首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ADELIZI  ROSATI  WARNER  WU  MUENCH  WHITE  & BROWN 《Aquaculture Nutrition》1998,4(4):255-262
Eight experimental diets were formulated for rainbow trout using agricultural byproducts as major ingredients. Each experimental diet contained varying amounts of corn grain, corn gluten meal, corn gluten feed and one of the following: 200 g kg?1 peanut meal, 200 or 400 g kg?1 soybean meal (SBM), 390 g kg?1 low-allergen soy flour, 310 g kg?1 soy protein concentrate, 300 g kg?1 low-allergen soy protein concentrate or 200 g kg?1 SBM + 110 g kg?1 blood meal. One diet contained 200 g kg?1 SBM and canola oil as the main lipid source. The remaining diets contained 95 g kg?1 menhaden oil. Fish fed a commercial trout diet exhibited significantly greater weight gain (322%), and a lower feed conversion ratio (0.89) but significantly lower protein efficiency ratio (2.18) than fish fed the experimental diets. Within the experimental diets, fish fed the 400 g kg?1 soy flour diet and the 400 g kg?1 soybean meal diet had significantly higher weight gains (276% and 268%) and protein efficiency ratios (2.58 and 2.52), and lower feed conversion ratios (1.02 and 1.03) than fish fed other experimental diets. Fillet flavour varied between treatments. Most notable was the lower fishy flavour and higher chicken flavour of fish fed the diet that contained canola oil rather than menhaden oil. Microscopic evaluation of the liver and five sections of the gastrointestinal tract failed to demonstrate any differences between treatment groups. The ingredient costs of several experimental diets were lower than the estimated cost of a standard commercial trout diet. However, the superior feed conversion ratios of fish fed the control diet resulted in lower feed costs per unit of fish produced.  相似文献   

2.
This study aimed to assess the effect of soybean meal (SBM) and cottonseed meal (CSM), as partial replacement of dietary fish meal on growth, feed efficiency (FE) and body mineral composition of juvenile vundu (Heterobranchus longifilis). Five iso‐nitrogenous (390 g kg?1 crude protein) and iso‐caloric (18 kJ g?1, gross energy) diets (Control, SBM30, SBM60, CSM30 and CSM60) were fed to triplicate groups of 40 fish (initial mean weight: 12 g) in each tank (0.9 m3). Over a 7‐week feeding period, significant differences (P < 0.05) were observed on growth, FE and body mineral composition between treatments. Fish‐fed CSM‐based diets and 600 g kg?1 SBM‐based diet had reduced growth and reduced feed and protein efficiencies when compared with those fed diet containing 300 g kg?1 SBM or the control diet. Data from body mineral composition in response to dietary treatment could be divided into two groups. The first group refers to elements such as Mg and Fe for which carcass and fillet composition did not show significant differences with dietary level of SBM or CSM. Ca, P, K, Zn and Mn composed the second group of minerals whose concentrations in fish body were significantly reduced in fish‐fed SBM60. In conclusion, the results of this study indicate that although solvent‐extracted SBM and CSM are often reported safe for fish, they can only partially replace fish meal as a source of protein in compound feed for vundu at a limited amount between 300 and 600 g kg?1 for SBM and <300 g kg?1 for CSM.  相似文献   

3.
Three experiments were conducted that were designed to evaluate our ability to predict essential amino acid (EAA) needs of hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. In the first experiment, six diets containing various amino acid profiles were fed to triplicate groups of fish initially weighing 7.7 g per fish. At the end of the 8‐week experiment, no significant differences were detected in growth rates or feed efficiencies (FE) between fish fed a practical diet containing 510 g kg?1 herring fish meal (FM) and fish fed a purified diet containing the amino acid profile of herring fish meal (CAA‐FM). Growth responses of fish fed purified diets containing 100 (HSB), 110 (HSB110), 120 (HSB120) or 140 g 100 g?1 (HSB140) of the amino acid profile of hybrid striped bass whole‐bodies were significantly lower than those of fish fed diet FM. In the second experiment, triplicate groups of fish (5.6 g per fish) were fed diets containing various energy : protein (E : P) ratios (34.8, 41.2, 47.5 and 53.9 kJ g?1 protein) and one of two amino acid profiles (CAA‐FM and HSB120) in a 4 × 2 factorial design. Carbohydrate concentration was varied to achieve the desired energy concentrations. At the end of the 8‐week experiment, weight gain and FE were significantly higher in fish fed diets formulated to simulate the amino acid profile of herring fish meal (CAA‐FM) compared with fish fed diets formulated to contain 120 g 100 g?1 of the amino acid profile of hybrid striped bass whole‐bodies (HSB120). Weight gain, FE and survival data indicated the optimum dietary E : P was 41.2 kJ g?1 protein. Dietary treatments in the final experiment included three amino acid profiles and four levels of lipid in a 3 × 4 incomplete factorial design. Dietary amino acid treatments included the amino acid profile of herring fish meal (CAA‐FM) or 120 g 100 g?1 of the predicted EAA requirement profile for hybrid striped bass (HSB120). The amino acid profile of the remaining dietary treatment (PRED+) was similar to that of the HSB120 treatment, but contained additional threonine, isoleucine and tryptophan. Diets CAA‐FM and HSB120 contained either 90, 130, 170 or 210 g kg?1 lipid, whereas diet PRED+ contained 130 g kg?1 lipid. Dietary treatments were fed for 10 weeks to triplicate groups of fish initially weighing 81.0 g per fish. Weight gain and FE were not significantly affected by dietary amino acid profile. Feed efficiency was significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with fish fed diets containing 90–170 g kg?1 lipid. Intraperitoneal fat (IPF) ratio and hepatosomatic index (HSI) values generally increased as dietary lipid concentrations increased. Total liver lipid concentrations were significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with those of fish fed 90–130 g kg?1 lipid. Results of this study indicate an appropriate dietary amino acid profile can be predicted for hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. Further, the optimum E : P appears to be 40 kJ g?1 protein.  相似文献   

4.
A net pen experiment was carried out to examine the effect of dietary protein level on the potential of land animal protein ingredients as fish meal substitutes in practical diets for cuneate drum Nibea miichthioides. Two isocaloric basal (control) diets were formulated to contain 400 g kg?1 herring meal but two different digestible protein (DP) levels (400 versus 350 g kg?1). At each DP level, dietary fish meal level was reduced from 400 to 280, 200, 80 and 0 g kg?1 by incorporating a blend that comprised of 600 g kg?1 poultry by‐products meal (PBM), 200 g kg?1 meat and bone meal (MBM), 100 g kg?1 feather meal (FEM) and 100 g kg?1 blood meal (BLM). Cuneate drum fingerling (initial weight 42 g fish?1) were fed the test diets for 8 weeks. Fish fed the test diets exhibited similar feed intake. Final body weight, feed conversion ratio and nitrogen retention efficiency was not significantly different between fish fed the basal diets containing 350 and 400 g kg?1 DP. Weight gain decreased linearly with the reduction of dietary fish meal level at the 350 g kg?1 DP level, but did not decrease with the reduction of dietary fish meal level at the 400 g kg?1 DP level. Results of the present study suggest that fish meal in cuneate drum diets can be completely replaced with the blend of PBM, MBM, FEM and BLM at the 400 g kg?1 DP level, based on a mechanism that excessive dietary protein compensate lower contents of bio‐available essential amino acid in the land animal protein ingredients relative to fish meal.  相似文献   

5.
Economical, nutritious diets for hybrid striped bass (HSTB) are required for the continued expansion and sustainability of this industry. Turkey meal (TM) is a by‐product of the US turkey industry and is a potentially‐valuable local, alternative protein source for use in aquaculture diets because of its excellent nutritional composition and quality. TM may substitute for more expensive fish meal (FM)‐based diets; however, there are no published data with regard to using this ingredient in sunshine bass diets. Therefore, a 16‐week feeding trial was conducted with juvenile (36 g) sunshine bass (Morone chrysops × Morone saxatilis) to evaluate growth, feed conversion and body composition when fed diets with decreasing levels of FM (300, 200, 100 and 0 g kg?1) and increasing levels of turkey meal (0, 97, 175 and 264 g kg?1). Four practical diets were formulated to contain 400 g kg?1 protein and similar energy levels. Twenty fish were stocked into each of the 12, 1200‐L circular tanks and were fed twice daily ad libitum. At the conclusion of the feeding trial, there were no significant (P > 0.05) differences in final mean weight, percentage weight gain, specific growth rate and feed conversion ratio among treatments, which averaged 363.7 g, 904.3%, 2.02% day?1 and 1.73, respectively. Percentage survival of fish fed diet 4 (0 g kg?1 FM and 264 g kg?1 TM) was significantly (P > 0.05) lower (survival = 88.3%) than fish fed diet 3 (100 g kg?1 FM and 175 g kg?1 TM; survival = 95%), but not different from fish fed diet 1 (survival = 92.5%) and fish fed diet 2 (survival = 93.3%). Fillet weight and amount of abdominal fat were not significantly different among all treatments and averaged 258 and 58 g kg?1, respectively. Fish fed diet 1 (300 g kg?1 FM, 0 g kg?1 TM) and diet 2 (200 g kg?1 FM and 970 g kg?1 TM) had a significantly (P < 0.05) lower hepatosomatic index (2.83 and 3.01, respectively) than fish fed diet 4 (3.33), but not different (P > 0.05) compared to fish fed diet 3 (3.14). Lipid in the fillet of fish fed diet 2 (197 g kg?1) was significantly (P < 0.05) higher than fish fed all other diets; and the percentage lipid in the fillet of fish fed diet 1 (126 g kg?1) was significantly lower than fish fed diets 2 and 4, but not different (P >0.05) compared to fish fed diet 3. Fillet moisture, protein and ash were similar among fish fed all diets and averaged 748, 798 g kg?1 and 51.0 g kg?1 (dry‐matter basis), respectively. The amino acid composition of fillets was similar among all treatments with a few slight significant differences. Results from the present study indicate that tank‐grown sunshine bass can be fed a diet containing 264 g kg?1 TM with 0 g kg?1 FM, compared to diets containing up to 300 g kg?1 FM, without adverse effects on weight gain, growth rate, feed conversion and body composition. Further research should be conducted using lower‐protein diets to determine minimum protein level for tank‐grown sunshine bass.  相似文献   

6.
Juvenile cobias, Rachycentron canadum, were fed extruded diets containing toasted defatted soybean meal (SBM) or untoasted defatted SBM [white flakes (WF)] to study growth and feed conversion, and to study if SBM induces morphological changes in the gastrointestinal (GI) tract. Three diets were produced: a fish meal‐based control diet (FM diet) with 558 g FM kg?1, and two diets with 335 g FM and either 285 g SBM kg?1 (SBM diet) or 285 g WF kg?1 (WF diet). The diets were extruded at approximately 120°C with 280 g kg?1 moisture. Triplicate groups of cobias (mean weight: 25.9 g) were fed the diets during 6 weeks. Feed intake of the FM and SBM diets were not significantly different, whereas the cumulative feed intake of cobias fed the WF diet was lower (P < 0.05) than that of cobias fed the FM and SBM diets after the first 21‐day period. Specific growth rate and feed conversion ratio were not significantly different between cobias fed the FM and SBM diets, but significantly poorer results were obtained in cobias fed the WF diet. No morphological differences in the GI tract could be attributed to the diets, and cobias fed soy did not develop enteritis in the distal intestine.  相似文献   

7.
The performance of silver perch fed a commercially available diet based on meat meal (38%), grain legumes (18%), oilseeds (10%), wheat millrun (20%), fishmeal (5%) and fish oil (3%) was compared with experimental diets based on alternative protein sources in two experiments. In Experiment 1, two experimental diets contained similar contents of fishmeal and fish oil as the commercially available reference diet, but soybean (25%) and wheat millrun (>31%) were used to reduce animal protein meals by approximately 50%. The digestible protein and digestible energy of the two experimental diets was either slightly lower (31.5% and 12.8 MJ kg?1) or slightly higher (34.9% and 14.3 MJ kg?1) than the reference diet (32.1% and 13.2 MJ kg?1). In Experiment 2, the two experimental diets contained no fishmeal but included higher amounts of rendered animal meals (41–48%). One of the diets had similar digestible protein to the reference diet (32%) while the other had only 25% digestible protein. Silver perch (38 g for Experiment 1 and 59 g for Experiment 2) were stocked into each of nine 0.1 ha earthen ponds with fish in three ponds fed each diet for 191 days (Experiment 1) or 187 days (Experiment 2). Survival was >94% in all ponds in both experiments. In Experiment 1, growth rates and feed conversion ratios (FCRs) ranged from 2.1 to 2.4 g fish?1 day?1 and 1.7 to 1.9 respectively. Growth rates were significantly (P<0.05) lower for fish fed the experimental diet with the lowest digestible energy content. Growth rates for fish fed the other experimental diet and the reference diet were similar (P>0.05). In Experiment 2, growth rates and FCRs ranged from 2.3 to 2.4 g fish?1 day?1 and 1.6 to 1.7. There were no significant differences in fish performance indices for any of the three diets although experimental power was low (power=0.31). A blind consumer sensory evaluation (taste panel) of fish fed the three diets in Experiment 2 rated fish as ‘highly acceptable’. The diet with the lowest digestible protein content produced the best fish in terms of ‘smell liking’, ‘flavour liking’, ‘muddy flavour strength’ and ‘fresh flavour strength’. These results confirm that soybean meal and/or rendered animal protein ingredients including meat meal and poultry offal meal, and wheat can form the basis for high‐performance, low‐cost diets for intensive pond culture of silver perch.  相似文献   

8.
This study was undertaken to determine the replacement value of Cassia fistula seed meal (CFM) for soybean meal (SBM) in practical diets of Oreochromis niloticus fingerlings. Five practical diets (350 g kg?1 crude protein) containing 0 g kg?1 (control), 170 g kg?1 (diet II), 340 g kg?1 (diet III), 509 g kg?1 (diet IV) and 670 g kg?1 (diet V) substitution levels of CFM for SBM were formulated and fed to triplicate groups of O. niloticus fingerlings (mean initial weight of 10.22 ± 0.03 g) for 70 days. Fish mortality increased linearly with increase in inclusion levels of CFM in the diet. Growth and diet utilization efficiency were depressed in fish fed diets containing CFM at varying inclusion levels. Feed conversion ratio, specific growth rate and protein efficiency ratio of O. niloticus fed on diet containing 170 g kg?1 substitution level of CFM were similar (P > 0.05) to the control diet. Digestibility of the different diets decreased with increase in inclusion levels of CFM. Fish fed diet containing 670 g kg?1 CFM had significantly lower carcass protein. However, no significant differences were observed in carcass protein and lipid contents between fish fed the control diets and diet containing 170 g kg?1 CFM. The most efficient diet in terms of cost per unit weight gain of fish was obtained in 170 g kg?1 CFM dietary substitution.  相似文献   

9.
This study was performed to evaluate the effect of replacing fish meal with local by‐products on Clarias gariepinus growth performance, feed utilization and body composition. A control diet contained 50% of fish meal. In four other diets, fish meal was partially replaced by vegetable and animal protein blend composed of sunflower oil cake, soybean oil cake, groundnut oil cake, bean meal, chicken viscera and blood meal. The study was conducted in a recirculating water system at a mean temperature of 23.6°C. The five test diets were compared with a commercial diet developed for African catfish. All diets were balanced to be equal in gross energy (19 kJ g−1) and crude protein (40%). The experimental groups were fed in triplicate for 8 weeks, increasing fish weight from about 6.2 g at start to 52.3 g in the end. Best specific growth rate (SGR=3.4), feed efficiency (FE=1.3) and protein efficiency ratio (PER=3) were obtained with the control diet (diet 50% fish meal), although there were no significant differences between the group of fish fed the control diet and those fed diets based on groundnut oil cake or bean meal, whereas SGR (2.17), FE (0.85) and PER (1.95) were significantly (P<0.01) lower in fish fed diet containing sunflower oil cake. No significant differences (P<0.05) were found in fish fed commercial diet and diets containing bean meal or groundnut oil cake. Groundnut oil cake or bean meal can thus replace at least 50% of fish meal in the diet of Clarias fingerlings without amino acid supplementation. Because of its economic importance and its potential in animal nutrition sunflower oil cake is still an interesting feed ingredient, but its efficiency should be improved by various processing techniques. African catfish can utilize efficiently a diet with low percentage of animal protein without growth reduction.  相似文献   

10.
An experiment with 0.2‐kg Atlantic salmon, Salmo salar in saltwater was conducted to determine if the fish could grow normally, and maintain normal nitrogen (N) and mineral balance when fed a diet with the majority of the protein (75%) derived from soy‐protein concentrate (SPC). The two diets contained 50% SPC and 15% fish meal (FM) or 60% FM as the sources of protein. No calcium phosphate was added to the diets in order to assess the availability of P from the ingredients. A second aim was to investigate if whole‐body concentrations of essential elements and growth were related in individual salmon. Growth (SGR=0.88–0.89) was similar in salmon fed the two diets, and the fish nearly doubled their body weights during the 84 days of feeding. Feed conversion was more efficient for the FM diet (0.81 kg intake kg?1 gain) than for the SPC diet (0.89 kg kg?1). The intake of N was similar, faecal loss of N was lower, while the metabolic N excretion was greater in the fish fed the FM than the SPC diet. This resulted in a total excretion of 35.4 g N kg?1 gain for the salmon fed the FM diet and 35.5 g N for the fish fed the SPC diet. Both the intake, faecal and metabolic excretion of P were higher in the fish fed the FM diet than the SPC diet, resulting in a total excretion of 10.5 g P kg?1 gain for the FM diet and 7.2 g P for the SPC diet. Whole‐body concentrations of Ca, Mg, P and Zn were lower in the fish fed the SPC diet, while the Ca–P ratio was decreased, both when compared with the fish at the start of the experiment, and the fish fed the FM diet. The differences in elemental composition were ascribed to a combination of reduced availability of elements due to phytic acid and lower concentration of elements in the SPC than in the FM. No reduction in growth of individual fish, which could be ascribed to reduced availability of essential elements, was seen.  相似文献   

11.
A comparative slaughter, growth assay was carried out using juvenile silver perch to evaluate different inclusion contents of peanut meal, canola meal, meat meal and dehulled field peas. Each ingredient was combined with a nutritionally balanced basal diet composed mainly of fishmeal (27%), soya bean meal (21%), wheat (28%) and sorghum (11%) such that between 15% and 75% of the basal diet was wholly replaced by the test ingredient. In addition, the basal diet was replaced with 15%, 30% or 45% of an inert filler (diatomaceous earth) in order to compare diets containing test ingredients and the inert filler. Fish were fed respective test diets twice a day for 56 days under a slightly restricted feeding regime (90% of apparent satiation) to negate any palatability problems. Weight gain of silver perch decreased steadily as the basal diet was systematically replaced with diatomaceous earth, confirming the limiting contribution to weight gain from the basal diet under a restricted feeding regime. Silver perch fed diets containing a mixture of the basal diet and either peanut meal, meat meal, canola meal or up to 60% field peas gained more weight than fish fed diets containing similar contents of the inert filler, indicating silver perch were able to utilize these ingredients to support growth. Regression analysis was applied to investigate protein and energy retention and models were fitted with 95% confidence and prediction intervals. Inspection of these relationships indicated various outliers which greatly affected the fitted models. We postulate that these outliers represent test diets which contain ingredients that are poorly utilized, or poorly utilized at particular inclusion contents. Removal of these outliers greatly improved the fit of each model. Using this approach, the predicted digestible protein (DP) content that gave maximum protein deposition in silver perch was 41.1%. The DP requirement for maintenance was 0.61 g DP kg BW?0.6 day?1 and the efficiency of DP for growth above maintenance was constant (0.45) after diets containing 45% or more of peanut meal and 75% of field peas were removed from the fitted model. The digestible energy (DE) requirement for maintenance was 36.79 kJ kg BW?0.6 day?1 and the efficiency of digestible energy for growth above maintenance was constant (0.68) after diets containing 75% of field peas and 75% of canola were removed from the fitted model. Adherence of other diets containing test ingredients to the slope of each regression suggests that silver perch are capable of utilizing any of the protein sources tested at all but the inclusion contents described above. Confirmation of this approach under different feeding regimes is required.  相似文献   

12.
A 50‐day feeding trial was conducted to examine the effects of dietary protein and lipid levels on growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica. Fish (initial body weight 44.6 g ind−1) were fed ten test diets which were formulated at 5 crude protein levels (360, 400, 440, 480 and 520 g kg−1) and 2 crude lipid levels (90 and 150 g kg−1). In addition, a raw fish diet (fillet of small yellow croaker) served as the reference. The weight gain (WG) increased, whereas the feed intake (FI) and feed conversion ratio (FCR) decreased, with increasing dietary protein level from 360 to 520 g kg−1. At the same dietary protein level, no significant difference was found in the WG between fish fed the diets containing 90 or 150 g kg−1 crude lipid. Fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid exhibited higher WG, nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) but lower nitrogen wastes output (TNW). At the end of the feeding trial, the hepatosomatic index (HSI) and viscerosomatic index (VSI) decreased, whereas the body protein content increased, with increase in dietary protein level. The body lipid content was higher in fish fed at the 150 g kg−1 lipid level than in fish fed at the 90 g kg−1 lipid level. No significant difference was found in the maximum sustained swimming speed (MSS) between fish fed at different dietary protein and lipid levels. The WG, NRE, ERE and condition factor (CF) were higher, whereas the FI, FCR, HSI, VSI and TNW were lower, in fish fed the raw fish diet than in fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. No significant difference was detected in the MSS between fish fed the raw fish diet and diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. The results of this study suggest that the suitable dietary crude protein and crude lipid levels are 480 g kg−1 and 90 g kg−1 for giant croaker reared in net pens.  相似文献   

13.
《Aquaculture Research》2017,48(4):1759-1766
A shrimp protein hydrolysate (SPH) containing 894.2 g kg−1 crude protein (CP) and 54.3 g kg−1 total lipids was tested as a partial replacement for fish meal (FM) in diets of juvenile cobia. The effects of increasing dietary levels of SPH on the survival, weight gain (WG), specific growth rate (SGR), feed conversion ratio (FCR), nitrogen retention efficiency (NRE) and daily feed intake (DFI) of cobia with initial body weight of 11.9 g were evaluated. Four isoproteic (from 431.1 to 439.7 g kg−1) and isoenergetic (20 825–21 347 MJ kg−1) diets were formulated to contain 0 (Control), 120, 240 or 360 g kg−1 of dietary CP derived from SPH. Survival, WG, SGR, FCR, NRE and DFI ranged from 90 to 100%, 40.2–56.5 g, 4.7–6.1% day−1, 1.04–1.54, 26.3–44.0% and 4.7–6.0% fish−1 day−1 respectively. Survival and DFI were not affected by the dietary treatments. On the other hand, fish fed the control diet and the one containing 120 g kg−1 SPH had higher WG, SGR and FCR. Nitrogen retention efficiency was significantly higher for fish fed diets 0 and 120. It is concluded that up to 120 g kg−1 of SPH in cobia diets can be used with no significant effects on feed utilization and fish performance.  相似文献   

14.
Juvenile gilthead sea bream (initial body weight ca. 100 g) were reared in an indoor flow through marine water system for 1 year. Fish were fed two isoenergetic [19.2 kJ g−1 dry matter (DM)] and isoproteic (426 g kg−1 DM) diets either based on fish meal (diet FM) or on a mixture of plant protein sources (diet PP), replacing 75% of fish meal protein. The growth trial was conducted in duplicate, two tanks for each dietary treatment. Growth performance and feed utilization were registered. Fillet quality parameters were evaluated and sensory analyses on cooked fillet were performed. Both groups had similar weight gain and specific growth rates. Feed intake was higher in sea bream fed diet FM (0.48 versus 0.44), while feed efficiency and protein efficiency ratio were significantly higher in sea bream fed PP (0.83 versus 0.77 and 2.0 versus 1.76, respectively). Sea bream fed diet FM had a lower hepatosomatic index (0.80 versus 0.87%), and a higher fillet yield (45.9 versus 44.9%). The fillet from sea bream fed diet FM had higher moisture (696 versus 682 g kg−1), lower lipid levels (91 versus 100 g kg−1) with higher levels of n‐3 polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA), while the PP fed sea bream presented a higher level of PUFA n‐6. There were minor differences in muscle free amino acid levels between the two diet groups. As regards sensory evaluation of cooked fillet, the judges were unable to discriminate the two dietary groups of fish. Summarizing, the results demonstrate the possibility to use diets containing high levels (750 g kg−1) of plant ingredients in gilthead sea bream without affecting growth performance and with minor effects on quality traits of commercial size sea bream.  相似文献   

15.
As part of a project to develop least‐cost diets with low levels of fish meal, silver perch (Bidyanus bidyanus Mitchell) fingerlings (mean weight, 11.8 g) were stocked at a density of 7500 fish ha−1 into 0.1‐ha earthen ponds and fed one of two diets containing 33% digestible protein, 13 MJ kg−1 digestible energy, similar nutrient specifications, but with different levels of fish meal and plant proteins. The reference diet SP35 had 27% fish meal, 28% wheat, 20% soybean and 11% sorghum, while the diet silver perch least‐cost (SPLC) had 10% fish meal, 20% peanut meal, 19% wheat, 17% lupins, 16% canola, 8% soybean and 5% blood meal; there were three replicate ponds for each diet. Fish were fed a restricted ration up to 5% body weight day−1 and cultured for 10 months. Survival ranged from 85.9% to 94.3% and was not affected by diet. The mean weight (550 g), specific growth rate (SGR; 1.28% day−1), absolute growth rate (AGR; 1.9 g fish−1 day−1) and production rate (4.5 tonnes ha−1 year−1) were significantly higher (P<0.05) and feed conversion ratio (FCR=1.8) was significantly lower for fish fed SP35 compared with fish fed SPLC (413 g, 1.18% day−1, 1.4 g fish−1 day−1, 3.3 tonnes ha−1 year−1, 2.4). From October (spring) to March (autumn), turbidity was significantly lower (P<0.05) in SPLC ponds than in SP35 ponds, and fish were observed avoiding or ingesting and then expelling SPLC pellets. In February and March, infestations of the ectoparasitic copepod Ergasilus sp. were found on silver perch fed SPLC, and there was 5% post‐harvest mortality of these fish. The high inclusion levels of plant proteins, particularly peanut meal and canola in SPLC, may have provided anti‐nutritional factors and/or reduced the palatability and intake of the diet, adversely affecting the performance and health of silver perch, and water quality in the ponds. Our study demonstrates the value of evaluating new aquaculture diets under practical conditions over a complete growing period.  相似文献   

16.
Triplicate groups of pike perch (Sander lucioperca) juveniles were fed six experimental diets containing protein levels varying from 263 to 619 g kg−1 dry matter (d.m.) for 56 days. Dietary protein was supplied by graded amounts of fish meal (with 720 g kg−1 crude protein). Crude lipid and gross energy content of 101–107 g kg−1 and 19.9–20.6 MJ kg−1 remained constant between experimental diets. Pike perch with an initial body weight of 1.05 ± 0.05 g were randomly distributed in 18 tanks of two similar recirculation systems and fed on gradually decreasing feeding rates of 10 to 6% of their body weight per day. Growth performance and feed conversion increased with dietary protein level from 263 to 549 g kg−1 d.m. but did not decline at highest dietary protein level. Protein efficiency ratio declined linearly with increasing dietary protein. Survival ranged between 89.7 and 93.9% and was not affected by dietary composition. Dry matter and crude lipid content of pike perch fingerlings decreased with increasing dietary protein supply and significantly the lowest dry matter and crude lipid levels were observed in fish fed diets containing 619 g kg−1 of crude protein. The dietary protein requirement for pike perch fingerlings calculated by broken‐line and second‐order polynomial regression ranged between 529 and 577 g kg−1, respectively.  相似文献   

17.
Juvenile barramundi (~220–280 g start weight) were fed extruded dry‐pelleted diets containing varying amounts of fish meal and meat meal in three experiments (E). E1 and E2 were each 66‐day farm studies utilizing 16 floating cages (400 fish per cage) in an aerated freshwater pond. E3 examined the same diets as fed in E2 but under controlled water temperature (28 ± 0.7 °C) and photoperiod (12:12) laboratory conditions in a 42‐day study involving 24 aquaria (eight fish per aquarium). In all studies, the same 430 g kg?1 crude protein (CP), 15 kJ g?1 digestible energy (DE) control (Ctl) diet (containing 35% Chilean anchovy fish meal) was compared with two high‐inclusion meat meal diets and a proprietary diet. The meat meal diets evaluated in E1 were a high‐ash (260 g kg?1) meat meal that contained 520 g kg?1 CP and a low‐ash (140 g kg?1) meat meal that contained 600 g kg?1 CP when included at either 450 or 400 g kg?1, respectively, in combination with 100 g kg?1 Chilean fish meal in diets that were isonitrogenous and isoenergetic with the Ctl diet. Growth rates and feed conversions were similar (P > 0.05) for all diets. In E2 and E3, the 520 g kg?1 CP meat meal was included at 500 g kg?1 without any marine protein source in diets formulated to provide either 15 or 16.2 kJ g?1 DE and the same CP/DE ratio (29 mg kJ?1) as the Ctl diet. Fish performance ranking of diets was similar in both experiments, with the 16.2 kJ g?1 DE diet supporting better (P < 0.05) growth rates than the Ctl diet and feed conversion ratios equivalent to the Ctl diet but better (P < 0.05) than all other diets.  相似文献   

18.
This study evaluated the potential of using poultry by‐product meal (PBM) to replace fish meal in diets for Japanese sea bass, Lateolabrax japonicus. Fish (initial body weight 8.5 g fish?1) were fed six isoproteic and isoenergetic diets in which fish meal level was reduced from 400 g kg?1 (diet C) to 320 (diet PM1), 240 (diet PM2), 160 (diet PM3), 80 (diet PM4) or 0 g kg?1 (diet PM5), using PBM as the fish meal substitute. The weight gain (WG), specific growth rate, nitrogen retention efficiency, energy retention efficiency and retention efficiency of indispensable amino acids were higher in fish fed PM1, PM2, PM3 and PM4 diets than in fish fed diets C or PM5. The phosphorus retention efficiency was lower in fish fed PM3, PM4 and PM5 diets than in fish fed C, PM1 or PM2 diets. Fish fed diet PM5 had the highest feed conversion ratio, total nitrogen waste output (TNW) and total phosphorus waste output (TPW) among the treatments. No significant differences were found in the hepatosomatic index or body contents of moisture, lipid and ash among the treatments. Fish fed diet C had lower condition factor and viscerosomatic index than those of fish fed PM1, PM3, PM4 and PM5 diets. The results of this study indicate that using fish meal and PBM in combination as the dietary protein source produced more benefits in the growth and feed utilization of Japanese sea bass than did using fish meal or PBM alone as the dietary protein source. The dietary fish meal level for Japanese sea bass can be reduced to 80 g kg?1 if PBM is used as a fish meal substitute.  相似文献   

19.
The effects of protein source and nutrient density on growth efficiency, nutrient digestibility and plasma amino acid concentrations of rainbow trout were evaluated. A 3 by 2 factorial treatment design with three protein sources, fish meal–barley (F–B), plant concentrates (PC) and plant meals (PM), and two nutrient densities were used. A commercial reference diet was also fed. Triplicate tanks of 30 fish (initial wt. 28 g) were fed each diet, and the final weight averaged 240 g fish−1. Protein source and nutrient density affected feed intake, weight gain and feed conversion ratio. Weight gain of trout fed the PC and PM diets was approximately 10% less than fish fed the F–B diets. Protein retention was affected by protein source, but not nutrient density, and was the highest for the fish fed diets containing fish meal and the lowest for the fish fed PM diets. Apparent digestibility coefficients and apparent amino acid availabilities of the diets corresponded with differences in weight gain. This study provides further evidence that growth rates of trout fed fish meal‐free diets, using conventional and concentrated plant protein ingredients, are good but some limitation to growth exists in the fish meal‐free diets.  相似文献   

20.
A 12‐week feeding trial was carried out in concrete tanks to examine complete and partial replacement (75%) of fish meal (FM) with poultry by‐product meal (PBM), meat and bone meal (MBM) and soybean meal (SBM) in practical feeds for African catfish Clarias gariepinus. Triplicate groups of fish (initial body weight ranged from 90.33 to 93.93 g fish−1) were fed seven isonitrogenous and isocaloric diets of 20% digestible protein and 300 kcal 100 g−1 of digestible energy. The control contained 25% herring meal, whereas in the other six diets, PBM, MBM and SBM replaced 75% or 100% of the FM. Final body weight (FBW) and specific growth rate (SGR) of the fish fed diets containing PBM (75% and 100%), SBM (75% and 100%) and MBM (75%) were all higher, but not significantly different than those for fish fed the control diet. Replacing 100% of the FM by MBM significantly lowered FBW and SGR. Concerning whole body composition, there were no significant differences in ash and gross energy content of whole‐body among fish; fish fed diets containing PBM‐100% recorded significantly lower protein content compared with the control diet, while fish fed diet SBM‐100% recorded significantly lower moisture content compared with the control diet. Also fish fed diets SBM‐100% and PBM‐75% recorded higher lipid and gross energy contents compared with the control diet. The study revealed that satisfactory growth and feed utilization responses could be achieved through the replacement of FM by PBM, SBM and MBM in the diet of African catfish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号