首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Field Crops Research》2006,95(2-3):367-382
For maximizing water retention and attaining high yields, transplanting into puddled soil (TPR) is often considered the optimal method of rice (Orzya sativa L.) establishment. Alternative management techniques like direct seeding (DSR) and deep tillage have been proposed as mechanisms to improve soil physical properties for subsequent dry-season crops, but the risks to rice are uncertain. In this full factorial study on a valley terrace in Nepal, the influence of tillage (shallow—T1, deep chisel—T2, deep chisel + moldboard plough—T3) and establishment practice (TPR, DSR) on the field water balance and rice performance were evaluated in two adjacent landscape settings (terrace edge “upland”, central terrace “lowland”). Although deep tillage had only modest influences on seepage and percolation (SP) rates in both years (Y1, Y2), landscape placement and establishment practice had significant implications for the water balance (e.g. Y2 SP cm day−1: TPR-lowland = 1.6, DSR-lowland = 2.3, TPR-upland = 4.1, DSR-upland = 6.1). During low rainfall periods, however, soil water potential and drought vulnerability were governed solely by landscape placement. Despite water balance differences, there was little evidence that rice rooting behavior was substantially modified by landscape or establishment method. Weed biomass was higher in DSR, but was uncorrelated with water balance and productivity trends. In Y1, lower SP rates and more days with continuous flooding were positively associated with rice productivity. DSR yields were significantly lower than TPR in both landscape positions, with the lowland outperforming the upland (Y1 mt ha−1: TPR-lowland = 6.4, DSR-lowland = 5.2, TPR-upland = 5.7, DSR-upland = 4.7). To determine if N dynamics were contributing to productivity differences, fertilizer nitrogen was increased from 120 to 150 kg N ha−1 in Y2. Results suggest that DSR performance is comparable – and landscape less important – if nitrogen is non-limiting (Y2 mt ha−1: TPR-lowland = 6.9, DSR-lowland = 6.5, TPR-upland = 7.0, DSR-upland = 6.5); no aspect of the field water balance was associated with yield variability in Y2. For direct seeding in N-deficient farming systems, landscape criteria may prove useful for minimizing production risks by identifying field areas with lower SP rates.  相似文献   

2.
《Field Crops Research》1998,59(2):91-98
Single irrigation, compared to the conventional four or five irrigations, has been practised in northern China on winter wheat on a relatively large scale since 1991. In a field study, irrigation was reduced from normally four times (I4, 4×75 mm) to one (I1, 75 mm at the end of the second internode elongation) in an area with an annual rainfall of about 600 mm. A control without irrigation (I0) was also included. Late sowing and early soil drying at seedling stage resulted in a relatively deep root system. Leaf area index, the size of upper leaves and the length of base internodes were also significantly reduced under I1, but kernel number per panicle was not reduced, suggesting that the development of inflorescence was not disrupted. During the active grain-filling stage, it was found that leaf water potential under I1 was maintained similar to that of I4, while daytime stomatal conductance was substantially reduced. Leaf temperature was increased, indicating an inhibited leaf transpiration. Early senescence was induced in I1 and I0 crops and resulted in a substantially lower kernel weight. Although the grain yield of I1 was reduced by about 15% from I4, the water-use efficiency (WUE) for total water consumption was increased by 24–30%. Single irrigation can potentially make wheat cropping sustainable in this area in terms of water usage and prevent further depletion of the underground water resource. Explanations for the small or zero reduction in yield are: (1) the encouraging development of a deep root system that enabled the plants to use more water at depth (below 1 m), which is recharged annually by the relatively high summer rainfall. (2) A large portion of root system in the drying soil and its induced shoot physiological changes, that is, reduced leaf expansion and stomatal conductance, which helped the plants to establish a better canopy structure with a much reduced water consumption. (3) An improved harvest index.  相似文献   

3.
《Field Crops Research》2005,91(2-3):307-318
A 3-year field experiment examined the effects of non-flooded mulching cultivation and traditional flooding and four fertilizer N application rates (0, 75, 150 and 225 kg ha−1 for rice and 0, 60,120, and 180 kg N ha−1 for wheat) on grain yield, N uptake, residual soil Nmin and the net N balance in a rice–wheat rotation on Chengdu flood plain, southwest China. There were significant grain yield responses to N fertilizer. Nitrogen applications of >150 kg ha−1 for rice and >120 kg ha−1 for wheat gave no increase in crop yield but increased crop N uptake and N balance surplus in both water regimes. Average rice grain yield increased by 14% with plastic film mulching and decreased by 16% with wheat straw mulching at lower N inputs compared with traditional flooding. Rice grain yields under SM were comparable to those under PM and TF at higher N inputs. Plastic film mulching of preceding rice did not affect the yield of succeeding wheat but straw mulching had a residual effect on succeeding wheat. As a result, there was 17–18% higher wheat yield under N0 in SM than those in PM and TF. Combined rice and wheat grain yields under plastic mulching was similar to that of flooding and higher than that of straw mulching across N treatments. Soil mineral N (top 60 cm) after the rice harvest ranged from 50 to 65 kg ha−1 and was unaffected by non-flooded mulching cultivation and N rate. After the wheat harvest, soil Nmin ranged from 66 to 88 kg N ha−1 and increased with increasing fertilizer N rate. High N inputs led to a positive N balance (160–621 kg ha−1), but low N inputs resulted in a negative balance (−85 to −360 kg ha−1). Across N treatments, the net N balances of SM were highest among the three cultivations systems, resulting from additional applied wheat straw (79 kg ha−1) as mulching materials. There was not clear trend found in net N balance between PM and TF. Results from this study indicate non-flooded mulching cultivation may be utilized as an alternative option for saving water, using efficiently straw and maintaining or improving crop yield in rice–wheat rotation systems. There is the need to evaluate the long-term environmental risks of non-flooded mulching cultivation and improve system productivity (especially with straw mulching) by integrated resource management.  相似文献   

4.
《Field Crops Research》2005,94(1):67-75
A study was conducted with the objective to determine the influence of (shallow water depth with wetting and drying) SWD on leaf photosynthesis of rice plants under field conditions. Experiments using SWD and traditional irrigations (TRI) were carried out at three transplanting densities, namely D1 (7.5 plants/m2), D2 (13.5 plants/m2) and D3 (19.5 plants/m2) with or without the addition of organic manure (0 and 15 t/ha). A significant increase in leaf net photosynthetic rate by SWD was observed with portable photosynthesis systems in two independent experiments. At both flowering and 20 DAF stages, photosynthetic rate was increased by 14.8% and 33.2% with D2 compared to control. SWD significantly increased specific leaf weight by 17.0% and 11.8% over the control at flowering and 20 DAF stages, respectively. LAI of D2 under SWD was significantly increased by 57.4% at 20 DAF. In addition, SWD with D2 significantly increased the leaf dry weight (DW) at both growing stages. At all the three densities, SWD increased the leaf N content and the increase was 18.9% at D2 density compared with the conventional control. In SWD irrigation, the leaf net photosynthetic rate was positively correlated with the leaf N content (R2 = 0.9413), and the stomatal conductance was also positively correlated with leaf N content (R2 = 0.7359). SWD enhanced sink size by increasing both panicle number and spikelet number per panicle. The increase in spikelet number per panicle was more pronounced in the 15 t ha−1 manure treatment than in the zero-manure treatment. Grain yield was also significantly increased by SWD, with an average increase of 10% across all treatments. SWD with D2 had the highest grain yield under the both cultivars with or without 15 t ha−1 manure treatment, which was 14.7% or 13.9% increase for Liangyoupeijiu and 11.3% or 11.2% for Zhongyou 6 over the control, respectively.  相似文献   

5.
《Field Crops Research》2005,92(1):17-33
The inclusion of grain legumes in rainfed lowland rice farming systems provides an opportunity to increase food production, household income, and human nutrition of impoverished rice farmers in Asia. We examined the effect of rice establishment method on the performance of wet season rice (Oryza sativa L.) and post-rice crops of either chickpea (Cicer arietinum L.) or moong [Vigna radiata (L.) Wilczek] on an Udic Haplustalf in the drought-prone, rainfed lowlands of eastern India. Rice was either direct seeded in lines on moist soil immediately after the onset of wet season rain or transplanted after sufficient rainwater accumulated for soil submergence. Crop establishment method had no effect on rice performance in a season (2001) with normal rainfall. In a drought season (2002), direct seeding resulted in mean rice grain yield of 2.3 t ha−1, whereas the transplanted rice crop failed. The agronomic efficiency of N fertilizer applied to direct-seeded rice was comparable for the 2 years (18 and 24 kg grain per kg N applied). Topsoil inorganic N was markedly higher following chickpea and moong than following a post-rice fallow. Direct-seeded rice had higher yield and accumulation of N following a post-rice legume than following fallow, but transplanted rice derived no such benefit from the legume. Direct-seeded rice was established 1–2 months before transplanted rice, and direct-seeded rice matured before transplanted rice by 8 days in the favorable season and by 26 days in the drought season. The soil nitrate present after legumes and fallow rapidly disappeared, presumably by denitrification, following the onset of rains and soil flooding prior to transplanting. A portion of this accumulated soil nitrate was taken up by the direct-seeded rice before it could be lost. But transplanted rice did not benefit from this inorganic N derived from legumes because virtually all soil nitrate was lost before transplanting. Direct seeding of rice ensured better use of residual and applied N, reduced risk due to drought, and favored intensification with post-rice legumes in drought-prone lowland systems.  相似文献   

6.
《Field Crops Research》2005,91(1):71-81
Wheat (Triticum aestivum L.) cultivation in no-till soil of a postrice harvest field utilizes residual soil moisture and reduces the time period from rice harvest to wheat seeding in intensive rice-wheat cropping systems. Some of the major constraints in no-till wheat production are high weed infestation, poor stand establishment due to rapid drying of topsoil and low nitrogen use efficiency (NUE). A field experiment was conducted at the research farm of the Wheat Research Centre, Dinajpur, Bangladesh, for two consecutive years to overcome those constraints, to evaluate rice straw as mulch, and to determine the optimum application rate of nitrogen (N) for no-till wheat. The treatments included 12 factorial combinations of three levels of mulching: no mulch (M0), surface application of rice straw mulch at 4.0 Mg ha−1 that was withdrawn at 20 days after sowing (M1), the same level of mulch as M1 but allowed to be retained on the soil surface (M2), and four nitrogen levels (control 80, 120 and 160 kg ha−1). Rice straw mulching had a significant effect on conserving initial soil moisture and reducing weed growth. Root length density and root weight density of wheat were positively influenced both by straw mulching and N levels. N uptake and apparent nitrogen recovery of applied N fertilizer were higher in mulch treatments M1 and M2 as compared to M0. Also mulch treatment of M1 and M2 were equally effective at conserving soil moisture, suppressing growth of weed flora, promoting root development and thereby improved grain yield of no-till wheat. N application of 120 kg ha−1 with straw mulch was found to be suitable for no-till wheat in experimental field condition.  相似文献   

7.
Cover crops can provide changes in soil chemical and physical properties, which could allow a sustainable development of soybean and upland rice rotation in Brazilian Cerrado. The objective of this study was to determine the effects of cover crops(cultivated in the offseason) in the soybean-upland rice rotation(cultivated in the summer season) on the soil chemical and physical properties, yield components and grain yield of the cash crops. The experimental design was a randomized block design in factorial scheme 4 × 2 with six replications. Treatments were composed by four cover crops: fallow, millet(Pennisetum glaucum) + Crotalaria ochroleuca, millet + pigeon pea(Cajanus cajans), and millet + pigeon pea + Urochola ruziziensis in the offseason with one or two cycles of cover crops, with rice(Oryza sativa)or soybean(Glycine max) in the summer season. Cover crops alone provided no changes in soil chemical properties. However, the rotation cover crops/cash crops/cover crops/cash crops reduced p H, Al and H + Al and increased Ca, Mg, K and Fe contents in the soil. The cover crops millet + pigeon pea and millet + pigeon pea + U. ruziziensis improved soil physical properties in relation to fallow,especially in the 0–0.10 m soil layer. In spite of the improvement of the soil physical properties after two years of rotation with cover crops and cash crops, the soil physical quality was still below the recommended level, showing values of macroporosity, S index and soil aeration capacity lower than 0.10 m3/m3, 0.035 and 0.34, respectively. Upland rice production was higher under mixtures of cover crops than under fallow, mainly because of soil physical changes done by these mixtures of cover crops.Soybean grain yield was similar under all cover crops tested, but was higher after the rotation cover crops/upland rice/cover crops than after only one cycle of cover crops.  相似文献   

8.
《Field Crops Research》2004,86(1):53-65
Deceleration in rice (Oryza sativa L.) yield over time under fixed management conditions is a concern for countries like Bangladesh, where rice is the primary source of calories for the human population. Field experiments were conducted from 1990 to 1999 on a Chhiata clay loam soil (Hyperthermic Vertic Endoaquept) in Bangladesh, to determine the effect of different doses of chemical fertilizers alone or in combination with cow dung (CD) and rice husk ash (ash) on yield of lowland rice. Two rice crops—dry season rice (December–May) and wet season rice (July–November) were grown in each year. Six treatments—absolute control (T1), one-third of recommended fertilizer doses (T2), two-thirds of recommended fertilizer doses (T3), full doses of recommended fertilizers (T4), T2+5 t CD and 2.5 t ash ha−1 (T5) and T3+5 t CD and 2.5 t ash ha−1 (T6) were compared. The CD and ash were applied on dry season rice only. The 10-year mean grain yield of rice with T1 was 5.33 t ha−1 per year, while the yield with T2 was 6.86 t ha−1 per year. Increased fertilizer doses with T3 increased the grain yield to 8.07 t ha−1 per year, while the application of recommended chemical fertilizer doses (T4) gave 8.87 t ha−1 per year. The application of CD and ash (T5 and T6) increased rice yield by about 1 t ha−1 per year over that obtained with chemical fertilizer alone (T2 and T3, respectively). Over 10 years, the grain yield trend with the control plots was negative, but not significantly, both in the dry and wet seasons. Under T3 through T6, the yield trend was significantly positive in the dry season, but no significant trend was observed in the wet season. The treatments, which showed positive yield trend, also showed positive total P uptake trend. Positive yield trends were attributed to the increasing P supplying power of the soil.  相似文献   

9.
Safflower (Carthamus tinctorius L.) is a deep-rooted crop which can tolerate water stress and can be grown in rotation with other crop species. Nitrogen is very important for the growth and yield of safflower, however, the effect of N level on chlorophyll content, assimilation rate, transpiration rate, stomatal conductance, substomatal CO2 concentration, and water use efficiency (WUE) have not been determined. A 2-year field study was conducted with the objective to determine the effect of N fertilization on yield, yield components, chlorophyll content, photosynthetic characteristics, and WUE of safflower grown under rainfed conditions. Three rates of N were used (0, 100, and 200 kg N ha−1) and two hybrids (CW9048 and CW9050). N fertilization increased seed yield by an average of 19%, the seed weight per plant by 60%, the seed weight per head by 18%, the number of heads per plant by 32%, and the number of seeds per plant by 41% compared with the control. N level also affected chlorophyll content, N concentration at anthesis, protein, and oil yield. N application increased assimilation rate by an average of 51%, stomatal conductance of water vapour by an average of 27%, and WUE by an average of 60% over the 2 years of the study when compared to the control. The present study indicates that N fertilization can affect yield, yield components, photosynthetic efficiency, and physiology of safflower under rainfed conditions.  相似文献   

10.
《Field Crops Research》2006,95(1):75-88
Long-term trends of crop yields have been used as a means to evaluate the sustainability of intensive agriculture. Previous studies have measured yield trends from long-term rice–rice and rice–wheat experiments in different sites from the slopes of individual site regressions of yield over time. The statistical significance of each site regression was determined but not that of the aggregate trend, which could give an indication of the magnitude and significance of global yield change.The random regression coefficient analysis (RRCA) and meta-analysis were used in this study to analyze the aggregate yield trend from several long-term experiments (LTE) across the Indo-Gangetic Plains (IGP) and outside the IGP. Both methods show that there has been a significant (p < 0.05) declining trend in rice yield in rice–wheat LTEs in South Asia including China with the recommended rates of nutrients, but that there has been no significant change in wheat and system (rice + wheat) yields. There was no significant year × region (IGP versus non-IGP) interaction in rice and wheat yields. However, RRCA showed that the average yield trend was significantly negative (−41.0 kg ha−1 yr−1) only in the IGP. In the rice–rice LTEs, there was a significant year × site (IRRI versus non-IRRI sites) interaction during the dry season but not the wet season. Rice yields declined throughout Asia in the wet season. The average system (dry + wet season rice) yield trends were significantly negative in both IRRI and non-IRRI sites (−170.1 and −52.8 kg ha−1 yr−1, respectively) but the magnitude of yield decline was significantly greater in the IRRI sites than in the non-IRRI sites.Rice in the rice–wheat LTEs showed a significantly positive yield trend with the addition of farmyard manure (FYM) but the initial yield was generally lower with FYM than without FYM. After 15 years, yield increase due to FYM was not evident in most of the LTE.  相似文献   

11.
《Field Crops Research》2001,70(2):127-137
Shallow saline water tables, naturally saline soils and variations in climatic conditions over the two growing seasons, create a harsh environment for irrigated rice production in the Senegal River Delta. At the onset of the growing season, salts accumulated by capillary rise in the topsoil are released into the soil solution and floodwater. Rice fields often lack drainage facilities, or drain from one field to the other, thus building up salt levels during the season. Salt stress may, therefore, occur throughout the growing season and may coincide with susceptible growth stages of the rice crop. The objectives of the present study were to (i) determine varietal responses to seasonal salinity in both the hot dry season (HDS) and the wet season (WS) and (ii) derive guidelines for surface water drainage at critical growth stages. We evaluated responses of three rice cultivars grown in the region to floodwater salinity (0–2, 4, 6, 8 mS cm−1), applied either at germination, during 2 weeks at crop establishment, during 2 weeks around panicle initiation (PI), or during 2 weeks around flowering. Floodwater electrical conductivity (EC) reduced germination rate for the most susceptible cultivar by as much as 50% and yield by 80% for the highest salinity level imposed. Salinity strongly reduced spikelet number per panicle, 1000 grain weight and increased sterility, regardless of season and development stage. The strongest salinity effects on yield were observed around PI, whereas plants recovered best from stress at seedling stage. Floodwater EC <2 mS cm−1 hardly affected rice yield. For floodwater EC levels >2 mS cm−1, a yield loss of up to 1 t ha−1 per unit EC (mS cm−1) was observed for salinity stress around PI (at fresh water yields of about 8 t ha−1). Use of a salinity tolerant cultivar reduced maximum yield losses to about 0.6 t ha−1 per unit EC. It is concluded that use of salinity tolerant cultivars, drainage if floodwater EC >2 mS cm−1 at critical growth stages, and early sowing in the WS to avoid periods of low air humidity during the crop cycle, are ways to increase rice productivity in the Senegal River Delta.  相似文献   

12.
《Field Crops Research》2001,69(3):227-236
Grindelia chiloensis (Corn.) Cabr. is a shrub native to Patagonia, Argentina and can accumulate as much as 25% resin in its leaves, with net primary productivity between 90 and 170 g per year per plant when growing in native stands. Under cultivation, 67.4 g of resin per plant have been produced (about 2.24 Mg ha−1). The objective of this study was to assess the effect of irrigation regime on biomass and resin production on G. chiloensis. In order to achieve this objective, four irrigation treatments were performed during 1996–1997 and 1997–1998: (i) weekly irrigation (7d), (ii) irrigation at 20-day intervals (20d), (iii) irrigation at 40-day intervals (40d), (iv) non-irrigated (N-I). It was found that the intermittent water supply at 40d was sufficient to promote canopy development, and increase water use efficiency (WUE) and resin production per plant (RP) with highest resin production (approximately 5.12 Mg ha−1 in 1997). In order to achieve high levels of RP, above ground biomass was maximized at the expense of a reduction in WUE. A concomitant increase in WUE (at the leaf level; WUEL) and leaf resin content with water stress and time was found. This result supports the hypothesis that epicuticular resin could influence water transpiration (E), as it represents an additional barrier to gas diffusion from the epidermis and through the stomatal pores.  相似文献   

13.
《Field Crops Research》2006,96(1):37-47
Irrigated rice in China accounts for nearly 30% of global rice production and about 7% of global nitrogen (N) consumption. The low agronomic N use efficiency (AEN, kg grain yield increase per kg N applied) of this system has become a threat to the environment. The objective of this study was to determine the possibility to improve the AEN of irrigated rice in China by comparing the farmers’ N-fertilizer practices with other N management strategies such as real-time N management (RTNM) and fixed-time adjustable-dose N management (FTNM). Field experiments were conducted in farmers’ fields in four major rice-growing provinces in China in 2001 and 2002. The same experiment was repeated at the International Rice Research Institute (IRRI) farm in the dry seasons of 2002 and 2003. Agronomic N use efficiency was determined by the “difference method” using an N-omission plot. Maximum yield was achieved mostly at 60–120 kg N ha−1, which was significantly lower than the 180–240 kg N ha−1 applied in farmers’ practices at the Chinese sites. With the modified farmers’ fertilizer practice, a 30% reduction in total N rate during the early vegetative stage did not reduce yield but slightly increased yield and doubled AEN compared with the farmers’ practice at the Chinese sites. The total N rate in RTNM and FTNM ranged from 30 to 120 kg ha−1 at the Chinese sites, but their yields were similar to or higher than that of the farmers’ practice. Compared with the modified farmers’ practice, RTNM and FTNM further increased AEN at the Chinese sites. Overall, FTNM performed better than RTNM at the Chinese sites because the total N rate of FTNM was closer to the optimal level than RTNM. A quantum leap in AEN is possible in the intensive rice-growing areas in China by simply reducing the current N rate and by allocating less N at the early vegetative stage.  相似文献   

14.
《Field Crops Research》2006,97(1):53-65
In Northern China, high-yielding aerobic rice varieties are released to farmers to grow rice as a supplementary-irrigated upland crop to cope with water scarcity. If the key factors contributing to the high yield of these varieties are understood, rapid advancements can be made in developing aerobic rice varieties for water-scarce environments in other parts of Asia. In 2001–2002, we conducted experiments with aerobic varieties HD502 and HD297 and lowland variety JD305 under aerobic and flooded conditions. Five irrigation treatments were implemented in aerobic soil to create different soil moisture regimes. Under flooded conditions, all three varieties had comparable radiation use (RUE) efficiencies of 2.09–2.26 g dry matter (DM) MJ−1 in 2001 and 2.40–2.53 g DM MJ−1 in 2002, and harvest indices (HI) of 0.38–0.40 in both years. Differences in yield among the varieties are explained by differences in growth duration. Under aerobic conditions, mean RUE over water treatments dropped to 1.70–1.72 g DM MJ−1 for all three varieties in 2001, and to 1.62 for HD502, 1.71 for HD297 and 1.86 for JD305 in 2002. With increasing dryness of the soil, the amount of intercepted light decreased at about the same rate for all varieties, but RUE decreased faster in the lowland than in the two aerobic varieties. The HI of JD305 decreased dramatically with increasing soil dryness and reached values of 0.19–0.21 in 2002. In contrast, the HI of both aerobic varieties remained relatively high under aerobic conditions, with lowest values of 0.27–0.28 for HD297 and 0.34–0.35 for HD502 in 2002. The relatively high HI of the aerobic varieties compensated for their relatively short growth duration so that their yields were higher than that of JD305 in all treatments. A high percentage filled grains is a key factor contributing to the high HI of the aerobic varieties under aerobic conditions.  相似文献   

15.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

16.
《Field Crops Research》2002,78(1):51-64
The effects of differential irrigation and fertiliser treatments on the water use of potatoes (Solanum tuberosum L. cv. Desirée) were studied over 2 years in the hot dry climate of northeast Portugal. Total actual evapotranspiration (ETc) ranged from 150 to 320 mm in 1988, and from 190 to 550 mm in 1989 depending mainly on irrigation treatment, potential evaporation rates (ETp) and duration of the growing season. By comparison, the effects of nitrogen fertiliser on total water use were relatively small. Although nitrogen increased transpiration (larger leaf canopy), it reduced evaporation from the soil surface, in frequently irrigated plots, by similar amounts. As a result, in well-irrigated crops, the ETc/ETp ratio averaged 0.85 over the season, regardless of nitrogen level. Evaporation from the soil surface represented 15–25% of total water use by well-fertilised plants, but as much as 30–50% from the sparse stands of unfertilised crops. The proportion of water extracted from each depth increment of the silt-loam soil declined logarithmically, from the surface to 1.1 m depth, the maximum measured, for irrigated crops, and linearly when rain-fed. The ETc/ETp ratio fell below unity when 25–30% of the available water in the top metre had been depleted, equivalent to soil water deficits (SWDs) of 45–50 mm. By comparison, ETc declined to zero when 75–90% of the available water had been extracted, corresponding to actual deficits of 135–150 mm. Peak ETc rates reached 12–13 mm per day on days immediately following irrigation, nearly twice ETp (possibly due to the influence of advection) but then declined logarithmically with time to about 3 mm per day within 5 days. Using the same data, a companion paper reports the influence of climatic conditions on the yield responses to water of potato crops grown in the region.  相似文献   

17.
Miscanthus × giganteus is one of the most promising biomass crops for non-food utilisation. Taking into account its area of origin (Far East), its temperature and rainfall requirements are not well satisfied in Mediterranean climate. For this purpose, a research was carried out with the aim of studying the adaptation of the species to the Mediterranean environment, and at analysing its ecophysiological and productive response to different soil water and nitrogen conditions. A split plot experimental design with three levels of irrigation (I1, I2 and I3 at 25%, 50% and 100% of maximum evapotranspiration (ETm), respectively) and three levels of nitrogen fertilisation (0 kg ha−1: N0, 60 kg ha−1: N1 and 120 kg ha−1: N2 of nitrogen) were studied. The crop showed a high yield potential under well-watered conditions (up to 27 t ha−1 of dry matter). M. × giganteus, in Mediterranean environment showed a high yield potential even in very limited water availability conditions (more than 14 t ha−1 with a 25% ETm restoration). A responsiveness to nitrogen supply, with great yield increases when water was not limiting, was exhibited. Water use efficiency (WUE) achieved the highest values in limited soil water availability (between 4.51 and 4.83 g l−1), whilst in non-limiting water conditions it decreased down to 2.56 and 3.49 g l−1 (in the second and third year of experiment, respectively). Nitrogen use efficiency (NUE) decreased with the increase of water distributed (from 190.5 g g−1 of I0 to 173.2 g g−1 of I2); in relation to N fertilisation it did not change between the N fertilised treatments (N1 and N2), being much higher in the unfertilised control (177.1 g g−1). Radiation use efficiency (NUE) progressively declined with the reduction of the N fertiliser level (1.05, 0.96 and 0.86 g d.m. MJ−1, in 1994, and 0.92, 0.91 and 0.69 g d.m. MJ−1, in 1995, for N2, N1 and N0, respectively).  相似文献   

18.
《Field Crops Research》2002,74(1):67-79
Field experiments were conducted during two rainy seasons to study the effect of soil moisture deficit on total biomass, pod yield, harvest index (HI) and drought tolerance index (DTI) in groundnut (Arachis hypogaea L.) cultivars possessing a wide range of specific leaf area (SLA, 144–241 cm2 g−1). There were three soil moisture regimes: adequate irrigation (W1), drought simulated under rain-out-shelter (W2) and rain-fed (W3). This experiment had two parts, in one, five cultivars were exposed to W1, W2 and W3, and in a second, seven cultivars were exposed to W1 and W3. Using the same set of seven cultivars, pot-culture experiments were conducted to study relative water content (RWC), stomatal conductance (gs) and single leaf carbon exchange rate (CER) during increasing moisture-deficit in two contrasting (rainy and summer) seasons. Variation in DTI was significant, and low SLA types had greater DTI under both W2 and W3. The ranking of SLA among cultivars was consistent between experiments conducted during the two seasons. The rate of reduction in leaf RWC during the progressive moisture-deficit was related directly to SLA (r=0.78, P<0.01). The coefficient of determination of the slopes calculated between RWC and soil moisture during the experimental period was more in the summer (r2=0.82) than the rainy (r2=0.54) season.Under increasing moisture-deficit, the low SLA types were able to maintain higher RWC, CER and gs in both seasons. The relationships between RWC and CER (r=0.91, P<0.01), and RWC and gs (r=0.65, P<0.01) were significant.It is suggested that under water-limited conditions there is a significant inverse relationship between SLA and RWC. The low SLA types (water use efficient) were found to be drought tolerant in terms of total dry matter production in the field studies, and maintenance of higher RWC under drought like situations in pot-culture experiments. Thus the ability of the low SLA types (higher water use efficiency, WUE) to maintain higher RWC may form the basis for the differences in drought tolerance vis a vis WUE in groundnut cultivars differing in SLA. Suggestions are made to select parents for drought tolerance or WUE, and to initiate breeding to combine traits like high HI, and WUE in terms of lower SLA. Ultimately, selection for both WUE (measured in terms of SLA) and yield traits (HI) should result in cultivars with improved performance in rain-fed agriculture.  相似文献   

19.
《Field Crops Research》2002,74(1):37-66
Irrigated rice (Oryza sativa L.) yield increases in Asia have slowed down in recent years. Further, yield increases are likely to occur in smaller increments through fine-tuning of crop management. On-farm experiments at 179 sites in eight key irrigated rice domains of Asia were conducted from 1997 to 1999 to evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among the eight intensive rice domains as well as among farms within each domain. Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM was tested for four successive rice crops. Average grain yield in the SSNM increased by 0.36 Mg ha−1 (7%) compared to the current farmers’ fertilizer practice (FFP) measured in the same cropping seasons or 0.54 Mg ha−1 (11%) compared to the baseline FFP yield before intervention. Average nutrient uptake under SSNM increased by about 10% in the same seasons or by 13% (N) and 21% (P, K) compared to the baseline data. Yield increases were associated with a 4% decrease in the average N rate, but larger amounts of fertilizer-K at sites where the previous K use was low. Average N use efficiencies increased by 30–40%, mainly through the use of improved in-season N management schemes. Across all sites and four successive rice crops, profitability increased by US$ 46 ha−1 per crop or 12% of the total average net return. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year. Average profitability increased from US$ 32 ha−1 pre crop in the first year to US$ 61 ha−1 pre crop in the second year due to improvements in the SSNM approach and re-capitalization of P and K applied in the first year. SSNM required little extra credit for financing, and remained profitable even if rice prices are somewhat lower than current levels. Further, scope for improvement exists at many sites by alleviating other crop management constraints to nutrient use efficiency. Profit increases ranged from US$ 4 to 82 ha−1 per crop among eight rice domains. However, profit decreases occurred in about 25% of all cases, indicating that a certain minimum level of crop care is required for SSNM to be profitable. Yields at sites with labor-saving direct-seeding of larger fields were about 1 Mg ha−1 lower than those achieved at sites with labor-intensive transplanting and good management, raising concern about future trends in rice production. SSNM has potential for improving yields and nutrient efficiency in irrigated rice to close existing yield gaps. The major challenge for SSNM will be to retain the success of the approach while reducing the complexity of the technology as it is disseminated to farmers. The nature of the approach will need to be tailored to specific circumstances in different countries. In some areas, SSNM may be field or farm specific, but in many areas it is likely to be just region and season-specific.  相似文献   

20.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号