首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
One hundred sixty-eight crossbred steers (317.1 +/- 1.0 kg) were used to evaluate the effects of supplemental fat in finishing diets on the fatty acid composition, including the 9,11 isomer of conjugated linoleic acid, of beef. Steers were allotted within three weight blocks to a randomized complete block design with a 3 x 2 + 1 factorial arrangement of dietary treatments. Main effects were level of yellow restaurant grease (RG; 0, 3, and 6%), and level of alfalfa hay (AH; 3.5 and 7%) with an added treatment containing 6% tallow (T) and 7% AH in barley-based diets containing 15% potato by-product and 7% supplement (all dietary levels are on a DM basis) fed for an average of 165 d. Fatty acids of the LM and s.c. fat from four randomly selected steers per pen were quantified using GC after methylation with sodium methoxide. Dietary treatment did not (P > 0.10) affect total fatty acid (FA) content of the LM (143 +/- 5.2 mg/g) or fat (958 +/- 7.9 mg/g). Myristic acid increased linearly (P < 0.01) with increasing RG from 3.1 to 3.7 +/- 0.1 g/100 g of FA in muscle. Stearic acid increased linearly (P < 0.05) as RG increased in the diet, from 11.4 to 12.9 +/- 0.4 g/100 g of FA in LM and from 9.9 to 12.2 +/- 0.3 g/100 g of FA in fat. Compared with T, steers fed 6% RG had more (P < 0.05) oleic acid in LM (42.7 vs. 40.3 +/- 0.5 g/100g FA) and in fat (43.0 vs. 40.9 +/- 0.5 g/100g FA). The cis-9, trans-11 conjugated linoleic acid (CLA) increased quadratically (P < 0.01) with increasing dietary RG in LM from 0.45 to 0.64 to 0.62 +/- 0.03 g/100 g of FA and increased in fat from 0.61 to 0.84 to 0.83 +/- 0.04 g/100 g of FA. Moreover, cis-9, trans-11 CLA was higher (P < 0.05) in fat from steers fed RG compared with T (0.81 vs. 0.69 +/- 0.04 g/100 g of FA), and tended to be higher (P = 0.07) in muscle (0.62 vs. 0.54 +/- 0.03 g/100 g of FA. Feeding yellow restaurant grease increased content of cis-9, trans-11 CLA in beef without an increase total FA content.  相似文献   

2.
To measure the effects of dietary fat on feedlot performance, carcass characteristics, and beef appearance, moisture binding, shelf life, and palatability, 168 crossbred beef steers (317 +/- 1.0 kg) were allotted randomly, within weight blocks, to a randomized complete block design with a 3 x2 + 1 factorial arrangement of dietary treatments. Main effects were level of yellow restaurant grease (RG; 0, 3, or 6%) and level of alfalfa hay (AH; 3.5 or 7%), with the added treatment of 6% tallow and 7% AH in barley-based diets containing 15% potato by-product and 7% supplement fed for 165 d (all dietary levels on a DM basis). Dietary treatment did not (P >0.10) affect DMI, LM area, beef brightness, or beef texture. Level of RG linearly increased (P <0.05) ADG from 1.48 to 1.60 kg/d, diet NE(m) from 2.4 to 2.6 Mcal/kg, diet NE(g) from 1.7 to 1.9 Mcal/kg, and internal fat from 2.1 to 2.4%. Level of RG linearly increased (P <0.05) G:F from 0.184 to 0.202, but decreased (P <0.05) beef firmness score from 3.0 to 2.8 and fat luster score from 3.1 to 2.8. Level of AH did not (P >0.10) affect any of the measurements; however, AH interacted with level of RG on fat thickness and yield grade (linear; P <0.05), as well as marbling score and percentage of carcasses grading USDA Choice (quadratic; P <0.05). Fat thickness and yield grade increased with increasing RG level in 3.5%, but not in 7%, AH diets. In steers fed 3.5% RG, marbling scores and percentage of carcasses grading Choice were greatest when fed with 3.5% AH, and least when fed 7% AH. Steers fed tallow had lower marbling scores (P = 0.01) and percentage of carcasses grading Choice (P = 0.066) than those fed RG. Retail storage attributes, including visual and instrumental color, decreased during storage (P <0.01), but were not (P >0.10) affected by diet. Trained sensory panel scores for initial tenderness increased quadratically (P = 0.07) as dietary RG increased, but diet did not (P >0.10) affect drip loss, cooking loss, or trained sensory panel scores for sustained tenderness, initial and sustained juiciness, and beef flavor. Therefore, RG increased diet energy, improved performance, and increased carcass fatness; however, dietary fat and AH did not affect most measurements of water retention, color stability, or palatability of beef.  相似文献   

3.
Two separate studies tested the hypothesis that plasma low-density lipoprotein cholesterol (LDL-C) can be decreased by conjugated linoleic acid (CLA) by depressing hepatic acyl-coenzyme A:cholesterol acyltransferase (ACAT) activity.  In the first experiment, 3 groups of 6 early-weaned piglets were fed low-fat diets containing either 1.5% CLA, 1.5% corn oil or 1.5% beef tallow; fat provided 8% of the energy intake.  In the second experiment, 4 groups of 6 early-weaned piglets were fed high-fat diets containing either 15% beef tallow, 12% beef tallow plus 3% CLA, 15% corn oil, or 12% corn oil plus 3% CLA; fat provided 29% of energy intake.  Cholesterol was balanced across diets in both experiments.  In pigs fed the low-fat diets, all dietary fats increased LDL-C and triacylglycerols and decreased high-density lipoprotein cholesterol (HDL-C) and very low-density lipoprotein cholesterol (VLDL-C). LDL-C was the same in pigs fed low-fat tallow or low-fat CLA diets.  However, ACAT activity was nearly 80% higher in pigs fed the low-fat tallow diet than in pigs fed the low-fat CLA diets.  All high-fat diets increased LDL-C, HDL-C and triacylglycerols equally with no effect on VLDL-C.  There were no unique fatty acid effects of the high-fat diets on ACAT activity.  We conclude that supplemental fats had differential effects on hepatic ACAT activity and LDL-C, but only in pigs fed low-fat diets.  相似文献   

4.
Three trials were conducted to evaluate the effects of degree of barley and corn processing on performance and digestion characteristics of steers fed growing diets. Trial 1 used 14 (328 +/- 43 kg initial BW) Holstein steers fitted with ruminal, duodenal, and ileal cannulas in a completely randomized design to evaluate intake, site of digestion, and ruminal fermentation. Treatments consisted of coarsely rolled barley (2,770 microm), moderately rolled barley (2,127 microm), and finely rolled barley (1,385 microm). Trial 2 used 141 crossbred beef steers (319 +/- 5.5 kg initial BW; 441 +/- 5.5 kg final BW) fed for 84 d in a 2 x 2 factorial arrangement to evaluate the effects of grain source (barley or corn) and extent of processing (coarse or fine) on steer performance. Trial 3 investigated four degrees of grain processing in barley-based growing diets and used 143 crossbred steers (277 +/- 19 kg initial BW; 396 +/- 19 kg final BW) fed for 93 d. Treatments were coarsely, moderately, and finely rolled barley and a mixture of coarsely and finely rolled barley to approximate moderately rolled barley. In Trial 1, total tract digestibilities of OM, CP, NDF, and ADF were not affected (P > or = 0.10) by barley processing; however, total tract starch digestibility increased linearly (P < 0.05), and fecal starch output decreased linearly (P < 0.05) with finer barley processing. In situ DM, CP, starch disappearance rate, starch soluble fraction, and extent of starch digestion increased linearly (P < 0.05) with finer processing. In Trial 2, final BW and ADG were not affected by degree of processing or type of grain (P > or = 0.13). Steers fed corn had greater DMI (P = 0.05) than those fed barley. In Trial 3, DMI decreased linearly with finer degree of processing (P = 0.003). Gain efficiency, apparent dietary NEm, and apparent dietary NEg increased (P < 0.001) with increased degree of processing. Finer processing of barley improved characteristics of starch digestion and feed efficiency, but finer processing of corn did not improve animal performance in medium-concentrate, growing diets.  相似文献   

5.
Two separate studies tested the hypoth-esis that plasma low-density lipoprotein cholesterol (LDL-C) can be decreased by conjugated linoleic acid (CLA) by depressing hepatic acyl-coenzyme A: cholesterol acyltransferase (ACAT) activity. In the first experiment, 3 groups of 6 early-weaned piglets were fed low-fat diets containing either 1.5% CLA, 1.5% corn oil or 1.5% beef tallow;fat provided 8% of the energy intake. In the second experiment, 4 groups of 6 early-weaned piglets were fed high-fat di-ets containing either 15% beef tallow, 12% beef tal-low plus 3% CLA, 15% corn oil, or 12% corn oil plus 3% CLA; fat provided 29% of energy intake. Cholesterol was balanced across diets in both experi-ments. In pigs fed the low-fat diets, all dietary fats in-creased LDL-C and triacylglycerols and decreased high-density lipoprotein cholesterol (HDL-C) and very low-density lipoprotein cholesterol (VLDL-C). LDL-C was the same in pigs fed low-fat tallow or low-fat CLA diets. However, ACAT activity was near-ly 80% higher in pigs fed the low-fat tallow diet than in pigs fed the low-fat CLA diets. All high-fat diets increased LDL-C, HDL-C and triacylglycerols equally with no effect on VLDL-C. There were no unique fat-ty acid effects of the high-fat diets on ACAT activity.We conclude that supplemental fats had differential effects on hepatic ACAT activity and LDL-C, but on-ly in pigs fed low-fat diets.  相似文献   

6.
Thirty-six Angus x Hereford heifers were used in a 3 x 2 factorial (3 dietary treatments; 2 supplementation times) to examine the effect of dietary lipid supplementation on lipid oxidation, lipid composition, and palatability of ribeye steaks and ground beef. Lipid was supplied in the diets as corn oil or a partially rumen-protected CLA salt for 2 specific treatment periods of the final 32 or 60 d on feed, corresponding to a total time on feed of 89 or 118 d. After an initial 56-d feeding period (basal diet), the heifers were fed 1 of 3 dietary treatments (DM basis): 1) a basal diet containing 88% concentrate and 12% grass hay (CON), 2) the basal diet plus 4% corn oil (OIL), or 3) the basal diet plus 2% partially rumen-protected CLA (RPCLA) containing 31% CLA. Heifers were randomly allotted to dietary treatments at the initiation of the study and fed individually. At 48 h postmortem, the right forequarter of each carcass was fabricated into retail cuts. Steaks (2.54-cm thick) were obtained from the posterior end of the ribeye roll (NAMP 112), and beef trim was ground for all subsequent analyses. Dietary treatment did not affect (P > 0.05) lipid oxidation in ground beef or ribeye steaks. Total trans-octadecenoate fat and trans-10 octadecenoic acid content in ribeye steaks increased (P < 0.05) with RPCLA compared with CON. Total CLA and the cis-9 trans-11 isomer of CLA contents in ribeye steaks were unchanged (P > 0.05) by lipid supplementation. In ground beef, RPCLA supplementation increased (P < 0.05) the amount of trans fat and trans-10 octadecenoic acid compared with CON or OIL; supplementation of RPCLA increased (P < 0.05) the amount of CLA cis-9 trans-11 isomer and total CLA. Lipid supplementation did not alter (P > 0.05) off-flavor ratings in ground beef or ribeye steaks. Supplementation of corn oil increased (P < 0.05) total PUFA content of ribeye steaks compared with CON and RPCLA. Dietary RPCLA supplementation increased the amount of trans fat per serving (85.5 g, broiled) by 110 and 88% in ribeye steak and ground beef, respectively, and CLA cis-9 trans-11 by 58% in ground beef compared with CON. Supplementing OIL or RPCLA resulted in minimal changes in lipid oxidation and sensory attributes of steaks and ground beef.  相似文献   

7.
To measure effects of diet on feedlot performance, carcass characteristics, and beef appearance, 144 crossbred beef steers (333+/-.44 kg) were allotted within weight block (3) to a randomized complete block design with a 2 x 3 factorial arrangement of dietary treatments. Main effects were grain (barley or corn) and level of potato by-product (PB) (0, 10, or 20% of diet DM). Steers were fed diets containing 83% concentrate (grain plus PB), 10% supplement, and 7% alfalfa on a DM basis for an average of 130 d. Level of PB quadratically affected (P < .10) DM intake and gain such that steers fed 10% PB ate more and gained faster. Corn-fed steers were more (P < .05) efficient (5.8 vs 6.3 kg DM/kg gain) and had more (P < .05) kidney, pelvic, and heart fat (2.2 vs 2.0%) than barley-fed steers. A grain x PB interaction was detected (P < .10) for marbling score, which was minimized in steers fed barley diets (small 0) but maximized in those fed corn diets (small 30) at 10% PB. Diet did not affect beef firmness or beef color score. Barley-fed beef had whiter fat (P < .05) than corn-fed beef (2.6 vs 2.9 on a 1 to 7 scale); however, fat luster score was not affected by diet. Small differences were noted in fatty acid profile, purge, drip loss, and muscle pH. No differences were noted in color measurements due to dietary treatment over 7 d of retail shelf life. Overall, differences were small and probably not biologically important. These results indicate that these diets had minimal effects on beef appearance and carcass characteristics, meat composition, and water retention properties.  相似文献   

8.
A balance trial was conducted to titrate the effects of tallow on the energy metabolism of wethers fed barley finishing diets. Six dietary levels of tallow (0, 2, 4, 6, 8, or 10%) in a barley finishing diet were fed to six crossbred wethers (35+/-1.1 kg) in a randomized complete block design. Diets were 73% barley, 10% tallow and(or) bentonite, 10% alfalfa pellets, and 7% supplement. There was no effect of tallow level on OM intake (1,103.1+/-51 g/d), OM digestibility (84+/-0.9%), GE digestibility (83+/-1.1%), or cell solubles digestibility (84.2+/-1.2%). The level of tallow quadratically decreased ADF digestibility (P < 0.05), methane emissions, and methane energy as a percentage of GE P < 0.01). There were linear increases in dietary GE (megacalories per kilogram of OM [P < 0.01]), dietary DE (megacalories per kilogram of OM [P < 0.05]), and dietary ME (megacalories per kilogram of OM [P < 0.01]), as dietary tallow increased. Numbers of ruminal protozoa (Entodinium spp. and Polyplastron sp.) decreased linearly (P < 0.05) with increased level of tallow. The energy value of tallow (calculated by difference) was low. The total-tract fatty acid digestibility of tallow was calculated by linear regression, without intercept, after accounting for the fatty acids digested from the base diet (0% tallow fed to a wether in a period). Fatty acids of the same carbon length were pooled for the regression analysis. All linear regressions were significant (P < 0.10) indicating no effect of tallow level on fatty acid digestibility. Lauric acid had low digestibility. The high digestibility of all C16 (89%) and C18 (104%) fatty acids suggests an effect of tallow on endogenous and microbial fatty acid excretion. Fatty acid digestibility was probably a minor contributor to the low energy content of tallow, calculated by difference, in these diets.  相似文献   

9.
Strip loins from 236 carcasses from crossbred yearling steers were collected on each of 2 slaughter dates (slaughter 1 or 2) to determine the effects of feeding corn or sorghum distillers grains (DG) on beef color, fatty acid profiles, lipid oxidation, tenderness, and sensory attributes. Dietary treatments consisted of a steam-flaked corn (SFC) diet without (control) or with 15% (DM basis) corn dry or wet DG (CDDG and CWDG) or sorghum dry or wet DG (SDDG and SWDG) and alfalfa hay (R). Additional treatments included SDDG or SWDG with no alfalfa hay (NR). In slaughter 2, steaks from steers fed SFC had lesser L*, but greater a* (P < 0.05) values than those from steers fed DG. When comparing sorghum and corn DG steaks, the same color differences were detected. Steaks from steers fed sorghum DG had lower L*, but greater a* (P < 0.05) values than those from steers fed corn DG. Also, L* values in steaks from steers fed SWDG with R were greater (P < 0.05) than those from steers fed SWDG with NR. In slaughter 1, feeding DG increased (P < 0.05) steak n-6 fatty acid concentrations compared with SFC. In both slaughter groups, feeding dry DG increased (P < 0.05) steak linoleic acid concentrations compared with wet DG. In slaughter 2, feeding corn DG diets increased (P < 0.05) linoleic acid concentrations of steaks compared with sorghum DG diets. In addition, increased (P < 0.05) concentrations of alpha-linolenic acid in steaks resulted from feeding SDDG or SWDG with R compared with those sorghum treatments with NR. In each slaughter group, feeding DG increased (P < 0.05) the n-6:n-3 ratio of steaks compared with SFC, and feeding corn DG increased (P < 0.05) this ratio compared with sorghum DG. Furthermore, steaks from steers fed corn DG had greater (P < 0.05) concentrations of trans-vaccenic acid than those from steers fed sorghum DG. In slaughter 1, the CLA isomer 18:2, trans-10, cis-12 was greater (P < 0.05) in steaks from DG diets. On d 1 of retail display, steaks from steers fed SDDG with R in slaughter 2 had greater (P < 0.05) thiobarbituric acid reactive substances values than those from steers fed SDDG with NR. Feeding DG at 15% of the dietary DM did not affect sensory attributes or Warner-Bratzler shear force values of steaks. Feeding DG from either corn or sorghum as either a wet or dry by-product had no effect on beef sensory attributes.  相似文献   

10.
11.
This study evaluated the effect of barley varieties in the diets of finishing steers on carcass composition, fat, and lean color and the fatty acid profile of subcutaneous fat. Crossbred steers (391 kg initial BW) were assigned randomly to one of five finishing diets composed primarily of corn (n = 9), Morex barley (n = 9), Steptoe barley, (n = 9), or two experimental barley varieties SM3 (n = 9) and SM5 (n = 9). Grains were cracked prior to feeding. Diets were formulated (DM basis) to be isonitrogenous (2.24% N) and isocaloric (2.01 Mcal/kg NEm and 1.35 Mcal/kg NEg). Steers were slaughtered according to industry-accepted procedures when it was visually estimated that 70% of carcasses would grade USDA Choice. After a 24-h chill at 4 degrees C, carcass quality and yield grade data were collected by trained, experienced university personnel. Objective color (L*, a*, and b*) of both the LM and subcutaneous fat were measured, and samples of subcutaneous fat were removed from the 10th- to 12th-rib region for fatty acid analysis. Diet did not affect hot carcass weight (P = 0.15), fat thickness (P = 0.58), LM area (P = 0.57), percentage of internal fat (P = 0.52), yield grade (P = 0.96), marbling (P = 0.73), or quality grade (P = 0.10). However, the LM from steers fed diets formulated with Morex and SM5 barley varieties tended to be lighter (higher L* values, P = 0.08) than the LM from steers fed the corn-based diet. Additionally, fat from steers fed corn tended to be more yellow (higher Hunter b* values, P = 0.09) than fat from steers fed barley-based diets. Although grain source had only minimal effects on the fatty acid composition of subcutaneous fat samples, pentadecanoic acid (15:0) was greater (P < 0.05) in fat from steers fed SM3 and Steptoe barley varieties than in fat from steers fed corn. Stearic acid (18:0) concentrations were higher (P < 0.05) in fat samples from steers fed corn than in those fed the experimental barley lines (SM3 and SM5). Conversely, fat samples from steers fed Steptoe and SM5 barley had greater (P < 0.05) gadoleic acid (20:1) concentrations than fat from steers fed corn or Morex variety. Although the variety/line of barley included in the finishing diet may affect LM and fat color, grain-source (barley vs. corn) had little effect on beef carcass quality and yield grades and did not greatly alter the fatty acid composition of subcutaneous fat.  相似文献   

12.
An experiment was conducted to evaluate the effects of grain processing and lipid addition to finishing diets on cattle performance, carcass characteristics, and meat quality. Eighty Hereford x Angus steers (384 kg +/- 17 kg of BW) were fed diets containing steam-flaked corn (SFC) or dry-rolled corn (DRC) with and without the addition of tallow (SFC/Fat and DRC/Fat) or steam-flaked corn with ground flaxseed (SFC/Flax). Ribeye steaks from steers fed SFC, SFC/Fat, or SFC/ Flax were used to evaluate the effects of fat source on meat quality. Cattle fed SFC and SFC/Fat tended to have greater ADG, G:F, HCW, and USDA yield grade, compared with those fed DRC and DRC/Fat (P < 0.10). Steaks from steers fed SFC/Flax developed a detectable off-flavor (P < 0.05) compared with steaks from steers fed SFC and SFC/Fat, and steaks from steers fed SFC retained desirable color longer than those from steers fed SFC/Flax (P < 0.05). Feeding SFC/Flax increased deposition of alpha-linolenic acid in muscle tissue compared with feeding SFC or SFC/Fat (P < 0.01). Dietary treatment did not cause differences in tenderness, juiciness, or flavor intensity. Ground flaxseed can replace tallow in finishing diets without loss in performance, but flax may affect flavor and color stability of beef. Feeding flaxseed can effectively alter composition of carcass tissues to yield beef that is high in n-3 fatty acids.  相似文献   

13.
The objective of this study was to evaluate the effects of barley- or corn-based diets containing 0, 10, or 20% potato by-product (DM basis) on Warner-Bratzler shear force and palatability of beef. One hundred forty-four crossbred beef steers (333+/-.44 kg) were allotted within weight block (3) to a randomized complete block design with a 2 x 3 factorial arrangement of dietary treatments. Main effects were grain (barley or corn) and level of potato by-product (0, 10, or 20% of diet DM). There were a total of 18 pens with eight steers per pen and three pens per treatment. Steers were fed diets containing 83% concentrate (grain plus potato by-product), 10% supplement, and 7% alfalfa (DM basis) for an average of 130 d. Longissimus muscle cuts were used for Warner-Bratzler shear force determination (four steers per pen) and evaluation (two steers per pen) by a 10-member trained laboratory panel, a professional flavor/texture profile panel, and by consumer panels. Diet did not affect (P > .10) Warner-Bratzler shear force or trained laboratory panel tenderness, juiciness, and flavor intensity scores. Flavor/texture profile panel scores indicated feeding a corn-based diet as opposed to barley-based diet produced a more appropriate well-balanced and well-blended beef flavor and texture. However, the magnitudes of the differences were relatively small, and flavor and texture amplitude ratings for both barley- and corn-fed beef were well above average. Beef from steers fed 10 or 20% potato by-product had lower (P < .05) incidences of inappropriate aromatics and aftertastes, which may have a slightly beneficial effect on beef flavor, but flavor amplitude was not affected (P > .05) by level of potato. Moreover, consumer panel overall acceptability scores were not affected by diet. Thus, feedlot diets containing corn or barley with or without potato by-product should result in palatable beef products.  相似文献   

14.
Three experiments evaluated the lipids in distillers grains plus solubles compared with corn or other sources of lipid in finishing diets. Experiment 1 utilized 60 individually fed yearling heifers (349 +/- 34 kg of BW) fed treatments consisting of 0, 20, or 40% (DM basis) wet distillers grains plus solubles (WDGS), or 0, 2.5, or 5.0% (DM basis) corn oil in a finishing diet based on high-moisture corn (HMC) and dry-rolled corn. Cattle fed 20 and 40% WDGS had greater (P < 0.10) G:F than cattle fed 0% WDGS. Cattle fed the 5.0% corn oil had less overall performance than cattle fed the other diets. Results from Exp. 1 indicated that adding fat from WDGS improves performance, whereas supplementing 5.0% corn oil depressed G:F, suggesting that the fat within WDGS is different than corn oil. Experiment 2 used 234 yearling steers (352 +/- 16 kg of BW) fed 1 of 5 treatments consisting of 20 or 40% (DM basis) dry distillers grains plus solubles, 1.3 or 2.6% (DM basis) tallow, or HMC. All diets contained 20% (DM basis) wet corn gluten feed as a method of controlling acidosis. No differences between treatments for any performance variables were observed in Exp. 2. The dry distillers grains plus solubles may be similar to tallow and HMC in finishing diets containing 20% wet corn gluten feed. Experiment 3 used 5 Holstein steers equipped with ruminal and duodenal cannulas in a 5 x 5 Latin square design. Treatments were a 40% WDGS diet, 2 composites, one consisting of corn bran and corn gluten meal; and one consisting of corn bran, corn gluten meal, and corn oil; and 2 dry-rolled corn-based diets supplemented with corn oil or not. Cattle fed the WDGS diet had numerically less rumen pH compared with cattle fed other treatments. Cattle fed WDGS had greater (P < 0.10) molar proportions of propionate, decreased (P < 0.10) acetate:propionate ratios, greater (P < 0.10) total tract fat digestion, and a greater (P < 0.10) proportion of unsaturated fatty acids reaching the duodenum than cattle fed other treatments. Therefore, the greater energy value of WDGS compared with corn may be due to more propionate production, greater fat digestibility, and more unsaturated fatty acids reaching the duodenum.  相似文献   

15.
Two experiments were conducted to evaluate combinations of wet corn gluten feed (WCGF) and barley, as well as the particle size of dry-rolled barley and corn, in finishing steer diets containing WCGF. In Exp. 1, 144 crossbred steers (initial BW = 298.9 +/- 1.4 kg) were used to evaluate barley (0.566 kg/L and 23.5% NDF for whole barley) and WCGF combinations in finishing diets containing 0, 17, 35, 52, or 69% WCGF (DM basis), replacing barley and concentrated separator byproduct. A sixth treatment consisted of corn (0.726 kg/L and 11.1% NDF for whole corn), replacing barley in the 35% WCGF treatment. In Exp. 2, 144 crossbred steers (initial BW = 315.0 +/- 1.5 kg) were used to evaluate coarse or fine, dry-rolled barley or corn (0.632 and 0.699 kg/L; 26.6 and 15.9% NDF for whole barley and corn, respectively) in finishing diets containing WCGF. A factorial treatment design was used; the factors were grain source (corn or barley) and degree of processing (coarse or fine). The diets contained 50% WCGF, 42% grain (corn or barley), 5% alfalfa hay, and 3% supplement (DM basis). In Exp. 1, DMI and ADG responded quadratically (P < or = 0.03), peaking at 35 and 52% WCGF, respectively. The efficiency of gain was not affected (P > or = 0.42) by dietary treatment. Steers fed dry-rolled corn and 35% WCGF had heavier HCW, lower DMI, greater ADG, increased G:F, increased s.c. fat thickness at the 12th rib, and greater yield grades compared with steers fed dry-rolled barley and 35% WCGF (P < or = 0.04). The apparent dietary NEg was similar among the barley and WCGF combinations (P > or = 0.51); however, the corn and 35% WCGF diet was 25% more energy dense (P < 0.001) than was the barley and 35% WCGF diet. In Exp. 2, no grain x processing interactions (P > or = 0.39) were observed. Particle size was 2.15 and 2.59 mm for fine- and coarse-rolled barley and was 1.90 and 3.23 mm for fine- and coarse-rolled corn. Steers fed a combination of corn and WCGF had increased ADG, greater G:F, heavier HCW, larger LM area, more s.c. fat thickness at the 12th rib, greater yield grades, increased marbling, and more KPH compared with steers fed a combination of barley and WCGF (P < or = 0.03). Fine-rolling of the grain increased fat thickness (P = 0.04). The addition of WCGF to the barley-based diets increased DMI and gain. Decreasing grain particle size did not greatly affect performance of the steers fed the 50% WCGF diets; however, carcasses from the steers fed the fine-rolled grain contained more fat.  相似文献   

16.
Use of poultry fat in the finishing diets of steers has not been studied as a potential source of added energy. Therefore, 60 Angus crossbred steers were fed 1 of 3 dietary treatments consisting of 1) a corn-soybean meal control diet devoid of added fat; 2) the control diet formulated with 4% tallow; or 3) the control diet formulated with 4% poultry fat. Addition of fat did not (P = 0.17) affect ADG for the 112-d study. The inclusion of tallow in the diet reduced (P < 0.05) ADFI of steers compared with those on the control diet; however, ADFI of steers fed poultry fat did not differ from those fed the control (P = 0.06) or the tallow (P = 0.36) diets. At d 55, steers consuming either fat source had improved (P < 0.05) G:F compared with steers fed the control diet. For the entire 112 d, steers consuming the poultry fat diet gained more efficiently (P < 0.05) than the control steers, and the tallow-fed steers were intermediate and not different from the other groups (P > or = 0.14). The inclusion of fat in the diet did not (P > or = 0.15) affect carcass characteristics. Steaks from the steers consuming diets with added fat were darker (lower L* value; P < 0.05) than the controls; however, dietary treatments did not (P > or = 0.10) affect any other objective color measurements or discoloration scores during retail display. Thiobarbituric acid reactive substances for LM steaks did not differ (P = 0.21) by dietary treatment. The cooked LM steaks from steers fed poultry fat did not (P > or = 0.80) differ in juiciness or flavor intensity from steaks of steers fed the control or tallow diets. There were also no differences (P = 0.18) in off flavors as a result of added dietary fat. In the LM and adipose tissue, percentages of total SFA were increased (P = 0.05) by adding supplemental fat to the diet, regardless of source. In the LM, total MUFA were decreased (P = 0.02) by adding supplemental fat. Conversely, diet did not (P > or = 0.14) affect the proportions of total PUFA in either tissue or total MUFA in the adipose tissue. Results indicated that replacing beef tallow in finishing diets with poultry fat, a more economical energy source, had no detrimental effects on growth performance, carcass characteristics, retail display life, fatty acid profiles, or palatability.  相似文献   

17.
To assess the effects of feeding high-oil corn on carcass characteristics and meat quality, 60 yearling steers were fed high concentrate diets containing either control corn (82% of diet), high-oil corn (82% of diet), or high-oil corn at a concentration that was isocaloric with the control diet (74% of diet). After being fed for 84 d, steers were slaughtered. At 72 h postmortem, carcass data were collected and rib sections from five steers grading U.S. Choice and five steers grading U.S. Select from each treatment were collected, vacuum packaged, and aged for 14 d. Three steaks (2.54 cm thick) were removed from each rib for Warner-Bratzler shear force measurement, sensory appraisal, and fatty acid composition analyses. Data were analyzed with treatment as the main effect for the carcass data and treatment, quality grade, and two-way interaction in the model for the longissimus data. The two-way interaction was nonsignificant (P > 0.05) for all variables tested. No differences were detected (P > 0.05) in carcass measurements except for marbling scores and quality grades, both of which were greater (P < 0.05) for carcasses from steers fed the high-oil corn. Overall, 78% of steers fed the high-oil corn graded U.S. Choice compared with 47% for the control and 67% for isocaloric group. Shear force and sensory properties of the longissimus were not different (P > 0.05) among treatments. Steaks from U.S. Choice carcasses rated higher (P < 0.05) for tenderness and tended to rate higher (P < 0.10) for juiciness. Feeding the isocaloric and high-oil diets increased (P < 0.05) linoleic acid, arachidonic acid, and the total PUFA content of lipid extracted from the longissimus. Saturated fatty acid percentage was lowest (P < 0.05) for high-oil corn and highest (P < 0.05) for control, with isocaloric being intermediate. Feeding high-oil corn increased (P < 0.05) pentadecyclic acid, margaric acid, and total odd-chain fatty acid content. Feeding high-oil corn in finishing beef cattle diets enhanced intramuscular lipid deposition and increased unsaturation of fatty acids of the longissimus.  相似文献   

18.
Two experiments were conducted to evaluate the effects of alfalfa hay (AH) and wet corn gluten feed (WCGF) combinations on ADG and gain efficiency of cattle limit-fed growing diets. In Exp. 1, crossbred beef steers (n = 220; initial BW = 262 kg) were limit-fed diets consisting of steam-flaked corn and 40% WCGF (DM basis) with 0, 10, or 20% ground AH (0AH, 10AH, and 20AH, respectively). A fourth diet containing 20% ground AH and steam-flaked corn served as a control. All diets were fed once daily at 1.8% of BW (DM basis). Growing period ADG, gain efficiency, and dietary NE calculated from performance data decreased linearly (P < 0.01) with addition of AH to diets containing WCGF. Rate of DMI increased linearly (P < 0.05) with AH addition to diets containing WCGF. Following the growing period, steers were finished on a common diet offered ad libitum. Gain efficiencies during the finishing period were higher (P < 0.05) for steers fed the 20AH diet than for steers fed the control diet. In Exp. 2, crossbred beef heifers (n = 339; initial BW = 277 kg) were limit-fed diets containing steam-flaked corn with 10, 20, or 30% ground AH and 0, 40, or 68% WCGF in a 3 x 3 factorial arrangement, fed once daily at 1.6% of BW (DM basis). An AH x WCGF interaction occurred (P < 0.05) for growing period ADG and gain efficiency. Increasing AH or WCGF decreased cattle ADG, gain efficiency, and dietary NE with the exception of heifers fed 30AH/40WCGF, which had ADG that did not differ (P > 0.10) from that of heifers fed 20AH/0WCGF or 30AH/0WCGF, and which had greater gain efficiencies (P < 0.05) than heifers fed 30AH/0WCGF. Rate of DMI increased linearly (P < 0.01) with increasing AH and decreased linearly (P < 0.01) with increasing WCGF. Heifers were finished on diets containing 33% WCGF with 0 or 0.5% added urea (DM basis) offered ad libitum. Increasing WCGF in growing diets tended (linear, P < 0.10) to increase finishing ADG and gain efficiency, whereas increasing AH decreased (linear, P < 0.05) kidney, pelvic, and heart fat, and the percentage of carcasses grading USDA Prime. Urea tended to increase ADG (P < 0.10), but decreased (P < 0.04) the percentage of carcasses grading USDA Choice. Results suggest that the value of WCGF relative to steam-flaked corn in limit-fed growing diets might be improved in diets containing 30% AH relative to diets containing 10 or 20% AH.  相似文献   

19.
Six Hereford steers (295 kg) cannulated in the proximal duodenum were used to evaluate the effects of forage and sunflower oil level on ruminal biohydrogenation (BH) and conjugated linoleic acid (CLA) outflow. Steers were fed one of six treatment diets in a 3 x 2 factorial arrangement of treatments (grass hay level: 12, 24, or 36% of DM; and sunflower oil level: 2 or 4% of DM) in a 6 x 6 Latin square design. The remainder of the diet was made up of steam rolled corn and protein/mineral supplement. Duodenal samples were collected for 4 d following 10-d diet adaptation periods. Data were analyzed with animal, period, forage level, sunflower oil level, and two-way interaction between forage and sunflower oil level in the model. Dry matter intake showed a quadratic response (P < 0.04), with an increase in DMI as forage level increased from 12 to 24% followed by a decrease in DMI when 36% forage was fed. Flow of fatty acids at the duodenum was higher (P < 0.03) for 4 vs. 2% sunflower oil diets, and similar among forage levels. Apparent ruminal digestibility of NDF increased in a linear manner (P < 0.04) as dietary forage level increased. Ruminal BH of dietary unsaturated 18-C fatty acids, oleic acid, and linoleic acid increased linearly (P < 0.05) as dietary forage level increased. Linoleic acid BH tended (P < 0.07) to be greater for 4 than 2% sunflower oil level. Duodenal flow of pentadecyclic, stearic, linolenic, and arachidic acids increased linearly (P < 0.05) as dietary forage level increased from 12 to 36%. Duodenal flow of linoleic acid decreased in a linear manner (P < 0.03) with increasing dietary forage level. Flow of trans-10 octadecenoate decreased linearly (P < 0.03) as dietary forage level increased, whereas trans-11 vaccenic acid flow to the duodenum increased (P < 0.01) linearly with increased dietary forage. Dietary forage or sunflower oil levels did not alter the outflow of cis-9, trans-11 CLA. Flows of cis-11, trans-13, and cis-9, cis-11 CLA increased linearly (P < 0.05) with increased dietary forage. Flows of cis-11, cis-13, and trans-11, trans-13 CLA decreased linearly (P < 0.05) with increased dietary forage. Increasing dietary forage levels from 12 to 36% in beef cattle finishing diets increased BH of unsaturated 18-C fatty acid and outflow of trans-11 vaccenic acid to duodenum without altering cis-9, trans-11 CLA outflow.  相似文献   

20.
Five Holstein steers (235 kg of BW) fitted with ruminal, duodenal, and ileal cannulas were used in a 5 x 5 Latin square design experiment to determine the effects of supplemental fat source on site and extent of nutrient digestion and ruminal fermentation. Treatments were diets based on steam-flaked corn containing no supplemental fat (control) or 4% (DM basis) supplemental fat as tallow, dried full-fat corn germ (corn germ), corn oil, or flax oil. Fat supplementation decreased (P < 0.08) ruminal starch digestion but increased (P < 0.03) small intestinal starch digestion as a percentage of intake. Feeding corn germ decreased (P < 0.09) ruminal starch digestion and increased (P < 0.03) large intestinal starch digestion compared with steers fed corn oil. Large intestinal starch digestion was less (P < 0.04), and ruminal NDF digestion was greater (P < 0.09) for steers fed tallow compared with steers fed other fat sources. Small intestinal (P < 0.08) and total tract NDF digestibilities were greater (P < 0.02) for steers fed corn germ than for those fed corn oil. Feeding tallow increased total ruminal VFA (P < 0.03) and NH(3) (P < 0.07) concentrations compared with steers fed the other fat sources. Feeding corn germ led to a greater (P < 0.02) rate of ruminal liquid outflow compared with corn oil. A diet x hour interaction (P < 0.04) occurred for ruminal pH, with steers fed corn oil having the greatest ruminal pH 18 h after feeding, without differences at other time points. Fat supplementation increased (P < 0.09) ruminal concentrations of Fusobacterium necrophorum. Duodenal flow of C18:3n-3 was greater (P < 0.01) for steers fed flax oil compared with those fed corn oil. Feeding corn germ led to less (P < 0.01) ruminal biohydrogenation of fatty acids compared with corn oil. Steers fed tallow had greater small intestinal digestibility of C14:0 (P < 0.02) and C16:1 (P < 0.04) than steers fed the other fat sources. Fat supplementation decreased (P < 0.06) small intestinal digestibility of C18:0. Feeding corn germ decreased (P < 0.10) small intestinal digestibility of C18:1 compared with corn oil. It appears that source of supplemental fat can affect the site and extent of fatty acid and nutrient digestion in steers fed diets based on steam-flaked corn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号