首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 65 毫秒
1.
斜置切纵流联合收获机脱粒分离装置结构参数优化   总被引:5,自引:0,他引:5  
为满足我国现阶段高产水稻的收获要求,对自行研制的履带式斜置切纵流联合收获机进行了结构改进,构建了载荷测试系统,并在田间开展了三因素三水平的正交试验,分析了切纵流滚筒转速、切流滚筒凹板筛结构形式、斜置纵轴流螺旋喂入头与导流罩径向间隙等因素对脱粒分离性能的影响,使用极差分析法对斜置切纵流联合收获机脱粒分离装置的结构参数进行了优化。优化结果表明:切流滚筒转速和纵轴流滚筒转速分别为862、806 r/min,切流凹板筛过渡段为导向、分离孔式,螺旋喂入头与导流罩径向间隙为50 mm时,整机的脱粒分离性能较优。脱粒分离总损失率为0.62%,脱粒分离总功耗为40.42 k W。  相似文献   

2.
为满足我国现阶段高产水稻的高效收获要求,提出了一种喂入量为7~9kg的履带式新型斜置切纵流双滚筒联合收获机的总体配置方案,论述了斜置切纵流双滚筒脱粒分离装置中切流脱粒滚筒、切流凹板筛、锥形螺旋过渡喂入装置、斜置纵轴流滚筒和纵轴流凹板筛的结构设计,确定了各个工作部件的工作参数。田间试验表明:该装置在收获水稻喂入量为8.57kg/s时,脱粒损失率为0.79%,籽粒破碎率为0.1%,各项性能指标均达到设计要求;同时,在喂入量增大时,该装置各工作部件功耗较为平稳,适应性较强。  相似文献   

3.
切纵流联合收获机脱粒分离装置田间试验与参数优化   总被引:3,自引:0,他引:3  
为了研究切纵流联合收获机脱粒分离装置的最佳结构参数和运动参数,对履带式切纵流联合收获田间试验机进行结构改进、载荷测试系统的构建和水稻田间试验,研究切流滚筒、纵轴流滚筒间隙和切流滚筒、纵轴流滚筒转速对脱粒总功耗、切流滚筒功耗、纵轴流滚筒功耗和夹带损失率等性能的影响。并对总功耗和夹带损失率的数据进行二次多项式回归分析和复合型优化分析得到最佳参数配置:切流滚筒间隙为30.99 mm,纵轴流滚筒间隙为14mm,切流滚筒和纵轴流滚筒转速为892.95、848.95 r/min。试验表明,该参数组合下,脱粒总功耗39.03 k W,切流滚筒功耗11.72 k W,纵轴流滚筒功耗27.31 k W,夹带损失率0.50%。对切流滚筒和纵轴流滚筒下方脱出混合物分布进行了研究,为清选装置的设计与优化提供了依据。  相似文献   

4.
4LQZ-6型切纵流联合收获机   总被引:2,自引:0,他引:2  
提出了4LQZ-6型切纵流联合收获机的收获工艺和总体结构,论述了切流脱粒分离装置、强制喂入装置、纵轴流脱粒分离装置和风筛式清选装置等主要工作部件的结构与设计参数。田间性能测试表明:该机收获产量6605 kg/hm2小麦时总损失率为0.2%,破碎率和含杂率均为0.1%,机具生产率为1.47 hm2/h;收获产量8021 kg/hm2水稻时总损失率为1.7%,破碎率和含杂率分别为0.9%和0.8%,机具生产率为2.27 hm2/h,各项技术指标达到了设计要求。  相似文献   

5.
在切纵流双滚筒脱粒分离性能试验装置上,进行喂入量为6kg/s的水稻脱粒分离性能试验,研究其最佳脱粒分离的结构参数和运动参数。试验结果表明,切纵流双滚筒联合收割机收获水稻的最佳组合方式为:切流滚筒间隙27mm,纵轴流滚筒间隙14mm,切流滚筒线速度为25.9 5m/s,纵轴流滚筒线速度为28.23m/s,纵轴流滚筒齿杆间距为140mm。并对切流滚筒脱粒分离籽粒的轴向分布、纵轴流滚筒脱粒分离籽粒的轴向和径向分布进行了研究,为后续清选装置的研究提供了设计依据。  相似文献   

6.
切纵流双滚筒联合收获机脱粒分离装置   总被引:4,自引:0,他引:4  
提出了一种喂入量为4~5 kg/s的履带式切纵流双滚筒联合收获机的总体配置方案,论述了切纵流双滚筒脱粒分离装置切流脱粒滚筒、切流凹板、过渡口、纵轴流滚筒和纵轴流凹板等结构与运动参数的设计。田间试验与性能测试表明:该机收获水稻时喂入量达到4.86 kg/s时,整机损失率为1.47%,破碎率为0.2%,各项技术指标达到了设计要求。  相似文献   

7.
纵轴流玉米脱粒分离装置喂入量与滚筒转速试验   总被引:2,自引:0,他引:2  
在玉米籽粒直收过程中,脱粒滚筒转速与联合收获机的额定喂入量相匹配才能发挥出最佳的作业效果。为了获得不同喂入量时玉米联合收获机最优的滚筒转速范围,设计了一种零部件可更换、结构参数和工作参数均可调的纵轴流玉米脱粒分离装置,并在自主研制的试验台上以脱粒滚筒转速、喂入量为影响因素,以籽粒破碎率、未脱净率为性能指标进行玉米脱粒试验。通过台架试验、回归分析和单变量求解,最终确定了不同喂入量的最优滚筒转速范围:喂入量为8 kg/s时,最优的滚筒转速为254~486 r/min;喂入量为10 kg/s时,最优的滚筒转速为278~466 r/min;喂入量为12 kg/s时,最优的滚筒转速为313~445 r/min。在以上条件下籽粒破碎率均小于5%,未脱净率小于2%,达到了国家和相关标准的要求。  相似文献   

8.
纵轴流脱粒分离装置功耗分析与试验   总被引:1,自引:0,他引:1  
为准确获取纵轴流脱粒分离装置在水稻脱粒中的功耗特性,借助扭矩传感器、信号采集卡及工控机测控系统在纵轴流滚筒转速为850 r/min、钉齿间距为100 mm、脱粒间隙为25 mm、草谷比为2.6、喂入量为7 kg/s条件下,于室内台架上进行了水稻脱粒功耗测定试验.通过对水稻脱粒过程中功耗特性的分析,提取水稻脱粒的瞬间功耗,得知钉齿纵轴流滚筒的空载功耗为10.93 kW、脱粒功耗为36.94 kW、机械效率为69.62%.采用单因素试验对影响钉齿纵轴流滚筒总功耗及籽粒损失率(夹带损失率和未脱净损失率)的齿间距、脱离间隙、滚筒转速、草谷比及喂入量进行室内台架试验研究,分析了单个因素对钉齿纵轴流滚筒总功耗和籽粒损失率的影响情况.  相似文献   

9.
半喂入联合收获机同轴差速脱粒滚筒设计与试验   总被引:1,自引:0,他引:1  
针对半喂入联合收获机收获超级稻和难脱粒的粳稻时脱粒不净引起损失的问题,设计了半喂入同轴差速脱粒滚筒,并与单速脱粒滚筒进行了脱粒对比试验,对各种脱出物料的实测数据用Matlab软件建立了3D图像及其数学模型。结果表明:差速滚筒未脱净籽粒约0.06%,比单速滚筒降低61.25%;3D图像显示差速脱粒的各种脱出物料在筛面上分布比单速脱粒均匀。半喂入同轴差速脱粒装置集高、低转速对脱粒性能的有利作用于一体,能较好解决半喂入联合收获机收获超级稻和粳稻时脱粒不净引起的损失,并使损失率、破碎率和含杂率等性能指标都达到较优水平。  相似文献   

10.
荞麦具有不同于普通谷物的收获特性,而两段式收获被认为是其最佳的机械化收获方式。目前,关于荞麦两段式捡拾收获的脱粒分离装置的试验研究鲜有报道。为此,在自行研制的切流-横轴流双滚筒捡拾收获试验平台上进行了荞麦的脱粒分离试验研究,即采用四因素三水平的正交试验,研究了荞麦籽粒含水率、喂入量、脱粒滚筒线速度和脱粒间隙对破碎率、含杂率、损失率和脱分功率等性能指标的影响规律。结果表明:影响荞麦脱粒分离性能的试验因素重要性次序依次为籽粒含水率、脱粒间隙、滚筒线速度及喂入量;荞麦两段式捡拾收获最优的脱粒分离作业参数为籽粒含水率20%、脱粒间隙35 mm、脱粒滚筒线速度17.27 m/s、喂入量1.2 kg/s;最优脱粒分离作业参数下脱出物中各类杂余占比较小,表明装置适用于荞麦两段式捡拾收获的脱粒分离作业。研究可为两段式荞麦捡拾收获机的脱粒分离装置研发提供理论支撑和试验支持,对荞麦产业的机械化发展具有重要意义。  相似文献   

11.
半喂入联合收获机回转式栅格凹板脱分装置设计与试验   总被引:2,自引:0,他引:2  
针对半喂入联合收获机在收获高产水稻时容易发生脱粒滚筒堵塞、影响作业效率等问题,设计了可沿脱粒滚筒圆弧方向循环运转的回转式栅格凹板脱粒分离装置。对被脱物质点进行了受力分析,建立了回转式凹板的动力学微分方程;在自行设计的回转式栅格凹板脱分装置试验台上进行了二次旋转组合试验,建立了脱粒滚筒转速x1、回转栅格凹板线速度x2、夹持喂入链速度x3对损失率y1、破碎率y2、含杂率y3和脱分选功耗y4等工作性能指标的回归分析模型,并进行了多目标优化计算。结果表明:动态的回转栅格凹板可有效防止脱粒滚筒堵塞;最佳工作参数组合为x1=550 r/min,x2=1 m/s,x3=1.2 m/s,对应y1=2.14%、y2=0.2%、y3=0.6%。田间对比试验表明:具有回转式栅格凹板脱分装置的试验机收获高产稻时可全幅快速顺畅作业,工作效率比固定式栅格凹板的对比机提高30%以上。经法定机构检测,各项性能指标符合国家标准规定。  相似文献   

12.
联合收获机前进速度的模型参考模糊自适应控制系统   总被引:4,自引:0,他引:4  
以切纵流联合收获机为研究对象,设计了一种基于联合收获机前进速度的模型参考模糊自适应控制系统,建立了融合多个变量的自适应控制参考模型和模糊控制规则。研制了联合收获机前进速度控制装置,并进行了田间水稻收获试验。试验表明,与普通模糊控制相比,所设计的模型参考模糊自适应控制系统可以实现对联合收获机的自适应控制,能够有效地降低操作人员的作业强度,提高田间收获效率。  相似文献   

13.
脱粒分离是谷物联合收获机的主要作业环节,脱粒滚筒又是其中的主要工作部件,其工作参数直接影响着联合收获机的整机性能。为此,设计了一种新型高效纵轴流小麦脱粒滚筒装置,以解决大喂入量状态下小麦收获机所出现的效率低、含杂率高及损失率严重等问题。该滚筒主要由导料月牙、喂入叶片、喂入锥体、纹杆座组合、滚筒壳体,以及排草板等组成。以含杂率、损失率为检测指标,通过正交试验找出最佳参数组合为:滚筒转速800r/min、凹板间隙15mm、滚筒倾角8°,在此参数下谷物的含杂率为0.11%、损失率为0.29%,收获质量符合农艺要求。该机构的设计为纵轴流滚筒技术的提升提供了理论支持。  相似文献   

14.
履带式全喂入稻麦联合收获机工作装置设计   总被引:3,自引:0,他引:3  
针对当前履带式全喂入联合收获机存在的问题,设计了双动刀往复式切割器、叠加式切割器驱动机构、同轴差速轴流式脱粒滚筒、圆锥型离心式清选风扇和板齿式杂余复脱装置等工作部件。试验表明,改进的工作部件能明显提高切割效率,有效解决了损失率、破碎率和含杂率3项主要性能指标之间的矛盾,使3项指标同时下降至较理想状态。  相似文献   

15.
收获机作为农业生产的重要生产工具,其喂入量控制一直是自动控制领域研究的热点问题。本文通过分析收获机工作方式,建立收获时收获机喂入量变化模型。设计开发收获机作业参数监测系统,以小麦作为实验对象,在我国华北地区开展田间实验,验证系统喂入量监测精度并同步采集产量、含水率和作业速度等参数,系统喂入量监测平均相对误差为8.55%。以收获机在割台高度不变条件下保持额定喂入量为控制目标状态,收获机作业速度作为控制量,采用模型预测的方法对收获机喂入量进行仿真控制。采用灰狼优化算法优化二次规划的权值矩阵,仿真结果表明,权值矩阵优化后,喂入量控制平均绝对误差小于0.1 kg/s,平均降低38.1%。喂入量控制误差与收获区域的产量成反比,与含水率成正比。在相邻时域内产量、含水率变化较小的收获区域效果更好。  相似文献   

16.
基于神经网络PID的小麦收割机械式行走装置设计   总被引:1,自引:0,他引:1  
为了提高联合收割机行进速度控制的响应精度、缩短控制过程的响应时间及提高收割机的作业效率,设计了一种新的小麦收割机械式行走装置。该装置利用新型液压-机械控制方案,结合神经网络PID控制器,提高了行走装置的响应速度和精度,并解决了收割机原地转向及特殊地块通过性较差的问题。行走系统采用双联集成变量柱塞泵和2个定量摆线马达的相互独立闲式液压传动系统,实现了收割机行走系统的无级调速。为了测试装置的有效性和可靠性,对PID控制器的响应精度和响应时间等进行了测试。通过测试发现:PID控制器的调节时间仅为0.02s,响应迅速,超调量低,响应精度较高,为小麦收割机现代化设计提供了较有价值的参考。  相似文献   

17.
针对联合收割机作业路径规划不合理、联合收割机与运粮车无法协同优化调度等问题,以最小化联合收割机总非生产性作业时间和非生产性作业等待时间为目标,构建多机型多任务协同优化调度模型,设计多机协同优化调度算法(MMCOSA)。首先通过对传统蚁群算法(ACO)进行改进,计算得到联合收割机的静态路径规划方案,然后采用相对距离最近策略实现联合收割机与运粮车协同作业动态优化。试验结果表明,采用MMCOSA算法计算得到的联合收割机总非产性作业时间和非生产性作业等待时间均比传统ACO算法的结果平均缩短17.5%和19.02%,MMCOSA算法不仅加快收敛速度,而且缩短作业时间,为农忙时节联合收割机与运粮车的协同调度问题提供有效的解决方案。  相似文献   

18.
脱粒滚筒是联合收获机的核心部件,其性能决定了联合收获机的工作质量和生产效率。由于不同地块和不同作物的湿度、密度不同,联合收获机的行走速度和喂入量也不同,因此脱粒滚筒的转速也应做出适当的调整,使滚筒的线速度保持在一个有较好脱粒效果的状态。为此,提出了一种新的双滚筒脱粒滚筒结构,该结构利用传感器采集滚筒信息,形成了滚筒转速的闭环反馈调节机制,并采用小波神经网络算法对转速的精度进行调节,提高了脱粒滚筒的作业精度。最后,对基于小波神经网络算法的双滚筒脱粒滚筒的性能进行了实验测试和仿真模拟,测试和仿真模拟得到的籽粒破碎率基本吻合,验证了实验的可靠性。对滚筒的脱净率进行了进一步的实验测试发现,利用神经网络算法和小波神经网络算法的脱粒滚筒脱净率都比较高,且小波算法要比单纯使用设计网络算法脱净率高。  相似文献   

19.
张抓虎 《农业工程》2018,8(9):16-20
联合收割机在农业产品收获中发挥的作用越来越大,而前进速度对联合收割机的工作效率有很大影响,喂入量会随着前进速度降低而减小,有效控制联合收割机的行走速度非常重要。设计了联合收割机行走速度控制系统,通过理论依据,论述联合收割机行走速度控制系统模型、工作原理。控制系统硬件设计有液压控制系统、单片机系统和系统I/O口扩展;电路设计有信号采集电路、显示系统电路和输出控制电路。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号