首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
As soybean seed fatty acid content is valued in food, animal feed and some industrial applications, plant breeders continually aim to improve seed fatty acid constituent value. This study analysed 163 original quantitative trait loci (QTLs) related to soybean fatty acid content from databases and references and revealed 43 consensus QTLs. Meta‐analysis using BioMercator ver.2.1 indicated that these were located across 16 linkage groups (LGs) excluding LG D1a, LG C1, LG M and LG H. Moreover, the overview method was used to optimize these QTLs based on statistical analysis. Some valid QTL regions were narrowed down to 0.5 Mb and mapped on the same LGs as the meta‐analysis result. Furthermore, the functions of all genes located in these consensus QTL intervals were predicted and eight candidate genes were identified. KEGG pathway analysis indicated that Glyma.13G127900 and Glyma.18G232000 were involved in the fatty acid synthesis metabolic (pathway ID ko00071, ko00062, ko01040). These results lay a foundation for fine mapping of QTLs related to fatty acid content and marker‐assisted breeding in soybean.  相似文献   

2.
Salt tolerance of rice (Oryza sativa L.) at the seed germination stage is one of the major determinants for the stable stand establishment in salinity soil. One population of recombinant inbred lines (RILs, F2:9), derived from a cross between a japonica rice landrace tolerant to salt stress and a sensitive indica rice variety, was used to determine the germination traits including imbibition rate and germination percentage under control (water) and salt stress (100 mM NaCl) for 10 days at 30 °C. The multiple interval mapping (MIM) were applied to conduct QTL for the traits. The results showed that seed germination was a quantitative trait controlled by several genes, and strongly affected by salt stress. A total of 16 QTLs were detected in this study, and each QTL could explain 4.6–43.7% of the total phenotypic variance. The expression of these QTLs might be developmentally regulated and growth stage-specific. In addition, only one digenic interaction was detected under salt stress, showing small effect on germination percentage with R2 2.7%. Among sixteen QTLs detected in this study, four were major QTLs with R2 > 30%, and some novel alleles of salt tolerance genes in rice. The results demonstrated that the japonica rice Jiucaiqing is a good source of gene(s) for salt tolerance and the major or minor QTLs identified could be used to improve the salt tolerance by marker-assisted selection (MAS) in rice.  相似文献   

3.
Seed vigour plays an important role in agricultural production, and seeds with high sowing quality are necessary for improving agriculture production. In our study, two connected maize recombinant inbred line (RIL) populations derived from Yu82 × Shen137 and Yu537A × Shen137 crosses were evaluated for the mean germination time (MGT) and other related traits under three artificial ageing treatments. We used meta‐analysis to integrate genetic maps and identify quantitative trait loci (QTLs) across the two populations. In total, 74 QTLs and 20 meta‐QTLs (mQTLs) were identified. Four key mQTLs, mQTL2‐2, mQTL5‐4, mQTL6 and mQTL8, which contained initial QTLs with R2 values >10% and included 5–9 initial QTLs, may be hot spots of important QTLs for the associated traits. Twenty‐two key candidate genes associated with four seed vigour‐related traits mapped to 14 mQTLs. In particular, the GRMZM2G163749, GRMZM2G122172/GRMZM2G554885/GRMZM2G122871 and GRMZM2G150367 genes mapped within the important mQTL5–4, mQTL6 and mQTL8 regions, respectively. Fine mapping for the genetic regions of these three mQTLs merits further study and could be utilized for marker‐assisted breeding.  相似文献   

4.
Combining ability of seed vigor and seed yield in soybean   总被引:4,自引:0,他引:4  
Youngkoo Cho  Roy A. Scott 《Euphytica》2000,112(2):145-150
Studies have shown no consensus in relationships between seed yield and vigor in soybean [Glycine max (L.) Merrill]. The lack of information regarding the inheritance of seed vigor prompted this study to determine the types of gene action and combining ability estimates for seed vigor and its related traits. Five high and six low seed vigor soybean genotypes were crossed in a diallel, and selfed to produce 55 F2 progenies, which were examined, along with the parents, for seed vigor, yield, and seed weight. Significant genotype and environment effects were found for seed vigor and yield. General combining ability (GCA) effects for seed vigor and seed yield were significant (p≤ 0.01) and larger than specific combining ability (SCA) effects. Significant GCA and SCA effects were found for seed weight, indicating that both additive and non additive genetic effects were involved in conditioning seed weight. The ratios of mean square, 2GCA / (2GCA+SCA), were 0.96 for seed vigor and 0.93 for seed yield. These ratios indicated that additive gene effects were more important than non additive gene effects for seed vigor and seed yield in these crosses. Mean seed vigor(83.8%), as determined by accelerated aging germination, and mean seed yield (2,155 kg ha-1)in high vigor × high vigor crosses were higher than the high vigor × low vigor and low vigor × low vigor crosses. Mean percent accelerated aging germination rates in F2 populations from diallel crosses were significantly related to mid-parent seed vigor(r2 = 0.52**) and midparent seed size (r2 = 0.31**). These results indicated that levels of seed vigor can be improved through breeding, while maintaining high yields because of the predominance of GCA effects in both seed vigor and seed yield. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
The objective of this study was to identify quantitative trait loci (QTLs) controlling 100‐seed weight in soybean using 188 recombinant inbred lines (RIL) derived from a cross of PI 483463 and ‘Hutcheson’. The parents and RILs were grown for 4 years (2010–2013), and mature, dry seeds were used for 100‐seed weight measurement. The variance components of genotype (a), environment (e) and a × e interactions for seed weight were highly significant. The QTL analysis identified 14 QTLs explaining 3.83–12.23% of the total phenotypic variation. One of the QTLs, qSW17‐2, was found to be the stable QTL, being identified in all the environments with high phenotypic variation as compared to the other QTLs. Of the 14 QTLs, 10 QTLs showed colocalization with the seed weight QTLs identified in earlier reports, and four QTLs, qSW5‐1, qSW14‐1, qSW15‐1 and qSW15‐2, found to be the novel QTLs. A two‐dimensional genome scan revealed 11 pairs of epistatic QTLs across 11 chromosomes. The QTLs identified in this study may be useful in genetic improvement of soybean seed weight.  相似文献   

6.
M. R. Foolad    G. Y. Lin  F. Q. Chen 《Plant Breeding》1999,118(2):167-173
The purpose of this study was to examine whether rate of tomato seed germination under non-stress, cold-stress and salt-stress conditions was under similar genetic control by identifying and comparing quantitative trait loci (QTLs) which affect germination rate under these conditions. A fast-germinating accession (LA722) of the wild tomato species Lycopersicon pimpinellifolium Jusl. and a slow-germinating cultivar (NC84173, maternal and recurrent parent) of tomato (Lycopersicon esculentum Mill.) were hybridized and BC1 and BC1S1 progeny produced. The BC1 population was used to construct a linkage map with 151 restriction fragment length polymorphism (RFLP) markers. The BC1S1 population (consisting of 119 BC1S1 families) was evaluated for germination under non-stress (control), cold-stress and salt-stress conditions and the mean time to 50% germination (T50) in each treatment was determined. Germination analyses indicated the presence of significant (P < 0.01) phenotypic correlations between T50 under control and cold stress (r = 0.71), control and salt stress (r = 0.58) and cold stress and salt stress (r = 0.67). The QTL analysis indicated the presence of genetic relationships between germination under these three conditions: a few QTLs were identified which commonly affected germination under both stress- (cold-, salt- or both) and non-stress conditions, and thus were called stress-nonspecific QTLs. A few QTLs were also identified which affected germination only under cold or salt stress and thus were called stress-specific QTLs. However, the stress-nonspecific QTLs generally exhibited larger individual effects and together accounted for a greater portion of the total phenotypic variation under each condition than the stress-specific QTLs. Whether the effects of stress-nonspecific QTLs were due to pleiotropic effects of the same genes, physical linkage of different genes, or a combination of both could not be determined in this study. The results, however, indicate that the rate of tomato seed germination under different stress and nonstress conditions is partly under the same genetic control.  相似文献   

7.
8.
In arid or semi-arid regions, deep-sowing is an effective treasure to ensure seeds absorbing water from deep soil layer at present. However, the existing maize varieties have poor tolerance to deep-sowing, which is attributed to that few genes are explored and utilised. In this study, 243 IBM Syn4 recombinant inbred lines (RIL) constructed with B73 and Mo17 as parents and 1,339 DNA markers evenly distributed in 10 chromosomes, were used for QTL analysis of deep-sowing tolerance during seed germination. There were significant differences in germination-related traits between the parental lines at 12.5 cm sowing depth. Among them, 7, 7, 5, 10 and 2 QTLs for emergence rate, seedling length, plumule length, mesocotyl length and coleoptile length were detected, respectively. These QTLs explained 2.75% to 10.49% of the phenotypic variance with LOD scores ranging from 2.50 to 8.27. In addition, 12 overlapping QTLs formed five QTL clusters on chromosomes 3, 5, 7 and 9. This study provides a basis for molecular marker-assisted breeding and functional study in deep-sowing germination of maize.  相似文献   

9.
Seed size is a major determinant of grain yield in soybean, however their genetic basis remains largely unknown. In order to delimit map-based position of a major locus qSS3 , we evaluated three mapping populations, including RILs, NILs and a sub-F2 in three environments for six seed size-related traits. For these traits, the kurtosis and skewness ranged between 0.0 and 1.16, while h2b ranged from 0.75 to 0.96, indicating that this RIL population is suitable for QTL analysis. QTL analysis identified 12 loci which consist of 30 significant QTLs with PVE% and LOD values of 6.6%–26.2% and 2.50–5.61, respectively. Among them, qSS3 was a major and stable locus explaining 7.3%–26.2% of the variation in 5 of the 6 traits, with the respective LOD values falling in the range of 2.72–5.61. Additionally, qSS3 effects were confirmed in NILs and delimited to an interval of ~1,126 kb containing 123 annotated genes. Overall, this study may assist efforts aiming to improve soybean seed traits by identifying valuable genetic resources which can be used in future MAS breeding programmes.  相似文献   

10.
The objective of this study was to determine quantitative trait loci (QTL) underlying ten floral and related traits in Aquilegia. The traits assessed were calyx diameter, corolla diameter, petal length, petal blade length, sepal length, sepal width, spur length, spur width, plant height and flower number. These are important traits for ornamental value and reproductive isolation of Aquilegia. QTL analysis of these traits was conducted using single‐marker analysis and composite interval mapping (CIM). We used an F2 population consisting of 148 individuals derived from a cross between the Chinese wild species Aquilegia oxysepala and the cultivar Aquilegia flabellata ‘pumila’. Resulting CIM analysis identified 39 QTLs associated with these traits, which were mapped on seven linkage groups. These QTLs could explain 1.22–53.28% of the phenotypic variance. Thirty‐one QTLs, which explained more than 10% of the phenotypic variation, were classified as major QTLs. Graphical representations of the QTLs on seven linkage groups were made. Our research provides the potential for future molecular assisted selection breeding programmes and the cloning of target genes through fine mapping.  相似文献   

11.
G. Q. Zhang  Y. He  L. Xu  G. X. Tang  W. J. Zhou 《Euphytica》2006,149(1-2):169-177
Summary The results showed that the F1 genotype from the cross (Brassica napus cv. Zheshuang 758 × cv. Z-4115) had good response to embryogenesis, and their embryo yield and rate of plant regeneration reached 69.8 embryo/bud and 46.9%, respectively. Characters from the doubled haploid (DH) populations in B. napus were analyzed and it was showed that the means of each agronomic trait were between their parents, but they were nearer to the paternal in 6 agronomic traits (plant height, branch position, number of pods in the main raceme, length of pod, number of pods/plant and number of seeds/pod). The number of genes controlling each agronomic trait was analyzed based on the DH populations. The results showed that the number of genes controlling number of pods in the main raceme was the highest (15.6), and the least number of genes was involved for stem width (only 7.9). According to estimated coefficients of skewness and kurtosis of the traits tested, gene interaction was found to be absent for stem width, plant height, length of main raceme, number of primary and secondary branches, pod density in the main raceme and seed weight/plant. Complementary interaction was also observed in five agronomic traits (number of pods in the main raceme, length of pod, number of pods/plant, number of seeds/pod and 1000-seed weight). A significantly positive correlation was observed between seed yield/plant and four agronomic traits (length of main raceme, length of pod, number of pods/plant and 1000-seed weight). The experiment also showed that the erucic acid, glucosinolate, oil and protein contents of DH populations were 34.23%, 87.09 μmol/g, 44.09% and 42.67%, respectively. The numbers of genes controlling each quality trait were 7.8, 9.7, 9.4 and 8.7, respectively. Partial correlations between the seed quality traits and the agronomic characters of DH populations were analyzed. In this experiment, the partial correlations among seed quality traits were also analyzed and it was found that the oil content had a negative correlation with the other three seed quality traits.  相似文献   

12.
Seed longevity in rice is a major determinant in seed production and germplasm preservation. In this paper, a recombinant inbred line (RIL) population consisting of 172 lines derived from the cross between Xiang743 and ‘Katy’ was used to map quantitative trait loci (QTLs) for seed longevity (SL) after seed storage for 18 and 30 months under ambient conditions. Two putative QTLs, qSL‐2 and qSL‐8, were detected and located on chromosomes 2 and 8, respectively. qSL‐2 is an allele from Xiang743 allele and increases seed longevity. qSL‐8 was a novel QTL from ‘Katy’ allele and increases seed longevity. qSL‐8 explained 15.29% and 17.35% of the phenotypic variance after seed storage for 18 and 30 months, respectively. Furthermore, qSL‐8 was validated in a secondary population developed by self‐pollination of a residual heterozygous line (RHL) selected from the RIL population, which explained 25.93% of the phenotypic contribution. These results provide an opportunity for map‐based cloning of qSL‐8. Furthermore, qSL‐8 may be a target for improving seed longevity by marker‐assisted selection (MAS) in rice.  相似文献   

13.
研究盐胁迫、干旱胁迫下甘蓝型油菜的发芽率,寻找与发芽率相关联的分子标记,可为油菜逆境胁迫下种子萌发的分子标记辅助育种提供理论依据。本研究以甘蓝型黄籽油菜GH06和甘蓝型黑籽油菜P174为亲本,通过单粒传法(single seed descent, SSD)连续自交9代构建重组自交系群体。采用16 g L–1的NaCl溶液进行盐胁迫,20% (W/W)的PEG-6000溶液模拟干旱胁迫,处理重组自交系种子并统计其发芽率。实验室构建的SNP遗传图谱,包含2795个SNP多态性标记位点,总长1832.9 cM,相邻标记间平均距离为0.66 cM,利用该图谱并采用复合区间作图法(CIM)分析两种胁迫条件下第3天、第4天及累计4 d后发芽率的QTL。共检测到19个QTL,分布于A01、A03、A06、A07、A09和C06染色体上。其中,11个盐胁迫相关的QTL可解释的变异为4.9%~10.9%,8个干旱胁迫相关的QTL可解释的变异为3.8%~6.9%;并且在A03和A09染色体上,盐胁迫和干旱胁迫下检测到的QTL有相近区段。研究结果表明油菜种子发芽率属于典型的数量性状,受环境影响较大;且随着胁迫时间的延长,油菜种子启动了不同的基因来响应环境胁迫。  相似文献   

14.
大豆叶片性状QTL的定位及Meta分析   总被引:3,自引:0,他引:3  
利用Charleston×东农594重组自交系构建SSR遗传图谱,采用WinQTLCartographer Ver. 2.5软件的CIM和MIM分析方法对2006—2010年(F2:14~F2:18)连续5年的大豆叶长、叶宽以及叶柄长数据进行QTL定位,检测到8个与叶长有关的QTL,位于染色体Gm01、02、05、11和18上;9个与叶宽有关的QTL,位于染色体Gm01、03、05、06、11、12和16上;8个与有关叶柄长的QTL,位于染色体Gm01、03、05、06、11、17和18上。2年以上均检测到的叶长QTL为qLL5a、qLL5b、qLL1a和qLL18;叶宽QTL为qLW5a、qLW11a、qLW11b和qLW12;叶柄长QTL为qLSL11b。另外,利用BioMercator2.1的映射功能将国内外常用的大豆图谱上的叶长、叶宽QTL通过公共标记映射整合到大豆公共遗传连锁图谱Soymap2上,将搜集到的35个叶长QTL、37个叶宽QTL和本研究得到的QTL整合分析,最终得到5个大豆叶长的“通用”QTL,位于Gm09、18和19,其置信区间最小可达5.66 cM;4个大豆叶宽的“通用”QTL,位于Gm07、Gm18和Gm19,其置信区间最小可达5.67 cM,为今后对大豆叶片性状QTL精细定位, 提供了有利科学信息。  相似文献   

15.
QTL analysis of seed storability in rice   总被引:7,自引:0,他引:7  
D. L. Zeng    L. B. Guo    Y. B. Xu    K. Yasukumi    L. H. Zhu    Q. Qian 《Plant Breeding》2006,125(1):57-60
A double haploid population, which consists of 127 lines derived from anther culture of a typical indica and japonica hybrid ‘ZYQ8’/‘JX17’, was used in this study. Seed storability was investigated by using the storage property measured by the difference of seed germination rates before and after treatment of the rice seeds under 40°C and 95% relative humidity for 10 days in a phytotron. Three QTLs related to rice seed storability were detected on chromosomes 9, 11 and 12, with the LOD scores 2.76, 4.83 and 2.54, respectively, together explaining 35.4% of the genetic variation. The ‘JX17’ allele at qLS‐9 and the ‘ZYQ8’ alleles at qLS‐11 and qLS‐12 could enhance the rice seed storability. The effects of the ‘ZYQ8’ alleles of qLS‐11 and qLS‐12 were also verified using chromosome segment substitution lines.  相似文献   

16.
Traits related to the number of pods and seeds are important yield factors on soybean. The relationships between phenotype and quantitative trait loci (QTLs) of these traits may reveal the mechanisms underlying productivity. Our study objectives were to analyse phenotypic correlations, detect stable QTLs and identify candidate genes useful for marker‐assisted selection. Phenotypic analyses revealed that NThSP (number of three‐seeded pods) was positively correlated with NPPP (number of pods per plant) and SNPP (number of seeds per plant). Seventy‐five QTLs were identified based on the mean phenotypic data for at least 2 years. We detected two to 15 and one to three significant QTLs identified at the same location, respectively. Six consensus QTLs associated with at least two NPS‐related (number of pods and seeds related) traits were identified. Two of these were verified in another population. The QTLs for NPPP, SNPP and NThSP formed a consensus QTL cluster on GM02. Another 27 QTLs also formed clusters in five regions. Fifteen candidate genes were mined and discussed. The results will provide more information to soybean breeding.  相似文献   

17.
The purpose of this study was to investigate variation of and relationships among seed colour, seed weight and seed oil content in cultivated flax (Linum usitatissimum L. ssp. usitatissimum). Seed from 2934 flax genebank accessions recently grown at Saskatoon, SK, Canada, originating from 72 countries was used to describe the variation of the seed characters. The dominant seed colour of the accessions was medium brown (2730 accessions, 93.0%), followed by yellow (126 accessions, 4.3%). Based on single observations for all accessions, the overall mean and standard deviation was 5.95 ± 1.22 mg/seed for seed weight and 38.3 ± 1.74% for oil concentration. Within three infraspecific groups of flax, seed weight, oil concentration and oil amount per seed increased in the following order: fibre flax (convar. elongatum), intermediate flax (convar. usitatissimum), large‐seeded flax (convar. mediterraneum). The world collection exceeded the range of variation of seed weight and oil concentration found in 52 North American cultivars. There was a weak, positive association of higher oil concentration with higher seed weight (r2 = 0.32; P < 0.001). Yellow‐seeded flax had a higher seed weight (6.31 vs. 5.92 mg/seed) and oil concentration (39.4% vs. 38.3%) than brown‐seeded flax. There was a tendency for yellow seed colour to be associated with higher oil concentration in all seed weight classes. The results suggested that indirect selection for increased seed oil concentration in flax is possible by selection for higher seed weight and yellow seed colour.  相似文献   

18.
K. Sasaki    Y. Fukuta  T. Sato 《Plant Breeding》2005,124(4):361-366
Seed longevity varies considerably in cultivated rice (Oryza sativa L.), but the underlying genetic mechanism of longevity has not been well elucidated. Quantitative trait loci (QTL) that control seed longevity after various periods of seed storage were sought using recombinant inbred lines derived from a combination involving ‘Milyang23’(Indica‐type) and ‘Akihikari’ (Japonica‐type). In all, 12 QTLs for germination and normal seedling growth were detected as indices of seed longevity on chromosome 7 (one region) and chromosome 9 (two regions) in treated seeds that had been stored under laboratory conditions for 1, 2 or 3 years.‘Milyang23’ alleles of all QTLs promoted germination and normal seedling growth after all durations of storage. These QTL regions were detected repeatedly in more than one seed condition. Therefore, we infer that these regions control seed longevity.  相似文献   

19.
The meal value of Soybean for monogastric animals is determined partly by sucrose, raffinose and stachyose. Of these, sucrose is desirable, while raffinose and stachyose are indigestible, causing flatulence and abdominal discomfort. The objective of this study was to identify quantitative trait loci (QTL) controlling seed sucrose, raffinose, and stachyose in a set of 140 SoyNAM (Nested Association Mapping) recombinant inbred lines (RILs), developed from the cross between lines IA3023 and LD02‐4485. A total of 3,038 SNP markers from the Illumina SoyNAM BeadChip SNP were used to map the QTLs for sucrose and the RFOs, raffinose, and stachyose. Significant genotypic differences (p < .001) among RILs were observed for sucrose, raffinose and stachyose contents across years. A 3038 Illumina SoyNAM BeadChip SNPs identified three QTLs for sucrose, one on chromosome 1, explaining 10% variance and two on chromosome 3 each explaining 22%. Raffinose QTL was detected on chromosome 6, explaining 6% variance. The mapped QTLs were novel and spanned regions harbouring candidate genes with roles in plant growth including seed development.  相似文献   

20.
Summary Seed size as determined by seed weight, is an important trait for trade and component of yield and adaptation in chickpea (Cicer arietinum L.). Inheritance of seed size in chickpea was studied in a cross between ICC11255, a normal seed size parent (average 120 mg seed−1) and ICC 5002, a small seed size parent (average 50 mg seed−1). Seed weight observations on individual plants of parents, F1, F2, and backcross generations, along with reciprocal cross generations revealed that the normal seed size was dominant over small seed size. No maternal effect was detected for seed size. The numbers of individuals with normal, small and medium (average 150 mg seed−1) seed sizes in F 2 population were 1237, 323 and 111 fitting well to the expected ratio of 12:3:1 (χ2 = 0.923, P = 0.630). The segregation data of backcross generations also indicated that seed size in chickpea was controlled by two genes with dominance epistasis. We designate the genotype of ICC 11255 as Sd 1 Sd 1 sd 2 sd 2, and ICC 5002 as sd 1 sd 1Sd2 Sd 2 wherein Sd 1 is epistatic to Sd 2 and sd 2 alleles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号