首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
David H. Wise   《Pedobiologia》2004,48(2):181-188
In a long-term field experiment, densities of wandering spiders (i.e. species that do not build webs to capture prey) were reduced in order to determine whether or not a major group of microbi-detritivores, the Collembola (springtails), would increase in response to lowered spider predation. Thirty 4-m2 fenced plots (15 spider-removal, 15 control plots) and 15 unfenced, undisturbed reference areas were established in a deciduous forest. Spiders were taken from the removal-treatment after being collected by periodic trapping with pitfall traps that contained no preservative, and by searching the litter surface. Judging from a comparison of the numbers captured during periodic censuses in spider-removal and control plots (one census period was two consecutive days of pitfall trapping), wandering spiders were rapidly reduced by ca. 50% and were maintained at levels lower than control plots for 1.3 years. The reduction in numbers was greatest for wolf spiders (Lycosidae; ≈90%). Of six families of Collembola abundant in the leaf litter during the experiment, one family, the Tomoceridae, exhibited a significant release from spider predation. Densities of tomocerids, which are the largest and most active springtails on the research site, gradually increased until they were consistently 2× higher in the spider-removal treatment than in either fenced control plots or unfenced, open reference areas.  相似文献   

2.
Spiders are major predators in forest-floor leaf litter, yet little is known about their impact on prey populations and on forest-floor processes such as litter decomposition. This experiment investigated the effect of removing spiders on Collembola densities. We also examined the potential indirect effect of spider removal on rate of litter disappearance. Twenty-eight 1-m2 plots were randomly assigned to one of four treatments: O – open, no manipulations; F – fenced, no litter sifted, no spiders removed; FS – fenced, litter sifted, no spiders removed; and FSR – fenced, litter sifted, spiders removed. In early August, we sifted the litter in the FS and FSR plots, removing all encountered spiders from the FSR treatment. A month later, we placed into each plot one 15 × 15-cm litterbag filled with a known amount (ca. 3 g) of dried straw. After six weeks, litterbags were collected and fauna were extracted in a Kempson-McFadyen apparatus. Decreasing spider predation increased densities of Collembola, and increased the rate at which straw disappeared from litterbags. These results indicate that spider predation may reduce Collembola densities enough to lower rates of litter disappearance on the forest floor.  相似文献   

3.
Summary The influence of leaf litter from three Salix spp. on fungal growth and microbial decomposition was studied using 1-mm-mesh litter-bags, and the effect on additional soil macrofaunal activity was studied by measuring litter disappearance from 4-mm-mesh bags and under 4-mm-mesh nets. Mineral macro-elements, water-and ethanol-extractable substances, lignin, and protein-precipitating substances (astringency) in the litter were determined, taking contaminating of the litter with soil particles into account. As expected, the litter disappeared more quickly from the large-mesh bags than from the small-mesh bags, which was attributed to earthworm activity. During the 1st year, the rate of leaf disappearance from both types of bags and under the nets was much higher for S. daphnoides than for S. viminalis and S. fragilis. The lower initial astringency, related to the tannin content, of the S. daphnoides litter might account for this difference. Tannin metabolites probably hampered both microbial decomposition and earthworm acceptability for some time also after the astringency was lost. Neither the content of macronutrients nor that of the other organic fractions studied can be assumed to have had any effect on weight losses due to microbial decomposition. Although, the S. daphnoides leaves initially contained the least amount of fungal mycelium (m g-1 dry weight), the increase after contact with soil was most pronounced in this litter. The species composition of Fungi Imperfecti in the leaves of S. viminalis and S. daphnoides differed only for fresh litter, whereas the number of isolates was somewhat higher for S. daphnoides throughout the study. Similar seasonal variations in fungal composition occurred in both the S. viminalis and the S. daphnoides litter.  相似文献   

4.
[目的]开展凋落叶分解速率研究,探讨凋落叶分解速率与初始质量的关系,为甘肃省兴隆山森林生态系统物质循环研究提供依据。[方法]采用凋落物分解袋法,以兴隆山青杄、山杨和白桦3种主要树种的凋落叶为研究对象,进行凋落叶分解速率及凋落叶初始质量的研究,明确凋落叶分解速率与初始质量的关系。[结果]青杄中龄林针叶分解速率为0.16,95%分解期为19.08a;青杄近熟林针叶分解速率为0.13,95%分解期为23.70a;山杨和白桦凋落叶分解速率均为0.11,95%分解期分别为28.57a和27.27a;山杨和白桦凋落叶分解速率明显要小于青杄针叶,这很可能是凋落叶分解主场效应和分解袋孔径较小所致。凋落叶分解速率与氮含量呈显著线性正相关,与木质素含量、碳/氮值、木质素/氮值和钾含量呈显著线性负相关,特别是与木质素含量、氮含量和木质素/氮值,相关系数均达0.700 0以上;钾含量、木质素含量、木质素/氮、碳/磷和纤维素含量是影响兴隆山森林凋落叶分解速率的重要指标。[结论]木质素/氮值是影响凋落叶分解速率的关键质量指标,凋落叶初始木质素/氮值越高,分解速率越低。  相似文献   

5.
The decomposition and nutrient content of litter was studied for 2 years in regrowth Eucalyptus diversicolor forest to which N (0, 200 kg ha-1 year-1) and P (0, 30, 200 kg ha-1) had been applied. The P addition increased, and the N addition decreased, the rate of dry weight loss of decomposing litter. Analysis of the coefficients of a double exponential decay model with components describing the release of labile and resistant fractions indicated that decomposition of the resistant component of litter was most affected by the fertilizer additions. Treatment with N reduced the rate of loss of this component and increased its half-life by approximately 30%, whereas P treatment increased its rate of decay and decreased its half-life by approximately 30%. P accumulated in litter during decomposition. P uptake and retention was greater in P-treated than untreated plots. The application of N reduced P accumulation in litter. An accumulation of N also occurred during decomposition, the amount of N imported into litter being greater on plots treated with N fertilizer. Treatment with N affected the amount of S in decomposing litter. Litter on N-treated plots either accumulated more S or released it more slowly than litter on plots not treated with N. The application of N as NH4NO3 decreased forest-floor litter pH, increased litter layer mass (by 15%), and increased the amount of N (by 34%) and S (by 32%) stored in the forest floor. Treatment with P reduced the amount of N (by 22%) stored in the litter layer. The application of 200 kg P ha-1 in the absence of N increased the store of P in the litter layer by 80%, but when N and P were applied together the amount of P in the litter was not significantly different between P treatments.  相似文献   

6.
《Applied soil ecology》2007,35(3):523-534
Climate-change models predict a more intense hydrological cycle, with both increased and decreased amounts of rainfall in areas covered with temperate deciduous forests. These changes could alter rates of litter decomposition, with consequences for rates of nutrient cycling in the forest ecosystem. To examine impacts of predicted changes in precipitation on the rate of decay of canopy leaves, we placed litterbags in replicated, fenced 14 m2 low-rainfall and high-rainfall plots located under individual rainout shelters. Unfenced, open plots served as an ambient treatment. Litter in the high-rainfall and ambient plots decayed 50% and 78% faster, respectively, than litter in the low-rainfall plots. Litter in the ambient plots disappeared 20% faster than in the high-rainfall treatment, perhaps via greater leaching during heavy rainfall events. Ambient rainfall during the experiment was similar in total amount to the high-rainfall treatment, but was more variable in intensity and timing. We used litterbags of different mesh sizes to examine whether changes in rainfall might alter the impacts of major categories of the fauna on litter decay. However, we found no consistent evidence that excluding arthropods of different sizes affected litter decay rate within any of the three rainfall treatments. This research reveals that changes in rainfall predicted to occur with global climate change will likely strongly alter rates of litter decay in deciduous forests.  相似文献   

7.
Abstract

Plant litter and fine roots are important in maintaining soil organic carbon (C) levels as well as for nutrient cycling. The decomposition of surface‐placed litter and fine roots of wheat (Triticum aestivum), lucerne (Medicago sativa), buffel grass (Cenchrus ciliaris), and mulga (Acacia aneura), placed at 10‐cm and 30‐cm depths, was studied in the field in a Rhodic Paleustalf. After 2 years, ≤10% of wheat and lucerne roots and ≥60% of mulga roots and twigs remained undecomposed. The rate of decomposition varied from 4.2 year?1 for wheat roots to 0.22 year?1 for mulga twigs, which was significantly correlated with the lignin concentration of both tops and roots. Aryl+O‐aryl C concentration, as measured by 13C nuclear magnetic resonance spectroscopy, was also significantly correlated with the decomposition parameters, although with a lower R 2 value than the lignin concentration. Thus, lignin concentration provides a good predictor of litter and fine root decomposition in the field.  相似文献   

8.
Abstract

Litter fall and its decomposition rate play an important role in nutrient recycling, carbon budgeting and in sustaining soil productivity. Litter production and the decomposition rate were studied on commonly planted broad-leaved Eucalyptus (Eucalyptus globulus, Eucalyptus camaldulensis, Eucalyptus saligna) and coniferous (Juniperus procera, Cupressus lusitanica, Pinus patula) plantation species and compared with the adjacent broad-leaved natural forest. The production of litter was recorded by litter traps and the decomposition rate was studied by nylon net bag technique. Litter production under broad-leaved plantation species and natural forest (that varied from 9.7 to 12.6 Mg ha?1 y?1) was significantly higher (p<0.05) than that under coniferous species (that varied from 4.9 to 6.6 Mg ha?1 y?1). The average concentration of C and N in fresh mature leaves was higher than in leaf-litter fall, implying that both C and N were either sorbed in the plant system or lost through decomposition, leaching or erosion during the leaf-litter fall period. The amount of N, which potentially returned to the soil through the leaf-litter fall, tended to be higher in natural forest than in Eucalyptus plantations. The residual litter mass in the litter bag declined with time for all species. The annual dry matter decay constant (k) varied from 0.07 m?1 in Pinus patula to 0.12 m?1 in Eucalyptus saligna. The half-time (t0.5) decay varied from 6.0 for Eucalyptus saligna to 9.7 months for Pinus patula. The results suggest that the decomposition rate in Pinus patula was relatively lower than the other species and the litter production under broad-leaved Eucalyptus was comparatively higher than that in coniferous species. Overall the litter decomposition was fast for all species. The higher litter production and its relative faster rate of decomposition is a positive aspect to be considered during species selection for the restoration of degraded habitats given other judicious management practices such as prolonging the rotation period are adhered to.  相似文献   

9.
The amount of organic matter and rate of litter decomposition in relation to vegetation type under mediterranean-type forests in southern Tuscany was studied. Since existing concepts are largely based on studies of soils on calcareous substrates in this region, particular attention was paid to soils on non-calcareous materials. The humus type and distribution at five sites on acid metamorphic rocks and at one site on dolomitic limestone with different vegetation types was investigated. The input of above-ground litter was also determined. On the metamorphic rocks, clear trends in humus profile development could be observed from deciduous through sclerophyllous to coniferous vegetation: there was a decrease in litter nitrogen content (9.3 to 5.8 g N kg?1 DM), an increase in the amount of organic matter in ectorganic layers (2.53 to 4.66 kg m?2), a decrease in the decay constant k (0.26 ± 0.02 to 0.17 ± 0.03 a?1), and a decrease in soil faunal activity. The results indicate that, under eu-mediterranean to sub-mediterranean forests, decomposition rates are comparable to those under temperate deciduous forests, and that the dominant humus form is a leptomoder. The spatial variation in the amount of organic matter within the plots was considerable, and was related to vegetation type.  相似文献   

10.
Soil microbiological properties during decomposition of leaf litter of poplar (Populus deltoides) and eucalyptus (Eucalyptus tereticornis) were studied under laboratory conditions. Microbial biomass C and ninhydrin-N were measured at different intervals up to 90 days following incorporation of poplar and eucalyptus leaves separately @ 20 and 100t ha-1. In general, the net increase in total biomass C or ninhydrin N following amendment was larger in the soils which received poplar leaves than in the soils that received eucalyptus leaves. The amounts of biomass C, at day 90, in the soils which received eucalyptus leaves @ 20 and 100 t ha-1 was about half and one-third, respectively, that of the soils that received poplar leaves at the same rates. Similarly, the field soils naturally receiving eucalyptus leaf litter contained about half the amounts of biomass C or ninhydrin N of the soils that received poplar leaf litter. In contrast, the amounts of organic C and total N were more in soils which received eucalyptus leaves both in the laboratory experiment and under field conditions than in the soils that received poplar leaves, indicating that the decomposition of eucalyptus leaves in soils was slower than that of poplar leaves. The ratio of biomass C/soil organic C in soils receiving eucalyptus leaves was about 2–4 times lower than those in soils with no admendment or soils receiving poplar leaves. These results, therefore, suggest that the allelochemicals released into soil during decomposition of eucalyptus leaves had a toxic effect on soil microorganisms and may thus affect the nutrient cycling and hence soil fertility.  相似文献   

11.
In Sudan, tree plantations remain the first choice and are widely used in protecting arable lands from sand movement. Decomposition and nutrient changes from leaves of some agroforestry trees (Eucalyptus microtheca, Ficus spp., and Leucaena leucocephala) and litter fall from guava (Psidium guajava) and mango (Magnifera indica) were monitored (in a 12‐week litter‐bag experiment). Rate of dry‐matter weight loss from guava (0.098 wk?1) was significantly (P < 0.01) faster than from mango residues (0.04 wk?1). Corresponding values for Leucaena, Eucalyptus, and Ficus were 0.0533, 0.0524, and 0.0438 wk?1, respectively. In general, micronutrients tend to accummulate during a decomposition period. Potassium (K) was the only element found to be consistently lost by leaching very rapidly from all litters. Nitrogen (N) was released at a significantly (P < 0.03) higher rate from Leucaena (0.0558 wk?1) compared to Ficus (0.0399 wk?1) and Eucalyptus (0.0301 wk?1). Mobility of nutrients from the litters was in the order of K > phosphorus (P) = N > calcium (Ca) > magnesium (Mg). It is concluded that ficus and mango leaves are suitable for improving quality of arid soils through buildup of soil organic matter and supplying easily released organic sulfur (S) (environmentally sound management practice) whereas litter from guava is suitable for temporary nutrient correction. Mixing of guava and mango residues may slow fast decomposition of the former.  相似文献   

12.
Summary The effects of different litter input rates and of different types of litter on soil organic matter accumulation and net N mineralization were investigated in plant communities dominated by Erica tetralix L. or Molinia caerulea (L.) Moench. Plots in which the litter on the soil had repeatedly been removed were compared with plots in the same plant community in which litter had been added to the soil. In another treatment, litter was removed and replaced by litter from the other plant community. Net N mineralization was measured in situ after 5 years. Less soil organic matter and soil N was found in plots in which litter had been removed, compared with control plots, or plots to which litter had been added, but these differences were significant for the Erica sp. soils only. Plots in which litter had been replaced and control plots did not differ significantly in the amount of soil organic matter. However, in both plant communities, the differences agreed with the faster decomposition rate of Molinia sp. litter compared with Erica sp. litter. The gravimetric soil moisture content was correlated positively with the amount of soil organic matter, both in the Erica sp. soils and the Molinia sp. soils. Net N mineralization rates (g N m-2) differed significantly between treatments for Erica sp. soils but no for Molinia sp. soils. For Erica sp. soils, net N mineralization rates increased with increasing amounts of soil organic matter and soil N. Replacing the litter with Molinia sp. litter (which differs in chemical composition) had no clear additional effect on the net N mineralization rate.  相似文献   

13.
研究模拟氮沉降下凋落物分解特征对其持水性的影响,旨在为氮沉降背景下森林生态系统养分循环和水分循环相关研究提供理论依据。以滇中高原常绿阔叶林和高山栎林为研究对象,在野外开展模拟氮沉降下凋落叶、枝原位分解研究试验,设置0(对照CK),10(低氮LN),20(中氮MN),25(高氮HN) g/(m2·a)N共4种处理,利用尼龙网袋法和室内浸泡法,探究不同处理下凋落叶、枝质量残留率、持水量和持水率及吸水速率变化特征。结果表明:(1) 2种林分凋落叶、枝质量残留率随分解时间延长而减少;与CK质量残留率相比,LN处理2种林分凋落叶、枝无显著影响(p>0.05),MN和HN处理使常绿阔叶林凋落叶分解第16,19,23,24个月和HN处理高山栎林凋落叶分解第16个月分别增加5.05%~7.45%,7.88%~8.62%,4.72%。(2)与CK分解95%所需时间相比,LN处理使常绿阔叶林凋落叶、枝和高山栎林凋落枝分别增加0.549,0.366,0.402年,高山栎林凋落叶则减少1.011年,MN和HN处理使2种林分落叶、枝增加0.236~3.638年。(3)分解时间和氮沉降...  相似文献   

14.
Litter-fall and litter decomposition in a low Mediterranean shrubland   总被引:1,自引:0,他引:1  
Annual production of litter by Cistus incanus (L.) and Myrtus communis (L.) and decomposition dynamics of leaf litter of these species was studied in a Mediterranean shrubland. Myrtus and Cistus produced 472 and 429 g dry weight litter m-2 year-1, respectively. Leaves were the predominant litter component for both species. The average decay constant of Myrtus and Cistus litters enclosed in litter bags, calculated over the whole study period (38 months), was 0.71 year-1 and 0.31 year-1 respectively. In green leaves the N content differed during growth seasons for both species, whereas the content of Ca, Mg, P, K, and Na did not show significant changes. Abscised leaves had lower N, P and K contents than green leaves, evidencing that a nutrient translocation before abscission occurred from senescent leaves. The nutrient contents of the leaves at abscission time, generally higher in Cistus than in Myrtus, allowed us to estimate the annual nutrient input to the soil. Phosphorus and K more than N were rapidly released by the decomposing litters after exposure. Nutrient limitation, in particular P, might be considered the main growth limiting factor for Myrtus and Cistus. Both species were adapted to recovery and rapidly recycle P more than N and K in the living biomass through retranslocation from green leaves before abscission and/or a high release rate from the decomposing litter. The former strategy was better used by Cistus, the latter by Myrtus.  相似文献   

15.
Scots pine (Pinus sylvestris) needle litter originating from control plots and plots that had received a wood ash fertilization (3 t ha−1) 19 yr earlier were allowed to decompose in a reciprocal experimental design to detect the effects of ash fertilization and needle litter origin on the decomposition rate. The experimental design was repeated in two Scots pine forest stands of different fertility and the litterbags were harvested after 4 and 16 months. Ash fertilization resulted in a higher needle litter decomposition rate but the needle origin did not influence the results. Stand fertility correlated positively to the decomposition rate.  相似文献   

16.
We used oligotrophic, P-limited herbaceous wetlands of northern Belize as a model system, on which to document and explain how changes in nutrient content along a salinity gradient affect activities of extracellular enzymes involved in macrophyte decomposition. To determine what is more important for decomposition, the initial litter quality, or site differences, we used reciprocal litter placement in a combined “site quality” and “litter quality” experiment running from August 2003 to April 2004. The experiment was set up in long-term control and nutrient addition plots (P, N, and NP) established in 2001 in 15 limestone-based inland marshes with a wide range of water conductivities (200-6000 μS) and a uniform pH (7.0-7.7) dominated by emergent macrophytes, Eleocharis spp. There were no differences among the plots in total sediment N and water NH4-N, but total and KCl-extractable sediment P and water PO4-P were significantly higher in P and NP plots throughout the duration of the experiment. The initial litter N content was slightly but significantly different between control and N plots versus P and NP plots (5.7 and 7.1 mg g−1, respectively). The difference was much bigger for litter P content, 0.1 and 0.7 mg g−1, respectively. Enzyme activities of alkaline phosphatase, leucine-aminopeptidase, arylsulfatase, and β-glucosidase were measured fluorometrically in Eleocharis litter in both the litterbag experiment and the naturally decomposing material. Total phospholipid fatty acid (PLFA) content in litter samples was used as a measure of microbial biomass present. Phosphatase always exhibited the highest activity of the enzymes studied, followed by leucine-aminopeptidase, arylsulfatase and β-glucosidase. There were no significant differences between enzyme activities from litterbags and the unconfined litter. Phosphatase activity was significantly suppressed in P-addition plots under all salinity levels while the activities of the remaining enzymes were significantly higher in P-enriched plots. There was a strong correlation between decomposition coefficient k-values and most of the enzymes as well as between the amount of PLFA and enzyme activities. PLFA, arylsulfatase, and litter C/P were the best predictors of k-values.  相似文献   

17.
Forest ecosystems in Taiwan are periodically influenced by typhoons that cause large amounts of litter input to the soil. The potential rapid decomposition of such litter under the warm and moist climatic conditions in Taiwan may lead to nutrient losses via seepage. The goal of this study was to investigate the dynamics of C, N, K, Ca, Mg, and dissolved organic carbon (DOC) during decomposition of Chamaecyparis obtusa var. formosana leaves in a field study at the Yuanyang Lake site in N Taiwan. We simulated the effect of a typhoon by adding about three times the annual aboveground litterfall (totally 13,900 kg ha–1) as fresh leaves. Litterbags were taken at 7 dates over 16 months, followed by detection of mass loss and element composition in the remaining litter. Aqueous extracts of the remaining litter were analyzed for DOC and major elements. The properties of DOC were characterized by fluorescence spectra and by its stability against microbial decomposition. The litter mass loss was 35% after 16 months. The losses of Ca after 16 months from the litter bags were about equivalent to mass loss (39%), while those of K and Mg reached 86% and 60% of the initial amount, respectively. From the 13,900 kg ha–1 of litter applied in total, 59 kg K ha–1 and 12 kg Mg ha–1 were released in the 16 months decomposition period, most of it in the first 4 months. The total release of Ca amounted to 69 kg ha–1 but was more evenly distributed throughout the 16 months of observation. The absolute amount of N in the decomposing litter increased by 37% while the C : N decreased from 69 to 34. Extrapolated to the manipulation treatment, this resulted in a N gain of 36 kg N ha–1 within 16 months. The leaching of K and DOC in laboratory extractions followed an asymptotic function with highest leaching from the initial litter and subsequent decrease with time of decomposition. On the contrary, the leaching of Ca and Mg reached a maximum after 2–4 months of incubation. About 2% of the C was extractable with water from the initially incubated leaves. The bioavailability of the extracted DOC decreased with litter age. Our results indicate that the decomposition of large amounts of litter induces a high risk of K and Mg losses with seepage, but the risk for N losses is low. The sources of N accumulation in decomposing litter at this site require further studies. In the initial phase of litter decomposition, the release of DOC seems to be an important contribution to mass loss.  相似文献   

18.
Abstract

In a southern boreal aspen forest located in Saskatchewan, Canada, we examined decomposition rates of leaf litter from trembling aspen (Populus tremuloides Michx.), hazel (Corylus cornuta March.), and a mixture of different species over a six‐month period. Mass loss was measured in the field using the litter bag method. The greatest mass losses occurred during the first month regardless of litter type. On average, mass loss during the first 28 days was 3.2 g#lbkg‐1#lbd‐1 for the aspen leaves, 4.4 for hazel leaves and 4.9 for the mixture. The initial rapid loss of weight is attributed to leaching and decomposition of water soluble material. The decomposition rates of the leaf litter were related to water‐soluble organic carbon and nitrogen content, and C:N ratio. Several models were used to describe mass loss of the aspen, hazel, and mixed leaf litter at the early stages of decomposition. A single model was not found to be appropriate to describe decomposition of all leaf‐litter types. A second order model provided the best fit for the aspen litter decomposition, while the logarithmic model best described the decomposition of hazel and mixed leaf litter.  相似文献   

19.
The microfungal flora of holm oak living, senesced and litter leaves was studied at five different stages of decomposition using three different isolation methods. Holm oak leaves are first colonized on the tree by a variety of primary saprophytes such as Trichothecium, Aureobasidium, Cladosporium, Epicoccum and Alternaria. After leaf fall there is an intensive development of the fungal flora, including both species already present in the phyllosphere and new colonizers from the litter layer. With increasing decomposition initial colonizers gradually disappear, being replaced by other forms. When all isolation methods were pooled, maximum biodiversity (species richness) of the fungus flora was observed during the first three stages of leaf litter decomposition, but strong variation occurred according to the isolation method. Sterilization of the leaf material revealed that a number of fungal strains were present inside the holm oak leaves before abscission, increasing from living to senescent stages, and that a strong decrease in the internal colonization of leaf litter was observed at late decomposition stages.  相似文献   

20.
Recently there has been much interest in the effect of litter mixing as well as the effect of different forest habitats on the decomposition process. Our aim was to test two hypotheses: high quality litter promotes decomposition of poor quality litter, and litter decomposes faster in broadleaf than in coniferous forest. We conducted a litter mixing experiment using litterbags placed in two forest floors, in which treatments consisted of litter monocultures of each of two campy species (Castanopsis eyrei and Pinus massoniana), as well as mixtures of these two species. The results showed that C. eyrei leaves decomposed significantly faster in the coniferous habitat than in their native habitat. On the other hand, P. massoniana needles decomposed significantly faster in their native coniferous habitat than in the broadleaf habitat. In our experiment we found that the mixture had different effect on different quality litter. P. massoniana needles (poor quality) had a positive effect on the decomposition of C. eyrei leaves (high quality), while C. eyrei leaves had a negative effect on the decomposition of P. massoniana needles in the mixture case in both broadleaf and coniferous habitats. The diversity of the fungi identified from different litters varied among treatments and the mass loss was positively correlated with the Shannon–Weaver diversity index of fungi. It is suggested that fungi may be one of the major drivers to control the decomposition process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号