首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study was (1) to find a matching factor (u) between infiltration rate and hydraulic conductivity during steady-state infiltration, and (2) to propose equations based on infiltration and soil moisture-retention functions for prediction of the hydraulic conductivity K(θ) within the rapidly (non-capillary) drainable pores (RDP) and capillary-matrix pores of soils. The K(θ) of capillary pores was divided into K(θ)SDP, K(θ)WHP and K(θ)FCP within slowly drainable pores (SDP), water-holding pores (WHP) and fine capillary pores (FCP), respectively. Five soil profiles of calcareous sandy loam, alluvial saline and non-saline clay, located at the Nile Delta, were used to apply the proposed equations. The highest and the lowest values of K(θ)RDP were observed in calcareous and saline clay soil profiles, respectively. Values of K(θ)RDP remained higher than those for capillary pores in the studied soils. The predicted values of K(θ) in capillary and non-capillary pores classes were in the expected range for unsaturated hydraulic conductivity. Water sorptivity (S) was determined at initial unsaturated soil water conditions and calculated at steady-state infiltration (S w) using a derived equation. There was a decrease in S with an increase in soil water content; i.e. at steady-state infiltration, S decreased by 35–40% in calcareous soils and by 45–60% in alluvial clay soils. The parameter values of u and S w tended to be uniform in calcareous soils, but nonuniform in saline and non-saline clay soils.  相似文献   

2.
Soil moisture condition is essential to regulate the release of soil carbon from a drained peatland since aerobic microbial activities can be encouraged through oxygen supply associated with dewatering the soil layer while they may be discouraged under too dry conditions. Aiming to characterize the soil moisture condition in a reclaimed tropical peatland, we monitored the volumetric water content at 5?cm depth (θ 5?cm), groundwater level (GWL) and rainfall for 20 months from March 2010 to November 2011 in an oil palm field in Nakhon-Si-Thammarat, Thailand. We also measured the soil water retention curve and the unsaturated hydraulic conductivity (k) for a series of matric potential (h) to simulate the moisture condition monitored in the field by using the Buckingham-Darcy's flux law. During the dry season in 2010, the θ 5?cm consistently stayed lower than 0.35?m3?m–3 with the GWL lower than a depth of 30?cm. In the transition from the dry season to the rainy season in 2010, the GWL rose to the land surface with peaks and dips across the time for about one month with the θ 5?cm increasing toward saturation. During the rainy season where the GWL stayed near or above the land surface, the θ 5?cm remained the field-saturated value of 0.58?m3?m–3 on average, less than the laboratory-saturated value of 0.63?m3?m–3, suggesting the development of a significant amount of entrapped air-phase. Hysteretic behavior in the measured θ 5?cm–GWL relation also supported that the top soil layer refuses to absorb water in wetting processes. The simulated θ 5?cm based on the measured k(h) and soil water retention curves demonstrated that the ease with which the top soil dries during a dry season was due mainly to the low k(h) value in the dried condition, while the slope of the θ(h) curve was so moderate that the soil layer could retain moisture for maintaining liquid water supply to the surface from the dropped GWL. Sensitivity analyses while varying the magnitude of both k(h) and evaporation rate (E) suggested that the k(h) function was more deterministic than the value of E in making the land surface easily dried. As the GWL stayed lower than 30?cm in depth for a total of 187 days out of the year monitored, while surface-ponding conditions took place for 120 days of the year, it was concluded that either the extremely dried condition or the saturated-moisture condition had dominantly occurred in the study site through a year and, thus, there may only be a limited time when soil organic matter near the land surface is in favorable moisture conditions for aerobic decomposition.  相似文献   

3.
Agrichemicals usually contaminate groundwater via preferential flow, therefore determination of the preferential flow characteristics of soil is needed. One model that predicts solute transport due to preferential flow is the mobile–immobile (MIM) solute-transport model, which partitions total water content (θ; m3 m?3) into mobile (θm) and immobile fractions (θim). In undisturbed soils, a method is proposed for determining the MIM model parameters, i.e. immobile water fraction (θim), mass transfer coefficient (α) and hydrodynamic dispersion coefficient (D h). Breakthrough curves were obtained for five different soil textures in three replicates, by miscible displacement of Cl? in undisturbed soil columns. Cl? breakthrough curves were evaluated in terms of the MIM model. Analysis suggests that the values of D h and α increased with lighter soil textures and θim increased with heavier soil textures. The values of θim ranged from 5.31 to 14.28% in different soil textures. Furthermore, values of θim were found to be related to soil clay content. Values of α ranged from 0.0257 to 0.32 h?1 and values of D h ranged from 0.36 to 11.2 cm2 h?1 in different soil textures. A significant linear correlation was obtained between α, θim, D h and soil saturated hydraulic conductivity (K s) and pore water velocity (v). A multivariate pedotransfer function was developed to estimate α, θim and D h based on the geometric mean (d g) and the standard deviation (σg) of the diameter of soil particles and soil organic matter content. The pedotransfer functions for D h, θim and α were validated by independent data sets from other investigators.  相似文献   

4.
A soil water retention curve (SWRC) is usually measured in a laboratory (lab SWRC), and is used to analyze in-situ soil moisture conditions. However, it is rarely verified whether and how a lab SWRC is in agreement with its equivalent relation between matric potential (h) and volumetric water content (θ) in a natural field (in-situ SWRC). In addition, most SWRCs show moisture hysteresis through which the drying process gives a larger θ at a given h than the wetting process, while an in-situ SWRC must be produced through the cycles of drying and wetting in the field. Thus, it can be hypothesized that an in-situ SWRC shows a lower value of θ than a lab SWRC for any h that the soil layer ordinarily experiences. To give experimental proofs for this hypothesis, this study aimed at quantifying seasonal behaviors of in-situ SWRCs and at comparing them with their corresponding lab SWRCs. To obtain a series of in-situ SWRCs, the h and θ were coincidently monitored at four points with three depths each in a meadow for 2.5 years using tensiometers and a capacitance-type soil moisture sensing system. As the equivalent to the in-situ SWRCs, the lab SWRCs were also measured. The in-situ SWRCs tended to have roughly 10% smaller θ than the lab SWRCs for the series of h observed in the study site, suggesting that an in-situ SWRC can hardly be reproduced by a lab SWRC only. In addition, when the driest condition in the recent 3 years was exerted on the study site, some in-situ SWRCs shifted along the θ axis on the θ(h) charts, suggesting that the most dried condition had changed the soil moisture regime of these soil layers, resulting in the reduction of monthly or annual means of soil water content in the field. Since the shifts of the in-situ SWRCs were accompanied by the increases in both the gradients ‘dθ/dh’ and the variation of measured h, it was implied that an extraordinary drying of a soil layer promotes the development of soil pore structure or an increase in the fraction of plant available water.  相似文献   

5.
6.
With respect to soils, most growing media can exhibit hysteresis during drying/wetting cycles, which greatly affects their hydraulic properties. In the case of organic substrates, hydrophobicity during desiccation could be considered as one of the main factors leading to hysteretic behaviour. The purpose of this study was to estimate the influence of changes in wettability on the water retention properties, θ(ψ), of peat and pine bark during a drying/wetting cycle. Major differences in the hydraulic behaviour of the two organic materials studied were observed. For peat, hysteresis was found in the water retention curve (21%) and also in the contact angle/water potential relationship, (α(ψ), 20%), whereas in pine bark, this phenomenon was less pronounced in the water retention curve (10%) and even more limited in the α(ψ) curve (> 5%). Water retention hysteresis was successfully modelled using a modified van Genuchten‐Durner approach (VGα model), which took into account the local hydrophobicity of each poral domain of the porous media, regardless of the extent of hysteresis. Incorporating the parameters of the VGα water retention model into a α(ψ) equation to characterize overall or average changes in the hydrophobicity of the material during desiccation resulted in values very similar to those of the contact angles calculated with the capillary rise method. These results indicate that water retention properties of these organic substrates are strongly influenced by hydrophobicity.  相似文献   

7.
The effect of soil ESP on soil moisture retention and volume change of montmorillonitic type clay soil (vertisol) in the 10–58 ESP range showed increase in moisture retention with soil ESP in 10-bar suction range. Soil moisture suction (h) – water content (θ)relationship of the form h = ho(θ/θs)?b, where ‘ho’is air entry suction and ‘b’ is a constant, was obtained at all ESP levels. Soil bulk density at low moisture contents increased considerably with soil ESP due to dispersion and decreased linearly with increase in soil water content because of mineral swelling. The soil water diffusivity and conductivity in the 0.15–0.35 g/g moisture content range followed an exponential increase with soil moisture content recording a sharp decrease at soil ESP 10. The effect of high exchangeable sodium, however, was mitigated, to a large extent, by the increase in electrolyte concentration of permeating water to 5 mmhos/cm or greater. Decrease in water transmission parameters ascribed to exchangeable Na+ in the drier moisture regime was accounted for by dispersion of soil particles at low ESP. Whereas adsorbed Na+ – induced swelling was regarded as the major factor modifying soil water relations at relatively high ESP under wet moisture regime. Soil ESP of 10 may be treated as critical for swelling clay soil from soil and water – management view point.  相似文献   

8.
The double-plate method and the evaporation method provide comparable results on the hydraulic conductivity of soil (K(hs)). Adaptation of the water retention curve according to the method of Vachaud and Vauclin proved to be very reliable. The course of the K(hs) function is well shown by all indirect identification methods included in the comparison. In some cases, the absolute deviations of the measured from the calculated values are, however, considerable and primarily determined by the initial value of the hydraulic conductivity. In quantifying the capillary water rise, best approximation to the measured values was reached in 11 of 13 cases with the van Genuchten method.  相似文献   

9.
The intensive agricultural use of soils in the Brittany region (western France) has increased the need for a better understanding of soil water dynamics. The aim of the present study is to compare quantitatively the differences produced by two agricultural practices on soil hydraulic properties (water retention curve and hydraulic conductivity) as well as the infiltration and drainage fluxes in the soils. This study was carried out on two experimental plots managed in the same way for 22 years. The two practices were continuous maize fertilized with mineral fertilizer, denoted as MX, and pasture within a ray-grass/maize rotation (3/1 year) with organic fertilization (pig slurry), denoted as PR. The study consisted of measuring soil physical properties in the laboratory and in the field, and estimating water infiltration in the soil of the two plots by recording water pressure heads after simulation of 2-h artificial rainfall with an intensity of 17 mm/h. We applied the van Genuchten model to describe the water retention and hydraulic conductivity curves (θ(h) and K(h)) for each soil horizon of the two plots. Hydrus-2D and ID softwares were used to construct a numerical model of water movement in the two soils. This model was used to quantify the infiltration rate, deep drainage and actual evaporation fluxes during the artificial rainfall experiment.The vertical influence of agricultural practices in both plots appears to be limited to the uppermost 35 cm. Deeper in the B horizon, there are only very slight differences in the hydraulic properties between the two plots. In the top soil horizons (H1–H5 and H6), the two soil properties mostly affected by practices are the hydraulic conductivity and the α parameter of the van Genuchten model. At the lowest pressure head studied here (−1.5 kPa), hydraulic conductivity in a given horizon differs by more than one order of magnitude between the two plots. The model reproduces quite satisfactorily the observed pressure heads in plot PR at all depths, in the rainy period as well as in the water redistribution period (efficiency >0.77). Results are less good for the MX plot, with efficiency ranging from 0.49 to 0.84 depending on the horizon. The different sources of simulation errors are identified and discussed. For the MX plot, the soil water movement model succeeds in reproducing the infiltration excess runoff observed in the field, allowing us to calculate that it accounts for 9% of the applied rainfall. No surface runoff or ponding appears in the PR plot during the artificial rainfall experiment. In the PR plot, the simulated deep drainage flux increases more rapidly than in the MX plot. The lower hydraulic conductivity in the top soil horizon of the MX plot compared with the PR plot appears to reduce the infiltration rate as well as the deep drainage flux. It also decreases the upward flow of water to the soil surface when the water content in the top soil layer is depleted by evaporation flux. The model simulation could be improved by a more precise representation of the soil structure, particularly the location, size and frequency of clods as well as the variability of hydraulic properties. However, we need to strike a balance between improving the quality of the simulation even further and the practical constraints and efforts involved in measuring the soil hydraulic properties.  相似文献   

10.
C.L Acharya  F.A Daudet 《Geoderma》1980,23(4):285-297
Experiments were conducted to measure the hydraulic conductivity of undisturbed soil cores (differing in texture) both by one-step and Gardner's outflow methods. The apparatus designed for the study is described. Results with soil cores are compared to those from an artificial porous material having a stable and uniform pore-size distribution. Results indicate that in some cases the outflow pattern differs considerably from that predicted by diffusion theory. The deviation was much more pronounced at higher water contents and with an increase in the complexity of the system. The outflow method at 50 mbar suction for a sample containing the highest amount of clay gave a K value 35-fold smaller than that by the one-step method. At a 200-mbar suction, this difference decreased to a 4.7-fold. Much of the difficulty is attributed to unequal soil moisture distribution, pendular rings or fingering phenomena as a consequence of pressure imposition at higher water contents and underestimation of outflows even after greater equilibration times at low water contents.  相似文献   

11.
Pedo-transfer functions (PTFs) have been widely used to estimate soil hydraulic properties in the simulation of catchment eco-hydrological processes. However, the accuracy of existing PTFs is usually inadequate for use. To develop PTFs for local use, soil columns were collected from a double rice-cropped agricultural catchment in subtropical central China. The PTFs for saturated soil hydraulic conductivity (Ks) and parameters (θs, α, and n) of the van Genuchten model for the soil water retention curve (SWRC) were obtained based on soil’s basic properties, and compared with models developed by Li et al. in 2007 and Wösten et al. in 1999, respectively. Our results indicated that Ks in the range of 0.04–1087 cm d?1 and θs in the range of 0.34–0.51 cm3 cm?3 were both well estimated with the R2adj of 0.72 and 0.87, respectively, but α (0.04–0.65 cm?1) and n (1.05–1.21) were relatively poorly predicted with the respective R2adj of 0.38 and 0.55, despite the use of more input parameters. Our local derived PTFs outperformed the other two existing models. However, if the local PTFs for paddy soils are not available, the Wösten et al. 1999 model can be proposed as a useful alternative. Therefore, this study can improve our understanding of the development and application of PTFs for predicting paddy soil hydraulic properties in China.  相似文献   

12.
The purpose of the present study was to compare two methods for estimating the hydraulic conductivity near saturation with disc permeameters, and to identify their merits when studying runoff on sloping land. The soil's hydraulic conductivity (K) was measured with disc permeameters at a sequence of nominal pressures (ψ) in three blocks with average slope gradients of 11.0% (two occasions), 21.5% (two occasions) and 29.3% (one occasion), respectively, within a sloping area, 40 m wide and 100 m long. Two different methods were used. In the first, the split‐location method, the permeameter was moved to an adjacent spot after measurement at each applied ψ. The estimate of K(ψ) was based on measured sorptivity, steady‐state volumetric flow, initial volumetric water content and the volumetric water content at the applied ψ. In the second method, the one‐location method, the permeameter was not moved during the measurements at each sequence of applied ψ and the estimate of K(ψ) was based only on steady‐state volumetric flow and piece‐wise application of the exponential relation between K and ψ. The latter method generally gave smaller estimates of K than the former on the gentle slopes. These differences were smaller or negligible on steeper slopes. The slope gradient and the conditions in the uppermost soil layers had a definite influence on the values of K obtained. The one‐location method is recommended in studies in which disturbance of the soil surface must be kept to a minimum, as is the case in experimental plots.  相似文献   

13.
One of the key issues to increase soil productivity in the Sahel is to ensure water infiltration and storage in the soil. We hypothesised that reducing tillage from annual to biennial ploughing and the use of organic matter, like compost, would better sustain soil hydraulic properties. The study had the objective to propose sustainable soil fertility management techniques in the cotton–maize cropping systems. The effects of reduced tillage (RT) and annual ploughing (AP) combined with compost application (Co) on soil infiltration parameters were assessed on two soil types. Topsoil mean saturated hydraulic conductivities (Ks) were between 9 and 48 mm h−1 in the Luvisol, while in the Lixisol they were between 18 and 275 mm h−1. In the two soil types compost additions with reduced tillage or with annual ploughing had the largest effect on Ks. Soil hydraulic behaviour was in reasonable agreement with soil pore size distribution (mean values varied from 19.5 to 237 μm) modified by tillage frequency and organo-mineral fertilization. Already the first 3 years of this study showed that use of organic matter, improved soil infiltration characteristics when annual ploughing was used. Also biennial ploughing showed promising results and may be a useful strategy for smallholders to manage these soils.  相似文献   

14.
We present a new model for the soil‐water retention curve, θ(hm), which, in contrast to earlier models, anchors the curve at zero water content and does away with the unspecified residual water content. The proposed equation covers the complete retention curve, with the pressure head, hm, stretching over approximately seven orders of magnitude. We review the concept of pF from its origin in the papers of Schofield and discuss what Schofield meant by the ‘free energy, F ’. We deal with (historical) criticisms regarding the use of the log scale of the pressure head, which, unfortunately, led to the apparent demise of the pF. We espouse the advantages of using the log scale in a model for which the pF is the independent variable, and we present a method to deal with the problem of the saturated water content on the semi‐log graph being located at a pF of minus infinity. Where a smaller range of the water retention is being considered, the model also gives an excellent fit on a linear scale using the pressure head, hm, itself as the independent variable. We applied the model to pF curves found in the literature for a great variety of soil textures ranging from dune‐sand to river‐basin clay. We found the equation for the model to be capable of fitting the pF curves with remarkable success over the complete range from saturation to oven dryness. However, because interest generally lies in the plant‐available water range (i.e. saturation, θs, to wilting point, θwp), the following relation, which can be plotted on a linear scale, is sufficient for most purposes: , where k0, k1 and n are adjustable fitting parameters.  相似文献   

15.
This study evaluated the effect of 13 years of swine‐manure application on the changes in soil hydraulic properties, and as associated physicochemical properties, with a focus on heavy metal mobility. Various soil hydraulic properties were measured, including soil water retention (SWR), saturated field hydraulic conductivity (Kfs) and unsaturated field hydraulic conductivity (Kfunsat) using a disc infiltrometer. Heavy metal mobility was evaluated with a sequential extraction procedure. At 0–30 cm soil depth in the heavily manured plot (SMhigh plot), SWR at 0 to ?100 kPa was significantly larger than in plots amended with a standard amount of manure (SMstd plot) or with chemical fertilizer (CF plot). Kfs and Kfunsat values in both manure‐amended plots were less than in the CF plot under dry soil conditions but greater than those of the CF plot under wet soil conditions. Furthermore, Kfs and Kfunsat did not necessarily increase with manure application rates. On the other hand, high‐mobility metal fractions, such as the exchangeable fraction of Zn, and the CH3CO2Na‐extractable fraction of Zn and Mn, and the metal–organic complex fractions of Zn, Cu and Mn, increased with the greater manure application rate. In addition, low‐mobility metal fractions, the organically bound fractions of Zn, Cu and Mn in the high SM plot and the easily reducible metal oxide fraction of Mn in both manure‐amended plots were probably affected and released into high‐mobility fractions. This indicated that manure application changed the soil redox conditions by improving the soil structure, depending on the water content of soil pores. Despite the reduction of Kfs and Kfunsat by heavy manure application, the transport of high‐mobility metal fractions with either surface water flow or infiltration water flow could be controlled by soil water content at the beginning of a rain or irrigation event.  相似文献   

16.
Several studies have raised serious doubts about the suitability of small cores for measuring water‐movement attributes, due to their potential to provide unrealistic representation of macropore connectivity and abundance. This study explored the potential of lysimeter‐scale experiments to calculate the hydraulic conductivity, K(ψm), of undisturbed soil layers in a matric potential (ψm) range between 0 and −4 kPa. Four large lysimeters were collected from a Dystric Cambisol. For each lysimeter a tension infiltrometer supplied infiltrating water under suctions of 0, 0.5, 1 and 1.5 kPa. Soil water dynamics were measured in situ using arrays of tensiometers, at depths corresponding with layer boundaries. The results show clearly that infiltration and drainage rates are intimately linked to temporal ψm dynamics, which themselves are determined by preferential flow and soil‐layer interactions. A quasi‐steady state was identified as when infiltration matched drainage, and ψm measurements showed each layer had a stable hydraulic gradient, which then allowed in situ determination of the K(ψm) relationship of individual soil layers. For this soil K(ψm) is distinctly different for each soil layer, and these differences are consistent among the four lysimeters. A consistent feature is that all layers have a distinct change in the slope of the K(ψm) relationship, in the ψm range of −0.5 to −1.5 kPa, highlighting a dual‐porosity character. The whole‐column infiltration behaviour was strongly linked to the K(ψm) relationship of the surface layer (0–2 cm depth), and therefore hydraulic characterization of this layer should be a critical component of a soil survey.  相似文献   

17.
Knowledge on anisotropy of saturated hydraulic conductivity can improve the understanding of transport phenomena in soil. We hypothesized that saturated hydraulic conductivity (Ks) in the upper part of the root zone of an agricultural sandy loam soil was anisotropic at different soil depths and times after tillage. Ks was measured on undisturbed 100 cm3 core samples taken in the horizontal and vertical directions in up to four soil layers (Surf: surface layer (0–5 cm); Top: topsoil (10–15 cm); Trans: transition layer between topsoil and subsoil; Sub: subsoil (40–60 cm)) 1, 8 and 32 months, respectively, after mouldboard ploughing and drilling. The ratio between estimated geometric mean values for Ks in the vertical and the horizontal directions (Kms,v/Kms,h) was used to test the hypotheses. A total of 669 soil samples were analysed.Kms,v/Kms,h varied with time after tillage and between soil layers. One month after ploughing, Kms,v/Kms,h was <0.23 (P = 0.975) in the Trans layer with an average value of 0.084, i.e. Kms,h was 12 times larger than Kms,v. Anisotropy could not be documented in this layer 8 or 32 months after ploughing, i.e. Kms,v/Kms,h was not significantly different from 1.0. For the Surf and Top layers 32 months after ploughing, Kms,v/Kms,h was in the intervals 1.4–50 and 3.1–77, respectively, (P = 0.95) with average values of 8.4 and 15, respectively. Thus, Kms,v was 8.4 respectively 15 times larger than Kms,h in the two layers. Anisotropy was not found in these layers 1 or 8 months after tillage. Strong anisotropy was found in the Sub layer with Kms,v/Kms,h averaging to 14 and 32, respectively, 8 and 32 months after tillage. Kms,v and Kms,h generally decreased with time in the Surf, Top and Trans layers, except in the vertical direction in the Top layer between 8 and 32 months after ploughing, and in the Trans layer between 1 and 8 months after ploughing. Overall, the geometric means of Ks varied between 10−4.0 and 10−7.1 m s−1.The results may reflect systematic effects of soil settlement and drying/wetting phenomena coupled with biological activity and the existence of stable, vertically oriented biopores in the subsoil. It appears to be necessary to consider anisotropy of Ks and its variation in the analysis and modelling of water flow and chemical transport in agricultural soils, particularly to explain heterogeneous flow phenomena at the plot and field scales.  相似文献   

18.
Soil saturated hydraulic conductivity (Ks) is a predominant input factor when forecasting the vertical transport of contaminants through the soil or when estimating the flood retention capacity of the soil. Displacement of contaminants in the soil over extended periods of time can be attributed mainly to matrix flow, whereas flow through macropores becomes significant under untypically wet conditions, e.g., during spills or rain storms. To obtain matrix conductivities for a soil, the effects of macropores should be excluded. However, the Ks values of a soil profile are unlikely to be reflected solely by pedotransfer tables based on soil texture and bulk density. In this study, we examined five different methods (pedotransfer table, soil core, borehole permeameter, particle-size distribution curve, and instantaneous profile) to determine Ks values for a mercury-contaminated riparian soil for subsequent simulation of long-term mercury displacement toward groundwater. We found that the determined Ks values increased in the following order: borehole permeameter < particle-size distribution curve < pedotransfer table < instantaneous profile < soil core. The instantaneous profile method yielded Ks values of matrix flow, which additionally reflected the structure-related features of Ks values as provided by the soil core method. Despite being labor intensive and requiring expensive field sensors, the instantaneous profile method may provide the best representative in-situ Ks values for the studied site.  相似文献   

19.
A stochastic approach to simulate water flow in a macroporous soil   总被引:1,自引:0,他引:1  
  相似文献   

20.

Purpose

Soil water retention plays a crucial role in regulating soil moisture dynamics, water circulation, plant growth, contaminant transport, and permafrost stability, and it is an issue of concern in water-limited ecosystems. However, our understanding of the relationship between plant roots and soil water retention is still relatively poor in the alpine grasslands of permafrost regions. To addresses this, our study evaluated the effect of plants on the soil water retention in permafrost regions of the Qinghai-Tibet Plateau.

Materials and methods

Three alpine grassland sites were identified and characterized as alpine wet meadow (AWM), alpine meadow (AM), and alpine steppe (AS). Root biomass, soil water retention, and soil physico-chemical properties were examined in the top 0–50 cm of active layer in the three experimental sites in the hinterland of the Qinghai-Tibet Plateau (QTP). Pedotransfer functions (PTFs) and Retention Curve program (RETC) were employed to illustrate how the plant roots affect soil water retention.

Results and discussion

Approximately 80, 65, and 60% of root biomass was distributed in the top 0–20 cm in the AWM, AM, and AS soil, respectively. Soil water retention was enhanced with the presence of plant roots; thereinto, the highest values of field capacity were found in AWM soil: on average, about 0.45 cm3 cm?3. Field capacity of AWM soil was almost twice as high as that of AM soil, and triple higher than that of AS soil. Correlation and regression analysis showed that root-induced changes to soil water retention were caused by altering the soil organic matter and soil structure. In addition, we evaluated the Retention Curve (RETC) program’s performance and found that the program underestimated soil water retention if the effects of plant roots were not considered.

Conclusions

A lack of alpine plants is associated with a decline in soil physical conditions and soil water retention in permafrost regions, and the function of plant roots should be considered when predicting hydrological processes.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号