首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sweetpotato virus disease (SPVD) is due to the dual infection and synergistic interaction of Sweetpotato feathery mottle potyvirus (SPFMV) and Sweetpotato chlorotic stunt crinivirus(SPCSV), and causes up to 98% yield loss in sweetpotato in East Africa. This study was conducted to determine the inheritance of resistance to SPVD in sweetpotato and to estimate the nature of genetic variance. Ten parental clones varying in reaction to SPVD were crossed in a half diallel mating design to generate 45 full-sib families. The families were graft-inoculated with SPCSV and SPFMV to induce SPVD and evaluated for resistance in a randomized complete block design at two sites in Namulonge, Uganda during 1998–2000. In serological assays for SPFMV and SPCSV,resistance to symptom development and recovery from initial systemic SPVD symptoms, characterised resistant genotypes. Genetic component analysis showed significant effects for both general combining ability (GCA) and specific combining ability (SCA) for resistance to SPVD. GCA to SCA variance component ratios were large (0.51–0.87), hence GCA effects were more important than SCA effects. Resistant parents exhibited high GCA indicating that additive gene effects were predominant in the inheritance of resistance to SPVD and recovery. Narrow-sense heritability (31–41%) and broad-sense heritability (73–98%) were moderate to high, indicating that rapid genetic gains for SPVD resistance could be accomplished by mass selection breeding techniques. Two genotypes, New Kawogo and Sowola, had high negative GCA effects and had several families in specific crosses,which exhibited rapid recovery from SPVD,and are promising parents for enhancement of SPVD resistance and recovery. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
M. I. E. Arabi 《Euphytica》2005,145(1-2):161-170
Barley breeders in Syria attempting to develop barley (Hordeum vulgare L.) cultivars resistant to barley leaf stripe (BLS) disease caused by Pyrenophora graminea Ito & Kuribayashi [anamorph Drechslera graminea (Rabenh. Ex. Schlech. Shoem.)]. Information on the combining ability for BLS resistance in Syria is not available. This study was conducted to evaluate, in 10 genetically diverse barley parents, general combining ability (GCA) and specific combining ability (SCA) effects towards the determination of the genetic basis of disease resistance and to estimate genetic variability for yield components and its modification by BLS. Ten parental genotypes varying in their reactions to BLS were crossed in a half-diallel mating design to generate 45 full-sib families. The families and the parents were inoculated with P. graminea and evaluated for resistance in replicated field tests (three inoculated and three non-inoculated plots). The parents chosen showed wide variations for resistance to BLS. Genetic component analysis showed significant effects for both GCA and SCA for resistance to BLS, suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. GCA effects were more important than SCA effects. Resistant parents exhibited high negative GCA indicating that additive gene effects were more predominant, and suggesting their prime suitability for use in barley breeding programs to improve resistance to BLS. Narrow-sense heritability was 58% and broad-sense heritability was 99% indicating that selection for BLS resistance should be effective in these crosses. A high genetic variability for the agronomic traits studied was observed. Yield components decreased significantly in inoculated plants and more pronounced in diseased plants. Significant GCA was observed for all traits. Values for GCA were, in some cases, significantly modified by BLS. This indicates that attention must be paid to the danger of drawing conclusion in quantitative genetics studies dealing with both diseased and healthy plants. Two genotypes, Banteng and Igri, had high negative GCA effects and are promising parents for enhancement of BLS resistance.  相似文献   

3.
Fusarium head blight (FHB) caused by Fusarium spp. is one of the most important fungal diseases of wheat (Triticum aestivum L.) in regions with wet climatic conditions. Improvement of the FHB resistance by developing new varieties requires sound knowledge on the inheritance of resistance. An 8 × 8 diallel analysis was performed to estimate general (GCA) and specific (SCA) combining ability of resistance to FHB. The F1s and parental lines were evaluated under artificial inoculation at the experimental field of IFA-Tulln, Austria during 2001 and 2002. Disease severity was evaluated by repeated scoring of the percentage of infected spikelets and calculating an area under the disease progress curve (AUDPC). The analysis of combining ability across two years showed highly significant GCA and non-significant SCA effects indicating the importance of additive genetic components in controlling FHB resistance. The significant GCA-by-year interaction presented the role of environmental factors in influencing the FHB reaction of wheat lines. The comparison of the crosses with low FHB infection and GCA effects of their parents showed that such crosses involved at least one parent with high or average negative GCA effect. The results revealed that it is feasible to use highly or moderately resistant genotypes and conventional breeding methods to achieve genetic improvement of FHB resistance in spring wheat.  相似文献   

4.
Anthracnose is a serious disease affecting dry bean production especially in the cool highland areas worldwide. The objective of this research was to study the inheritance of anthracnose resistance in market-class dry beans. A complete diallel set of crosses was generated from nine diverse parents comprising six resistant and three susceptible to anthracnose. The F1 and F2 crosses and parents were artificially inoculated with Colletotriclum lindenumthianum Race-767 in a growth room. There was significant variation for anthracnose resistance among genotypes. General combining ability (GCA) and specific combining ability effects were significant for resistance, indicating importance of both additive and non-additive effects, respectively. Preponderance of GCA effects (66%) suggested that additive effects were more important than non-additive effects (24%), which were also reflected by high heritability estimates (70%), and suggested that simple selection or backcrossing would be useful for improving the resistance in market class varieties. The study was not conclusive on whether epistatic gene action played a major role, but if available it might have biased the dominance gene effects. Reciprocal effects (10%) were not significant (P > 0.05), suggesting that cytoplasmic genes did not play a major role in modifying anthracnose resistance. Parental lines G2333, AB136, NAT002, and NAT003 showed highly negative GCA effects qualifying them as suitable parents for transferring resistance genes to their progenies. A few major genes, 1–3, displaying partial dominance conditioned anthracnose resistance, suggesting a possibility of using marker-assisted selection to improve anthracnose resistance in market-class dry beans.  相似文献   

5.
Wheat breeders in South Asia are attempting to develop wheat (Triticum aestivum L.) cultivars resistant to Helminthosporium leaf blight (HLB), which occurs mainly as a complex of spot blotch caused by Cochliobolus sativus (Ito & Kuribayashi) Drechs. ex Dastur, and tan spot caused by Pyrenophora tritici-repentis (Died.) Drechs. Information on the combining ability for HLB resistance in wheat cultivars of South Asia is not available. This study was undertaken to examine the resistance to HLB in nine genetically diverse wheat parents, and to evaluate their general combining ability (GCA) and specific combining ability (SCA) effects toward determining the genetic basis of disease resistance. Nine parents were crossed in a half-diallel mating design to produce 36 populations. The F1 and F2 progenies, and the parents were evaluated in replicated field tests at Rampur, Nepal. Multiple disease scores were recorded, and area under the disease progress curve (AUDPC) was calculated to measure disease severity over time. The combining ability analysis was performed using Griffing's Method 2, Model 1. The parents chosen showed wide variation for resistance to HLB. They and the F1 and F2 progenies differed significantly for AUDPC. GCA and SCA effects were significant in both generations suggesting that additive as well as non-additive genetic mechanisms were involved in the expression of resistance in these parents. Wheat genotypes 'SW89-5422', 'G 162', 'NL 781'and 'Chirya 7' had significantly negative GCA effects for AUDPC in both F1 and F2 generations, suggesting their prime suitability for use in wheat breeding programs to improve resistance to HLB. The estimate of narrow-sense heritability was 0.77 in both generations suggesting that selection for HLB resistance should be effective in these crosses. The results indicate a predominance of additive gene action in the inheritance of HLB resistance in spring wheat.  相似文献   

6.
小麦品种赤霉病抗性的遗传研究   总被引:3,自引:0,他引:3  
利用8个不同抗性小麦品种双列杂交的F1及其亲本,以赤霉病病粒率为抗性指标,研究了小麦赤霉病抗性的遗传。结果表明,参试品种间存在3~4对赤霉病抗性基因的差异,苏麦3号、宁麦9号和扬麦158具有较多控制赤霉病抗性遗传的显性基因,对于减少它们杂交后代的病粒率有较高的一般配合力。小麦赤霉病抗性符合加性-显性模型。赤霉  相似文献   

7.
Fusarium wilt is the main pigeonpea production constraint in Malawi. The purpose of the study was to understand the nature and mechanism of inheritance of F. wilt resistance, yield and secondary traits in pigeonpea. 48 crosses were generated in a 12 lines × 4 testers mating scheme. Some F1 plants were selfed for segregation analysis for inheritance pattern of resistance, while others were evaluated for resistance, yield and secondary traits. There were significant variations among F1 plants for F. wilt, days to 50 % flowering, seed/pod, and number of secondary branches. Specific combining ability (SCA) effects were predominant for F. wilt, days to 50 % flowering and number of secondary branches. The general combining ability (GCA) effects, mainly due to maternal genotypes, were preponderant for yield and other secondary traits. The significance of GCA and SCA effects suggested that variations were due to additive gene action in both the testers and parental lines arising from their interactions, and the dominance effects due to interactions of the parental lines. The χ2 analysis suggested dominant patterns of inheritance for wilt in most of the F2 populations. The segregation ratios of 3:1, 15:1, and 9:7 suggested the involvement of single or two independent/complementary dominant genes in the test donors. Involvement of a few genes governing wilt resistance suggested the ease of breeding for this trait. Pedigree breeding method would be recommended for incorporating various traits in pigeonpea.  相似文献   

8.
V. Lind 《Plant Breeding》2000,119(6):449-453
Two diallels were analysed for general combining ability (GCA) and specific combining ability (SCA) to study the resistance of crosses‐between wheat genotypes, advanced to the F5 generation, to Pseudocer‐cosporella herpotrichoides. The parents either carried the resistance‐gene Pch‐1 or had different levels of quantitative resistance, one genotype was susceptible. At medium milk‐ripening, significant effects were‐found for GCA and SCA. GCA effects were the more important. Diallel crosses between genotypes, all carrying Pch‐1, revealed interactions‐of the gene with the genotypic background. Some combinations had a‐higher level of resistance than the best parent. In these populations'CH‐75417’ was involved as a parent. Both ‘CH‐75417’ and ‘F–210.13.4.42’ had significant GCA effects. Crosses between quantitatively resistant parents yielded populations that transgressed both parents. The increased resistance level was associated with ‘Cappelle‐Desprez’, distinguished by its high GCA. In some crosses SCA contributed significantly to an increase in resistance level. Selection for resistance within the best advanced populations is recommended since it‐takes advantage of additive gene action and the high heritability estimates based on ELISA values in plant progenies.  相似文献   

9.
Cowpea aphid-borne mosaic virus (CABMV) is a major virus disease in Uganda that causes substantial loss of the cowpea crop especially in growth and yield. The mode of gene action conferring resistance to the virus is not well understood. The objective of the study was to determine the genetic inheritance of resistance in cowpea crosses. Three susceptible (S) cowpea landraces that are commonly grown by farmers were crossed with five introduced resistant cowpea varieties in accordance with a North Carolina mating design II scheme. The F1, F2 and BC1F1 progenies generated were evaluated in the field together with their parents. They were then infected with two infection methods namely: by spreader-rows of S cultivar (Ebelat) and artificial inoculation of virus extracts. The results obtained showed that general combining ability (GCA) and specific combining ability (SCA) effects were significant, indicating that both additive and non-additive gene effects controlled virus infection. The results further demonstrated that the GCA effects (59.8?%) were more important than SCA effects (40.2?%) in determining virus resistance in the cowpea varieties. Utilisation of good general combiners of the varieties MU-93, IT82D-516-2, SECOW-2W and IT85F-2841 in hybridisation to improve virus resistance in cowpea crosses would be recommended. The result of this study provided an indication that CABMV resistance was conditioned by more than one recessive gene in eight populations, but also revealed resistance to be conditioned by a single recessive gene in the other seven populations. Observation of continuous distribution of progenies for severity data in the F2 populations also confirmed significance of quantitative inheritance for CABMV resistance. Therefore, the significance of GCA effects suggests that recurrent selection could be applied to accumulate the additive genes for resistance in F2 populations.  相似文献   

10.
普通小麦抗白粉病配合力及其与过氧化物酶的关系   总被引:5,自引:1,他引:4  
选用6个亲本组配成双列杂交设计,对普通小麦抗白粉病的配合力及基因效应进行了分析。结果表明,白粉病病情指数属于数量性状遗传,符合加性—显性遗传模型,由加性效应和非加性效应共同控制,且以加性效应为主。低病情指数为部分显性。不同亲本之间一般配合力效应及含有的有利显性基因数存在明显差别。因此,选配杂交组合应在一般配合力高的基础上,注重其特殊配合力的选择。研究还表明,感病品种过氧化物酶活性高。  相似文献   

11.
Black pod is a major disease of cocoa. Knowledge of the inheritance of resistance to black pod would be important in devising strategies to breed resistant varieties. The mode of inheritance of resistance to black pod disease was investigated using leaf disc, detached pod tests and natural field observation in a 6?×?4 factorial and 6?×?6 diallel mating designs analyzed using North Carolina design-II approach and Griffing??s method II model I approach, respectively. The dominant component was smaller than the additive component for pod lesion size, leaf disc scores and natural field infection. Both general combining ability and specific combining ability (SCA) effects influenced the inheritance of pod lesion number and leaf disc scores suggesting that both additive and non-additive (dominance or epistatic) effects influence the inheritance of resistance to black pod disease. However, SCA effect was not significant for pod lesion size and natural field infection suggesting the importance of additive genes in the inheritance of these traits. The higher heritability of leaf disc scores, pod lesion numbers and pod lesion sizes than the heritability of natural field infection which was almost zero, shows the influence of environment on natural field infection and suggests that ranking of resistance of cocoa genotypes need to be done under controlled environmental conditions to observe true resistance levels. Good general combiners, in combination with each other, did not necessarily yield good specific combinations suggesting that parents?? performance cannot be used for selecting superior progenies. The non-significance of reciprocal effects indicates absence of maternal effects or cytoplasmic inheritance in resistance to black pod disease. Recurrent selection procedures and inter-crossing aimed at general combining ability would be more suitable for improvement of black pod disease resistance. Cocoa genotypes with good combining ability for resistance to black pod disease such as T60/887, Pa 150, Sca 6, and Pa7/808, identified in this study could be important parents to form base population for such recurrent selection procedures.  相似文献   

12.
New sources of partial resistance to Fusarium head blight (FHB) in wheat have been identified over the past decade; however, little is known of their breeding value. A 20 parent partial diallel that included resistant genotypes from the U.S., Europe, China and South America was used to evaluate the potential of these sources of resistance as parents in wheat breeding programs. Eight plants replication−1 of each of 190 crosses and 20 parents were point-inoculated with Fusarium graminearum under greenhouse conditions in two replicated experiments. Both general (GCA) and specific combining ability (SCA) were significant. Most of the variance for FHB severity was associated with additive genes; however, estimates for SCA ranged from highly negative to highly positive in both resistant × resistant and resistant × susceptible crosses which suggest that improving FHB resistance through gene pyramiding strategies based on additive genetic variation may be complicated by interaction effects that condition FHB resistance.  相似文献   

13.
用轮回式部分双列杂交法对大麦花药离体培养力进行基因型差异及配合力分析。结果表明, 花药愈伤组织诱导率的基因型差异显著;一般配合力(GCA)和特殊配合力(SCA)是相互独立的, 且其方差均达极显著水平;遗传的差异既包含加性效应,也包括显性效应,但加性效应更为重要。因而针对花药愈伤组织诱导率而言,GCA效应是首要的,在GCA效应高的基础上,选配SCA效应高的组合,通过杂交可以选育出花药愈伤组织诱导率高的基因型。  相似文献   

14.
Clubroot, caused by Plasmodiophora brassicae Woron, is a major disease of cruciferous crops and few sources of resistance have been detected and genetically studied in the Brassica oleracea species. In this study, two diallel mating systems using resistant kale lines and susceptible cauliflower lines were performed. Resistance was assessed from a disease index evaluated on young plants artificially inoculated with local isolates of the parasite. Both general and specific combining ability effects (GCA and SCA) and partly reciprocal effects were demonstrated. Resistance inheritance was, however, characterized by a predominance of additive genetic effects (GCA). Three groups of parent lines could be separated; kale lines with very high resistance, kale lines with intermediate resistance and susceptible cauliflower lines. In the two kale groups, two genetically different resistance types were suggested and various recurrent selection procedures are proposed following the diallel results.  相似文献   

15.
Groundnut leaf miner (GLM) (Aproaerema modicella) (Deventer) is one of the most destructive pests of soybean and groundnuts. In this study, the mode of inheritance, general combining ability (GCA), specific combining ability (SCA) effects, maternal effects of resistance to GLM and grain yield ha?1 were determined. Thirteen soybean parental genotypes and 81 F2 populations were evaluated for resistance to GLM in a 5?×?19 alpha lattice diallel design with two replications under natural GLM infestation in northern (Arua) and eastern (Iki-iki) Uganda during September to December 2016 rainy season. Highly significant differences were observed among parental genotypes and F2 populations for GLM incidence, severity, and grain yield. The estimates of GCA effects were significant for GLM incidence and severity scores but not for the number of larvae per plant and grain yield ha?1. SCA effects were non-significant for all the studied traits, suggesting that GCA effects were the major component responsible for soybean resistance to GLM with additive gene effects being more important for these traits. Baker’s ratio ranged from 0.44-1.0 for most of resistant traits except number of larvae per plant and grain yield ha?1. The results indicated also that cultivars Maksoy1 N, PI615437, PI578457A and NIIGC4.1-2 were good combiners against GLM incidence and severity. Parent PI615437 was a good combiner for grain yield and Maksoy1 N?×?PI615437 was a superior cross for grain yield and against GLM incidence. There were no maternal effects for the inheritance of resistance to GLM. The study provides a basis for understanding patterns of inheritance of soybean resistance to groundnut leaf miner for an efficient breeding program.  相似文献   

16.
Combining ability of seed vigor and seed yield in soybean   总被引:4,自引:0,他引:4  
Youngkoo Cho  Roy A. Scott 《Euphytica》2000,112(2):145-150
Studies have shown no consensus in relationships between seed yield and vigor in soybean [Glycine max (L.) Merrill]. The lack of information regarding the inheritance of seed vigor prompted this study to determine the types of gene action and combining ability estimates for seed vigor and its related traits. Five high and six low seed vigor soybean genotypes were crossed in a diallel, and selfed to produce 55 F2 progenies, which were examined, along with the parents, for seed vigor, yield, and seed weight. Significant genotype and environment effects were found for seed vigor and yield. General combining ability (GCA) effects for seed vigor and seed yield were significant (p≤ 0.01) and larger than specific combining ability (SCA) effects. Significant GCA and SCA effects were found for seed weight, indicating that both additive and non additive genetic effects were involved in conditioning seed weight. The ratios of mean square, 2GCA / (2GCA+SCA), were 0.96 for seed vigor and 0.93 for seed yield. These ratios indicated that additive gene effects were more important than non additive gene effects for seed vigor and seed yield in these crosses. Mean seed vigor(83.8%), as determined by accelerated aging germination, and mean seed yield (2,155 kg ha-1)in high vigor × high vigor crosses were higher than the high vigor × low vigor and low vigor × low vigor crosses. Mean percent accelerated aging germination rates in F2 populations from diallel crosses were significantly related to mid-parent seed vigor(r2 = 0.52**) and midparent seed size (r2 = 0.31**). These results indicated that levels of seed vigor can be improved through breeding, while maintaining high yields because of the predominance of GCA effects in both seed vigor and seed yield. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Grain moulds are a major constraint to sorghum production and to adoption of improved cultivars in many tropical areas. Information on the inheritance of grain mould reaction is required to facilitate breeding of resistant cultivars. The genetic control of grain mould reaction was studied in 7 crosses of 2 resistant sorghum genotypes. P1, P2, F1, F2, BC1 and BC2 families of each cross were evaluated under sprinkler irrigation for field grade and threshed grade scores and subjected to generation mean analysis. Frequency distributions for grain mould reaction were derived and F2 and BC1 segregation ratios were calculated. Grain mould reaction in crosses of coloured grain sorghum was generally controlled by two or three major genes. Resistance to grain moulds was dominant. Significant additive gene effects were also found in all cross/season combinations. Significant dominance effects of similar magnitude to additive effects were also observed in five out of ten cross/season combinations. Gene interactions varied according to the parents with both resistant and susceptible parents contributing major genes. Choice of parents with complementary resistance genes and mechanisms of resistance will be critical to the success of resistance breeding. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Flower bud thrips, Megalurothrips sjostedti is the most severe field pest of cowpea that causes massive flower abortion which eventually results to substantial yield reduction in Africa. There is paucity of information on the mode of gene actions controlling inheritance of resistance to flower bud thrips in cowpea in the literature. The objectives of study were to assess the genetic variability for thrips resistance among the cowpea germplasm, determined the mode of inheritance of genes that conferred resistance and both broad and narrow-sense heritability estimates for the inheritance of thrips resistance in cowpea. Twelve cowpea lines were used in crosses in the screen house at IITA, Ibadan. The mating was accomplished using North Carolina design II to generate 48F1 hybrids, which were eventually evaluated with the parents. Data on number of peduncles, number of pods and number of thrips per flower were recorded and subjected to analysis of variance using random model by SAS 9.2. Significant variability was observed for most agronomic and thrip-adaptive traits among the cowpea germplasm, parental-lines and F1 genotypes evaluated. General combining ability (GCA) and specific combining ability (SCA) mean squares were significant (P < 0.01) for number of pods per plant and other traits under the research environment. The GCA effect accounted for 68.82–80.07% of the total variation among hybrids for all traits except days to flowering; SCA explained less than 50% of the total variation. Narrow-sense heritability estimates ranged from 7.53 (days to flower) to 63.92% (number of peduncles per plant). Additive gene action largely controlled the inheritance of yield components and other traits under thrips infestation and these traits were moderately heritable.  相似文献   

19.
The most effective strategy to control Fusarium head blight (FHB), a devastating disease of small‐grain cereals, is breeding resistant cultivars. This resistance study of F1 crosses, F2 and backcross generations of triticale estimates heterosis, general and specific combining ability (GCA, SCA), additive and dominance effects and compares parents with segregating generations. The genetic material consisted of 10 parents with their 45 F1 crosses and of six parents with their 15 F2 progeny and backcrosses to each parent. Genotypes were grown in various environments and artificially inoculated with an aggressive isolate of F. culmorum. FHB was assessed, by visual rating, as the mean of four to five individual ratings of disease development. Heterosis for FHB was of little importance. The correlation between the FHB rating of F1 crosses and their mid‐parent performance was close. GCA was the predominant source of variation, although the significance of the SCA variance also implied non‐additive allelic interaction. The preponderance of additive gene effects is encouraging for increasing resistance by a recurrent selection programme. The relationship between the GCA effect of a parent and its per se performance was close, which gives the possibility of predicting FHB resistance in F1 crosses. Additive effects were predominant in the F2 progeny and also in the backcrosses. Transgressive segregants could not be detected. Searching for them should be postponed to the F3 or later generations.  相似文献   

20.
棉花耐盐性的双列杂交分析   总被引:13,自引:1,他引:13  
根据Hayman的方法,对6个耐盐性不同的棉花品种(系)及其15个半双列杂交组合的F1、F2代的平均盐害级别进行了双列杂交分析,结果表明,耐盐和盐敏感品种的一般配合力效应差异达极显著水平,耐盐×盐敏感组合的特殊配合力普遍低于盐敏感×盐敏感、耐盐×耐盐组合。因此,棉花耐盐育种以配制耐盐×盐敏感组合为最佳。棉花耐盐遗  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号