combination were determined in cats. Six healthy, adult female cats were administered 0.2 mg/kg morphine sulphate, 60 microg/kg medetomidine hydrochloride, and 5 mg/kg ketamine hydrochloride intramuscularly. Atipamezole was administered intramuscularly at 120 min after MMK administration. Time to lateral recumbency, intubation, extubation and sternal recumbency were recorded. Cardiorespiratory variables and response to a noxious stimulus were recorded before and at 3 min and 10 min increments after drug administration until sternal recumbency. The time to lateral recumbency and intubation were 1.9+/-1.2 and 4.3+/-1.2 min, respectively. Body temperature and haemoglobin saturation with oxygen remained unchanged compared to baseline values throughout anaesthesia. Respiratory rate, tidal volume, minute volume, heart rate, and blood pressure were significantly decreased during anaesthesia compared to baseline values. One cat met criteria for hypotension (systolic blood pressure <90 mmHg). End tidal carbon dioxide increased during anaesthesia compared to baseline values. All but one cat remained non-responsive to noxious stimuli from 3 to 120 min. Time to extubation and sternal recumbency following atipamezole were 2.9+/-1.1 and 4.7+/-1.0 min, respectively. MMK drug combination produced excellent short-term anaesthesia and analgesia with minimal cardiopulmonary depression. Anaesthesia lasted for at least 120 min in all but one cat and was effectively reversed by atipamezole.  相似文献   

19.
The sedative and immobilizing effects of the alpha 2-adrenoceptor agonist medetomidine alone or combined with the dissociative anesthetic ketamine, were studied in blue foxes. Medetomidine at doses of 25 and 50 micrograms/kg induced moderate to deep sedation, but only with the highest medetomidine dose tested, 100 micrograms/kg, was the immobilization complete. Medetomidine 50 micrograms/kg combined with ketamine 2.5 mg/kg rapidly induced complete immobilization, characterized by good myorelaxation, and no clinically significant alterations in serially determined hematologic and serum chemistry parameters. The alpha 2-adrenoceptor antagonist atipamezole effectively reversed the medetomidine- or medetomidine-ketamine-induced immobilizations. A transient increase in heart rates was noted after each atipamezole injection.  相似文献   

20.
The purpose of this study was to evaluate the cardio-respiratory effects of the combination of medetomidine and thiopentone followed by reversal with atipamezole as a combination for anaesthesia in 10 healthy German Shepherd dogs breathing spontaneously in a room at an altitude of 1486 m above sea level with an ambient air pressure of 651 mmHg. After the placement of intravenous and intra-arterial catheters, baseline samples were collected. Medetomidine (0.010 mg/kg) was administered intravenously and blood pressure and heart rate were recorded every minute for 5 minutes. Thiopentone was then slowly administered until intubation conditions were ideal. An endotracheal tube was placed and the dogs breathed room air spontaneously. Blood pressure, pulse oximetry, respiratory and heart rate, capnography, blood gas analysis and arterial lactate were performed or recorded every 10 minutes for the duration of the trial. Thiopentone was administered to maintain anaesthesia. After 60 minutes, atipamezole (0.025 mg/kg) was given intramuscularly. Data were recorded for the next 30 minutes. A dose of 8.7 mg/kg of thiopentone was required to anaesthetise the dogs after the administration of 0.010 mg/kg of medetomidine. Heart rate decreased from 96.7 at baseline to 38.5 5 minutes after the administration of medetomidine (P < 0.05). Heart rate then increased with the administration of thiopentone to 103.2 (P < 0.05). Blood pressure increased from 169.4/86.2 mmHg to 253.2/143.0 mmHg 5 minutes after the administration of medetomidine (P < 0.05). Blood pressure then slowly returned towards normal. Heart rate and blood pressure returned to baseline values after the administration of atipamezole. Arterial oxygen tension decreased from baseline levels (84.1 mmHg) to 57.8 mmHg after the administration of medetomidine and thiopentone (P < 0.05). This was accompanied by arterial desaturation from 94.7 to 79.7% (P < 0.05). A decrease in respiratory rate from 71.8 bpm to 12.2 bpm was seen during the same period. Respiratory rates slowly increased over the next hour to 27.0 bpm and a further increases 51.4 bpm after the administration of atipamezole was seen (P < 0.05). This was maintained until the end of the observation period. Arterial oxygen tension slowly returned towards normal over the observation period. No significant changes in blood lactate were seen. No correlation was found between arterial saturation as determined by blood gas analysis and pulse oximetry. Recovery after the administration of atipamezole was rapid (5.9 minutes). In healthy dogs, anaesthesia can be maintained with a combination of medetomidine and thiopentone, significant anaesthetic sparing effects have been noted and recovery from anaesthesia is not unduly delayed. Hypoxaemia may be problematic. Appropriate monitoring should be done and oxygen supplementation and ventilatory support should be available. A poor correlation between SpO2 and SaO2 and ETCO2 and PaCO2 was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号