首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium head blight (FHB) is a destructive disease of wheat worldwide. Sources of resistance to FHB are limited in wheat. Search for novel sources of effective resistance to this disease has been an urgent need in wheat breeding. Fusarium head blight resistance has been identified in relatives of wheat. Alien chromatin carrying FHB resistance genes has been incorporated into wheat through chromosome addition, substitution, and translocation. Relatives of wheat demonstrate a great potential to enhance resistance of wheat to FHB.  相似文献   

2.
Q. Chen    F. Eudes    R. L. Conner    R. Graf    A. Comeau    J. Collin    F. Ahmad    R. Zhou    H. Li    Y. Zhao  A. Laroche   《Plant Breeding》2001,120(5):375-380
Fusarium head blight (FHB, scab), caused by Fusarium graminearum Schwabe, is a serious and damaging disease of wheat. Although some hexaploid wheat lines express a good level of resistance to FHB, the resistance available in hexaploid wheat has not yet been transferred to durum wheat. A germplasm collection of Triticum durum× alien hybrid lines was tested as a potential source of resistance to FHB under controlled conditions. Their FHB reaction was evaluated in three tests against conidial suspensions of three strains of F. graminearum at the flowering stage. Two T. durum×Thinopyrum distichum hybrid lines, ‘AFR4’ and ‘AFR5′, expressed a significantly higher level of resistance to the spread of FHB than other durum‐alien hybrid lines and a resistant common wheat line ‘Nyu‐Bay’. Genomic in situ hybridization using total genomic DNA from alien grass species demonstrated that ‘AFR5’ had 13 or 14 alien genome chromosomes plus 27 or 28 wheat chromosomes, while ‘AFR4’ had 22 alien genome and 28 wheat chromosomes. All of the alien chromosomes present in these two lines belonged to the J genome. ‘AFR5’ is likely to be more useful as a source of FHB resistance than ‘AFR4’ because of its relatively normal meiotic behaviour, high fertility and fewer number of alien chromosomes. ‘AFR5’ shows good potential as a source for transferring FHB resistance gene into wheat. The development of T. durum addition lines carrying resistance genes from ‘AFR5’ is underway.  相似文献   

3.
Fusarium culmorum is one of the most important Fusarium species causing head blight infections in wheat, rye, and triticale. It is known as a potent mycotoxin producer with deoxynivalenol (DON), 3‐acetyl deoxynivalenol (3‐ADON), and nivalenol (NIV) being the most prevalent toxins. In this study, the effect of winter cereal species, host genotype, and environment on DON accumulation and Fusarium head blight (FHB) was analysed by inoculating 12 rye, eight wheat, and six triticale genotypes of different resistance levels with a DON‐producing isolate at three locations in 2 years (six environments). Seven resistance traits were assessed, including head blight rating and relative plot yield. In addition, ergosterol, DON and 3‐ADON contents in the grain were determined. A growth‐chamber experiment with an artificially synchronized flowering date was also conducted with a subset of two rye, wheat and triticale genotypes. Although rye genotypes were, on average, affected by Fusarium infections much the same as wheat genotypes, wheat accumulated twice as much DON as rye. Triticale was least affected and the grain contained slightly more DON than rye. In the growth‐chamber experiment, wheat and rye again showed similar head blight ratings, but rye had a somewhat lower relative head weight and a DON content nine times lower than wheat (3.9 vs. 35.3 mg/kg). Triticale was least susceptible with a five times lower DON content than wheat. Significant (P = 0.01) genotypic variation for DON accumulation existed in wheat and rye. The differences between and within cereal species in the field experiments were highly influenced by environment for resistance traits and mycotoxin contents. Nevertheless, mean mycotoxin content of the grain could not be associated with general weather conditions in the individual environments. Strong genotype‐environment interactions were found for all cereal species. This was mainly due to three wheat varieties and one rye genotype being environmentally extremely unstable. The more resistant entries, however, showed a higher environmental stability of FHB resistance and tolerance to DON accumulation. Correlations between resistance traits and DON content were high in wheat (P = 0.01), with the most resistant varieties also accumulating less DON, but with variability in rye. In conclusion, the medium to large genotypic variation in wheat and rye offers good possibilities for reducing DON content in the grains by resistance selection. Large confounding effects caused by the environment will require multiple locations and/or years to evaluate FHB resistance and mycotoxin accumulation.  相似文献   

4.
The objectives of this study were to investigate (i) the correlations between Fusarium head blight (FHB) index, deoxynivalenol (DON) accumulation and percentage of Fusarium‐damaged kernels (FDK) with agronomic and quality traits and (ii) the effect associated with the presence of single QTLs for FHB resistance on agronomic and quality traits in winter wheat. The population was derived from the cross between ‘RCATL33' (FHB resistance derived from ‘Sumai 3’ and ‘Frontana’) and ‘RC Strategy’. Parental lines and recombinant inbred lines (RILs) were genotyped with SSR markers associated with the 3B, 5A and 3A QTLs. The population was planted in FHB‐inoculated nurseries and in agronomy trials. Lines in the 3B QTL class had the lowest FHB index, DON content and FDK level and did not have a significantly lower yield, thousand kernel weight or protein content compared with the lines grouped in other QTL classes (including no QTL class). Marker‐assisted selection of the 3B QTL for FHB resistance into high‐yielding FHB‐susceptible winter wheat is the recommended approach for the development of lines with increased FHB resistance without significant yield and quality penalties.  相似文献   

5.
Fusarium head blight (FHB), one of the most destructive diseases of wheat in many parts of the world, can reduce the grain quality due to mycotoxin contamination up to rejection for usage as food or feed. Objective of this study was to map quantitative trait loci (QTL) associated with FHB resistance in the winter wheat population ‘G16‐92’ (resistant)/‘Hussar’. In all, 136 recombinant inbred lines were evaluated in field trials in 2001 and 2002 after spray inoculation with a Fusarium culmorum suspension. The area under disease progress curve was calculated based on the visually scored FHB symptoms. For means across all environments two FHB resistance QTL located on chromosomes 1A, and 2BL were identified. The individual QTL explained 9.7% and 14.1% of the phenotypic variance and together 26.7% of the genetic variance. The resistance QTL on 1A coincided with a QTL for plant height in contrast to the resistance QTL on 2BL that appeared to be independently inherited from morphological characteristics like plant height and ear compactness. Therefore, especially the QTL on 2BL could be of great interest for breeding towards FHB resistance.  相似文献   

6.
Small-grain winter cereal crops can be infected with Fusarium head blight (FHB) leading to mycotoxin contamination and reduction in grain weight and quality. Although a number of studies have investigated the genetic variation of genotypes within each small-grain cereal, a systematic comparison of the winter crops rye, triticale, durum and bread wheat for their FHB resistance, Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) contamination across species is still missing. We have therefore evaluated twelve genotypes each of four crops widely varying in their FHB resistance under artificial infection with one DON-producing F. culmorum isolate at constant spore concentrations and additionally at crop-specific concentrations in two environments. Rye and triticale were the most resistant crops to FHB followed by bread and durum wheat at constant and crop-specific spore concentrations. On average, rye accumulated the lowest amount of DON (10.08 mg/kg) in the grains, followed by triticale (15.18 mg/kg) and bread wheat (16.59 mg/kg), while durum wheat had the highest amount (30.68 mg/kg). Genotypic variances within crops were significant (p ≤ .001) in most instances. These results underline the differing importance of breeding for FHB resistance in the different crops.  相似文献   

7.
M. Mardi    L. Pazouki    H. Delavar    M. B. Kazemi    B. Ghareyazie    B. Steiner    R. Nolz    M. Lemmens    H. Buerstmayr 《Plant Breeding》2006,125(4):313-317
Fusarium head blight (FHB or head scab) has become a major limiting factor for sustainable wheat (Triticum aestivum L.) production around the world. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3 : 5 lines, derived from a ‘Frontana’ (moderately resistant)/‘Seri82’ (susceptible) cross, were spray‐inoculated in 2001 and 2002, respectively. Artificial inoculations were carried out under field conditions. Of 273 SSR and AFLP markers, 250 could be mapped and they yielded 42 linkage groups, covering a genetic distance of 1931 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve (AUDPC). The analyses revealed three consistent QTLs associated with FHB resistance on chromosomes 1BL, 3AL and 7AS explaining 7.9%, 7.7% and 7.6% of the phenotypic variation, respectively, above 2 years. The results confirmed the previously described resistance QTL of ‘Frontana’ on chromosome 3AL. A combination of ‘Frontana’ resistance with ‘Sumai‐3’ resistance may lead to lines with augmented resistance expression.  相似文献   

8.
Fusarium head blight (FHB), caused primarily by Fusarium graminearum (Schwabe), is an important wheat disease. In addition to head blight, F. graminearum also causes Fusarium seedling blight (FSB) and produces the mycotoxin deoxynivalenol (DON) in the grain. The objectives of this study were: (1) to compare the relationship between resistance of wheat lines to F. graminearum in the seedlings and spikes and (2) to determine whether the quantitative trait loci (QTL) for FSB were the same as QTLs for FHB resistance and DON level reported for the same population previously (Somers et al. 2003). There was no relationship between FSB infection and FHB index or DON content across the population. A single QTL on chromosome 5B that controlled FSB resistance was identified in the population; the marker WMC75 explained 13.8% of the phenotypic variation for FSB. This value implies that there may be other QTL with minor effects present, but they were not detected in the analysis. Such a QTL on chromosome 5B was not reported previously among the QTLs associated with FHB resistance and DON level in this population. However, because of recombination, some lines in the present study have Fusarium resistance for both seedling and head blight simultaneously. For example, DH line HC 450 had the highest level of resistance to FSB and FHB and was among the ten lines with lowest DON content. This line is a good candidate to be used as a parent for future crosses in breeding for Fusarium seedling resistance, together with breeding for head blight resistance. This approach may be effective in increasing overall plant resistance to Fusarium.  相似文献   

9.
X. Shen    H. Ohm 《Plant Breeding》2006,125(5):424-429
The objective of this study was to assess the effectiveness of Fusarium head blight (FHB) resistance derived from wheatgrass Lophopyrum elongatum chromosome 7E and to determine whether this resistance can augment resistance in combination with other FHB resistance quantitative trait loci (QTL) or genes in wheat. The ‘Chinese Spring’–Lophopyrum elongatum disomic substitution line 7E(7B) was crossed to three wheat lines: ‘Ning 7840’, L3, and L4. F2 populations were evaluated for type II resistance with the single‐floret inoculation method in the greenhouse. Simple sequence repeat markers associated with Fhb1 in ‘Ning 7840’ and L4 and markers located on chromosome 7E were genotyped in each population. Marker–trait association was analysed with one‐way or two‐way analysis of variance. The research showed that, in the three populations, the average number of diseased spikelets (NDS) in plants with chromosome 7E is 1.2, 3.1 and 3.2, vs. NDS of 3.3, 7.2 and 9.1 in plants without 7E, a reduction in NDS of 2.1, 4.1 and 5.9 in the respective populations. The QTL on 7E and the Fhb1 gene augment disease resistance when combined. The effect of the QTL on 7E was greater than that on 3BS in this experiment. Data also suggest that the FHB resistance gene derived from L. elongatum is located on the long arm of 7E.  相似文献   

10.
张荣  袁杭 《中国农学通报》2008,24(10):419-426
Abstract:Fusariam head blight(FHB)is a worldwide destructive disease of wheat in the warm,semi-humid or humid regions,especially serious in China.The disease not only causes significant losses in yield and re duces grain quanlity,but also induces toxin to contaminated seeds,which is harmful to the healthy of human and livestocks,So it is important to control it.There are several methods to control Fusarium head blight (FHB).Such as using Crop rotation,Soil cultivation and Fertiliser,biological control,Fungicides control, transgenes,resistance to control Fusarium head blight(FHB).All of these methods gain some effect,but also exist their deficiency.Sometimes crop rotation had no significant effect on DON contamination of wheat grain,subsequent reductions in DON contamination were inconsistent when using Soil cultivation and Fer tiliser,Unfortunately,under field conditions,the biological control achieved has been shown to be variable and in some tests has failed to give any control,The use of fungicides,however,have not been consistently effective in controlling FHB and in reducing DON formation,transgene-silencing at different generations is a problem to use transgenes,Information on location of QTL for FHB resistance should improve dramatically in the near future on resistance to control Fusarium head blight(FHB).Therefore,it is pressing to improve control methods,especially to DON.  相似文献   

11.
New sources of partial resistance to Fusarium head blight (FHB) in wheat have been identified over the past decade; however, little is known of their breeding value. A 20 parent partial diallel that included resistant genotypes from the U.S., Europe, China and South America was used to evaluate the potential of these sources of resistance as parents in wheat breeding programs. Eight plants replication−1 of each of 190 crosses and 20 parents were point-inoculated with Fusarium graminearum under greenhouse conditions in two replicated experiments. Both general (GCA) and specific combining ability (SCA) were significant. Most of the variance for FHB severity was associated with additive genes; however, estimates for SCA ranged from highly negative to highly positive in both resistant × resistant and resistant × susceptible crosses which suggest that improving FHB resistance through gene pyramiding strategies based on additive genetic variation may be complicated by interaction effects that condition FHB resistance.  相似文献   

12.
Rye is a multi-purpose cereal crop grown in Central and Eastern Europe as well as in Western Canada. Fusarium head blight (FHB) is one of the diseases that have a severe negative impact on rye, but knowledge about FHB resistance at the genomic level is totally missing in rye. The objective of this study was to elucidate the genetic architecture of FHB resistance in winter rye using genome-wide association (GWA) mapping complemented by genomic prediction (GP) in comparison with marker-assisted selection (MAS). Additionally, plant height and heading stage were analysed. A panel of 465 S1-inbred lines of winter rye was phenotyped in three environments (location–year combinations) for FHB resistance by inoculation with Fusarium culmorum and genotyped with a 15k SNP array. Significant genotypic variation and high heritabilities were found for FHB resistance, heading stage and plant height. FHB did not correlate with heading stage, but was moderately correlated with plant height (r = −.52, p < .001) caused by some susceptible short inbred lines. The GWA scan identified 15 QTL for FHB resistance that jointly explained 74% of the genotypic variance. In addition, we detected 11 QTL for heading stage and 8 QTL for plant height, explaining 26% and 14% of the genotypic variance, respectively. A genome-wide prediction approach resulted in 44% higher prediction abilities than marker-assisted selection for FHB resistance. In conclusion, genomic approaches appear promising to improve and accelerate breeding for complex traits in winter rye.  相似文献   

13.
Durum wheat is the most important tetraploid wheat mainly used for semolina and pasta production, but is notorious for its high susceptibility to Fusarium head blight (FHB). Our objectives were to identify and characterize quantitative trait loci (QTL) in winter durum and to evaluate the potential of genomic approaches for the improvement of FHB resistance. Here, we employed an international panel of 170 winter and 14 spring durum lines, phenotyped for Fusarium culmorum resistance at five environments. Heading date, plant height and mean FHB severity showed significant genotypic variation with high heritabilities and FHB resistance was negatively correlated with both heading date and plant height. The dwarfing gene Rht‐B1 significantly affected FHB resistance and the genome‐wide association scan identified eight additional QTL affecting FHB resistance, explaining between 1% and 14% of the genotypic variation. A genome‐wide prediction approach yielded only a slightly improved predictive ability compared to marker‐assisted selection based on the four strongest QTL. In conclusion, FHB resistance in durum wheat is a highly quantitative trait and in breeding programmes may best be tackled by classical high‐throughput recurrent phenotypic selection that can be assisted by genomic prediction if marker profiles are available.  相似文献   

14.
Fusarium head blight (FHB) is a devastating disease that reduces the yield, quality and economic value of wheat. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3:5 lines, derived from a ‘Wangshuibai’ (resistant)/‘Seri82’(susceptible) cross, were spray inoculated during 2001 and 2002, respectively. Artificial inoculation was carried out under field conditions. Of 420 markers, 258 amplified fragment length polymorphism and 39 simple sequence repeat (SSR) markers were mapped and yielded 44 linkage groups covering a total genetic distance of 2554 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve. The analyses revealed a QTL in the map interval Xgwm533‐Xs18/m12 on chromosome 3BS accounting for up to 17% of the phenotypic variation. In addition, a QTL was detected in the map interval Xgwm539‐Xs15/m24 on chromosome 2DL explaining up to 11% of the phenotypic variation. The QTL alleles originated from ‘Wangshuibai’ and were tagged with SSR markers. Using these SSR markers would facilitate marker‐assisted selection to improve FHB resistance in wheat.  相似文献   

15.
Fusarium head blight (FHB) is a highly destructive disease of wheat and other cereals which causes serious mycotoxin contaminations of grain. A number of molecular mapping studies led to the detection of QTL with small to moderate effects on FHB resistance in European winter wheat. Genes involved in the defence reaction of these genotypes remain largely unknown. WIR1 (wheat induced resistance 1) genes have been shown to be upregulated in cereals during attack of various fungal pathogens; however, their role in resistance is ambiguous. In this study, the expression of three WIR1 genes and a gene with high sequence similarity to WIR1 was investigated in European winter wheat genotypes after inoculation with Giberella zeae. Floret tissues of four winter wheat genotypes (Dream, Lynx, G16-92, Hussar) were challenged with G. zeae conidia or water (control) and sampled six times during 0–96 h after inoculation. Quantitative real-time PCR showed that all four genes were highly upregulated in the resistant genotypes compared to the susceptible ones. WIR1b and a gene with sequence similarity to WIR1 genes mapped to chromosome 5DS in the G16-92/Hussar mapping population. Two genes annotated as WIR1a mapped in the interval of a FHB resistance QTL on chromosome 7BS in the Dream/Lynx mapping population. These could be considered possible candidate genes for quantitative FHB resistance.  相似文献   

16.
Jacalin-related lectins(JRLs)是一种含有Jacalin结构域的植物凝集素,在植物应对生物胁迫和非生物胁迫过程中发挥重要作用。根据其糖结合特性被划分为半乳糖特异性JRL(gJRLs)和甘露糖或葡萄糖特异性JRL(mJRLs)两类。前期研究表明普通小麦TaJRL53编码一个具有Jacalin结构域和Dirigent结构域的蛋白,并能在赤霉菌的诱导下上调表达。由赤霉菌侵染引起的小麦赤霉病是一种毁灭性的病害,它不仅能够导致大幅度减产,而且使感病的麦粒品质下降。受真菌毒素污染的籽粒,严重影响人畜健康。为分析该基因在抗赤霉病方面的作用,本研究利用VIGS系统在小麦中沉默TaJRL53,导致了其对赤霉病的抗性减弱。通过基因枪的方法将该基因的过量表达载体导入到感赤霉病小麦品种中,增强了赤霉病抗性,其病小穗数,病轴长都明显缩短。在赤霉菌侵染后,ROS合成途径相关基因、JA信号通路中的主要标志基因、JA合成基因及病程相关蛋白基因在TaJRL53过量表达的转基因植株中明显高于它们在野生型中的表达量,因此推测TaJRL53提高小麦赤霉病抗性可能跟ROS和JA合成,JA信号转导途径有关。本研究增进了对小麦JRLs家族基因功能的了解,为解析TaJRL53抗赤霉病机制奠定了基础。  相似文献   

17.
Fusarium head blight (FHB) is a serious wheat disease all over the world. In this study, the relationships between plant height (PH) and FHB were investigated across the whole wheat genome by QTL meta-analysis from fifty-six experiments. Coincident meta-QTL (MQTL) for PH and FHB were found on chromosomes 2D, 3A, 4B, 4D and 7A. Rht-B1, Rht-D1, Rht8, MQTLs P7 and P26 were consistent with FHB MQTLs. The meta-analysis results confirmed the negative associations of Rht-B1, Rht-D1, and Rht8 with FHB resistance. The associations of PH and FHB resistance on chromosomes 3A and 7A have not been reported and need further investigation. These regions should be given attention in breeding programs. MQTLs derived from several resistance sources were also observed. Some FHB MQTLs for different types of resistance overlapped. These findings could be useful for improving wheat varieties with resistance to FHB.  相似文献   

18.
F. Wilde    T. Miedaner 《Plant Breeding》2006,125(1):96-98
Fusarium head blight (FHB) results in yield losses and contamination of kernels by mycotoxins, particularly deoxynivalenol (DON). For minimizing DON content in grain, indirect selection methods would increase gains from selection compared to the costly and time‐consuming DON analysis. The aim of this study was to examine whether an early selection for fewer FHB symptoms would lead to a reduced DON content in grain after inoculation with Fusarium culmorum. Starting with a double‐cross derived population of about 1,100 genotypes, 30 F1:3 genotypes were selected for FHB rating in a two‐step selection in spring wheat with the non‐adapted resistance sources CM82036 and ‘Frontana’. In winter wheat, 30 F1:2 genotypes were selected out of a double‐cross derived population of about 600 F1 plants from crosses with German resistance sources (‘Dream’, G16‐92). Selected genotypes were grouped in three categories according to their FHB rating (low, moderate and high) and analysed afterwards for grain DON content. The three groups differed in their DON content illustrating that indirect selection should already be feasible in the earliest generations. Because of the wide genotypic ranges for DON contents within one grouping, a final DON analysis for selected materials is advisable to achieve full selection gain.  相似文献   

19.
赤霉病已成为小麦第一大病害,严重影响小麦的产量和品质。目前,抗性品种结合化学防治的方法成为当前防治赤霉病的最有效途径。小麦赤霉病抗性受多种基因控制,其中,Fhb1基因抗性效应最大,且抗性稳定,在小麦赤霉病抗性方面具有重要作用。本文综述了赤霉病主效抗性基因Fhb1的定位、分子标记和克隆技术的最新研究进展。利用选择性回交技术和矮败小麦平台将Fhb1基因导入当地小麦中可提升赤霉病抗性,进而结合化学防治方法为我国小麦安全生产提供保障。  相似文献   

20.
Yield and quality reductions caused by Fusarium head blight (FHB) have spurred spring wheat (Triticum aestivum L.) breeders to identify and develop new sources of host plant resistance. Four wheat synthetic hexaploids (×Aegilotriticum sp.) were developed, each having a quantitative trait locus (QTL), Qfhs.ndsu‐3AS, providing FHB resistance from Triticum turgidum L. var. dicoccoides chromosome 3A. Synthetics were produced by hybridizing a ‘Langdon’‐T. dicoccoides‐ recombinant chromosome 3A substitution line (2n = 4x = 28, AABB with two accessions of T. tauschii (2n= 2x = 14, DD). Synthetics were inoculated and evaluated for FHB resistance in two separate greenhouse seasons. One synthetic, 01NDSWG‐5, exhibited FHB severity ratings of 36% and 32% in the separate seasons, compared with ratings of 9% and 30% for ‘Alsen’, a FHB‐resistant spring cultivar, and ratings of 70% and 96% for ‘McNeal’, a susceptible spring cultivar, respectively. Synthetic × Alsen backcross‐derived lines were produced to initiate combining different sources of FHB resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号