首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
《分子植物育种》2021,19(12):3940-3947
本研究筛选银杏三个年龄阶段开花调控的关键基因,揭示银杏开花调控年龄途径的分子机理,为促进银杏早花、分子育种和推广种植提供科学依据。本研究利用高通量测序技术及生物信息学工具,对三个年龄阶段的银杏雄花芽进行转录组测序,对测序数据进行分析,筛选出年龄途径关键差异表达基因。转录组测序转录组测序共产生57.45 Gb原始数据,注释到8大功能数据库(GO, COG, KEGG, KOG, NR, Pfam, SwissProt, egg NOG)上的Unigene总数为35 058个。通过KEGG通路注释和GO富集分析,将Unigene分别归于55个GO类别和126个代谢途径。差异表达基因分析显示,幼年雄花芽较开花一年雄花芽有37个基因上调,75个基因下调;幼年雄花芽较开花多年雄花芽有592个基因上调,871个基因下调;开花一年雄花芽较开花多年雄花芽有961个基因上调,1 203个基因下调。本研究发掘出大量的开花相关的基因,最终筛选出SPL (gene.Gb_23724, gene.Gb_03922)、AP2 (gene.Gb_00766)、MADS-box (gene.Gb_01886, gene.Gb_15398, gene.Gb_28337, Gingko_newGene_2213)、GA调节蛋白(gene.Gb_34467, gene.Gb_28606, gene.Gb_33214)和DELLAs蛋白(gene. Gb_34644)等11个年龄途径开花调控的关键基因。  相似文献   

2.
为解析杜鹃品种大鸳鸯锦花瓣粉色条纹形成的分子机制,挖掘与粉色条纹形成相关的关键基因,选取大鸳鸯锦盛花期花瓣,对花瓣白色区域与粉色条纹区域的色素分别进行测定,同时,利用Illumina HiSeqTM测序平台对它们的转录组进行测序分析,并采用实时荧光定量PCR(qRT-PCR)技术对测序结果进行验证。结果表明,大鸳鸯锦花瓣粉色条纹的形成是由花色苷积累引起的。花瓣粉色条纹区域与白色区域共鉴定出7 086个差异表达基因(DEGs),其中上调表达基因3 802个,下调表达基因3 284个。与花色苷形成相关的花青素生物合成、苯丙素生物合成和类黄酮生物合成途径在花瓣粉色条纹区域中更为活跃。根据DEGs的GO和KEGG富集分析结果,从与花色苷生物合成代谢相关及其调控途径共筛选出31个DEGs,其中26个为花青素合成代谢结构基因,5个为转录调控基因(3个MYB和2个bHLH);26个花青素合成代谢结构基因共编码9种酶,其中20个基因在花瓣粉色条纹组织中的表达水平明显高于白色花瓣组织;通过NCBI同源搜索发现2个R2R3-MYB和1个bHLH与已知调控果实或叶片中花青素合成有关的同...  相似文献   

3.
为了探讨海岛罗汉松(Podocarpus costalis)转录组功能基因信息,获取海岛罗汉松嫩叶叶色变化的相关基因,本研究对海岛罗汉松正常生长状态下的嫩叶进行转录组测序分析,去除低质量序列后得到52 189条Unigene,平均长度为1 609 bp,总长度为83 984 805 bp。52 189条Unigene注释到七大功能数据库,其中NR数据库中40 067个Unigene被注释到,注释率最高,占76.77%。在注释到的物种中,海岛罗汉松比对到的U nigene与北美云杉(Picea sitchensis)的相似度最高,共13 536条。通过5个时期的共同筛选,发现海岛罗汉松嫩叶有1 376个差异表达基因。1 376个差异表达基因通过GO分析注释到3个大类(生物过程,细胞组分,分子功能)的46个小类;KEGG分类可将1 376个差异表达基因分为5个大类19个小类。对与叶色变化相关的差异表达基因进行分析,发现与花青素合成相关的差异表达基因有9个,主要由苯丙烷类生物合成、类黄酮生物合成等机制影响海岛罗汉松嫩叶叶色变化;另外有3个差异表达基因涉及卟啉和叶绿素代谢途径。本研究结果为探究...  相似文献   

4.
通过花生籽仁不同时期转录组测序分析,从分子水平上揭示控制花生油脂合成的重要基因。本研究以高油和低油花生新品系为研究对象,构建了花生籽仁早期和中后期4个转录组测序文库。通过高通量测序共获得了59 236条Unigenes,其COG功能涉及了大多数的生命活动,整体功能类的基因最多有4 730条;其中与代谢类和油脂转运相关的基因有654条;Unigene参与的花生代谢通路可分为126类,其中涉及生化代谢的Unigene数量最多,达到了7 672条,占整体的32.95%;有4大类代谢与油脂相关,分别是脂肪酸的生物合成,涉及的基因有85条;脂肪酸的生化代谢,涉及的基因有145条;不饱和脂肪酸的生物合成途径,涉及116条基因;亚麻酸的代谢途径,涉及有138条基因。对花生籽仁两个不同发育时期的差异表达基因进行分析,共得到了120多种代谢途径(passway);并且籽仁发育中后期基因的表达量大部分下调,说明花生种子发育初期,各类调控脂肪酸合成的基因比较活跃,而随着合成油脂调控的不断继续,相关调节基因表达量下降,同时各类脂肪酸和油脂的合成也渐渐变慢。研究结果为深入揭示花生籽仁发育过程中油脂合成调控的相关基因及其功能提供了丰富的数据资源。  相似文献   

5.
microRNA是植物体内普遍存在的非编码小RNA,广泛参与植物生长发育、代谢调节及多种逆境胁迫响应。研究表明miR858可能是参与植物花青素合成调控的miRNA之一,但其在彩色马铃薯中调控花青素的研究尚未见有报道。本研究对彩色马铃薯不同部位中miR858的表达情况进行研究,同时对其花青素进行测定,以明确miR858与花青素合成间的调控关系。结果表明miR858在3个彩色马铃薯品种不同组织中均有表达,但不同组织的花青素含量与miR858的表达存在品种差异性,其中紫色马铃薯品种‘黑金刚’、‘华颂66号’中miR858的表达情况和花青素的含量呈正相关,红色马铃薯品种‘红美’miR858的表达情况和花青素的含量呈负相关,这可能是马铃薯的品种特异性决定了其花青素调控中基因表达的差异性。  相似文献   

6.
百合是一类重要的经济/观赏植物,包含百合属的多个物种或杂交品种。珠芽繁殖是多种百合的重要营养繁殖途径,但其发育的分子机制少有研究。本研究利用转录组测序技术对来自淡黄花百合(Lilium sulphureum) 5个部位的混合样本进行测序获得6.64 Gb数据,组装得到51 450个Unigene,32 784个Unigene在NR等功能数据库中得到注释(其中487个与生长素代谢及信号转导相关基因同源)。利用表达谱测序技术分别对5个组织样品进行测序共得到46 897个Unigene,其中337个与生长素代谢及信号转导相关基因同源的Unigene在珠芽源器官、发育早期或后期珠芽之间差异表达。结果表明淡黄花百合珠芽发育早期依赖于活跃运输、低失活及逐渐增强的自主合成提高内部生长素含量,后期伴随珠芽内生长点分化形成其自主合成和失活代谢变得更加活跃;生长素浓度的变化引起大量信号转导相关基因表达量发生变化从而调节珠芽的发育。本研究结果为进一步探究生长素在珠芽发育过程中的调节作用提供了依据。  相似文献   

7.
《分子植物育种》2021,19(19):6529-6535
光质是影响植物花青素合成的重要环境因子,为了分析光质对紫色芹菜中花青素积累及其合成基因的响应机理,以紫色芹菜为材料,测定了不同光质处理紫色芹菜叶柄花青素含量,并利用实时荧光定量PCR方法测定了9个花青素合成相关基因在叶柄中的表达水平。研究结果表明,蓝光处理下芹菜叶柄的花青素含量是对照的1.23倍。AgPAL、AgC4H、AgCHS、AgCHI、AgF3H、AgF3'H、AgDFR、AgANS和Ag3GT等基因在蓝光条件下表达量均显著高于其他光质条件,这些基因的表达与叶柄花青素含量的变化相似且高度正相关。本研究结果为后续在设施条件下生产并开发富含花青素的紫色芹菜提供理论参考。  相似文献   

8.
洋葱是世界范围内种植的重要蔬菜作物,其鳞茎颜色是洋葱选育和食用的重要性状。本研究对紫皮洋葱和黄皮洋葱进行高通量转录组测序,挖掘黄酮类化合物合成的基因,探讨不同皮色形成的分子基础。本研究共获得5 809个差异表达基因,包括2 991个上调表达基因,2 818个下调表达基因。差异基因GO功能富集分析显示,差异基因主要参与细胞组分、生物过程和分子功能3大类。KEGG显著富集分析显示,差异表达基因主要富集在3条代谢途径上。黄酮类化合物合成相关的通路有类黄酮合成途径、花青素合成途径、异黄酮合成途径、黄酮和黄酮醇合成途径,并筛选出了F3’H、FLS、CHI和DFR等黄酮类合成相关的结构基因。本研究为进一步探讨洋葱皮色相关的代谢合成途径关键酶的功能及其调控机制提供了基础。  相似文献   

9.
白花虎眼万年青可在离体条件下以叶片表面上产生多个珠芽方式实现高效再生,"叶上生根,落地成苗",为解决植物困难再生的问题提供了新的思路和途径,但是其形成机制尚不清楚。本研究以其叶片及其表面产生的珠芽为研究材料,进行Illumina Hi Seq 2000测序分析。共获得原始数据9.13 G,经过数据过滤后得到有效数据7.67 G,及178 385条Unigene。研究表明,叶片产生珠芽过程中有2 397条Unigene上调,1 593条Unigene下调;EMB基因、TATA结合蛋白、BTB/POZ锚蛋白重复序列、TOR调控蛋白、FKBP蛋白等基因的表达发生了明显地变化,可能参与了珠芽的形成。本研究首次获得了白花虎眼万年青叶上珠芽的转录组数据,分析了叶片中可能参与形成珠芽的重要功能基因,为探讨叶上珠芽发育的分子机制及进行重要功能基因的挖掘提供了分子数据。  相似文献   

10.
当归提前抽薹严重影响产量,而当归抽薹分子遗传机理尚不清楚。本研究利用RNA-seq技术对连续五代抽薹当归的叶片、茎段、种子、根进行测序,对所有组装后的Unigenes进行功能注释,寻找调控当归抽薹主要候选基因。结果表明:在当归的叶片、根、种子、茎段转录本中分别得到7.1、7.63、7.23、6.59 Gb数据,通过Nr、Nt、Swissprot、KEGG、KOG、Interpro、GO、Intersection、Overall等蛋白数据库进行蛋白质预测,分别预测了71 024、59 931、49 694、51 832、55 320、46 908、35 598、17 133、79 161个蛋白。所有转录本中80.13%预测蛋白与胡萝卜同源。在KEGG通路中共有2 666个差异表达的基因参与植物信号传导;与拟南芥、胡萝卜、芥菜中参与调控开花相关基因比对,共筛选出56条候选基因,将56条候选基因在NCBI中进行核酸比对,得到与直接控制抽薹AP1转录因子同源的Unigene45683_All、激活AP1转录因子的整合子FT和FD同源的Unigene11264_All、参与拟南芥光周期调控基因CO (CONSTANS)的同源基因Unigene4344_All、在芥菜中促进抽薹整合因子SOC1的表达的AGL24或直接作用于抽薹决定基因LFY的同源基因Unigene46836_All、Unigene7820_All、CL10006.Contig2_All。因此,上述候选基因很有可能参与调控当归抽薹相关分子机制。本研究筛选到与当归抽薹相关的候选基因,有助于了解当归抽薹相关分子机制,为挖掘控制当归抽薹相关基因提供理论依据。  相似文献   

11.
儿茶素类化合物与花青素均由类黄酮代谢途径合成,紫芽茶中富含花青素。为探明紫芽茶树中类黄酮生物合成代谢流的情况,本试验以来源于湄潭苔茶后代的1株紫色芽叶茶树和1株绿色芽叶茶树为材料,测定芽下第一叶、第二叶和第三叶的叶色、儿茶素类组分和花青素总量,分析了类黄酮生物合成相关的基因表达情况及基因表达量同总儿茶素、花青素累积量之间的相关性。结果表明,紫芽茶树中各叶位中花青素含量均显著高于对照绿芽茶树,而儿茶素类总量却低于对照;类黄酮生物合成关键酶(PAL、CHS、CHI、F3H、DFR、ANS、ANR1、ANR2、F3¢H和F3’5’H)基因均呈现上调趋势。紫色芽叶中的总儿茶素与花青素,同各相关基因(LAR除外)表达水平的相关性都较高,且二者相关系数差异不大。绿色芽叶中的总儿茶素与各基因(LAR、F3’H除外)表达的相关系数,明显高于花青素同各基因表达的相关系数。  相似文献   

12.
贵州紫苏资源收集以及叶色多样性分析   总被引:2,自引:2,他引:0  
为了调查贵州地区紫苏资源的多样性,研究紫苏叶色性状的差异及成因,收集并种植贵州地方栽培及野生紫苏资源53份,调查苗期叶片颜色性状,并测定其花青素及叶绿素含量。结果表明,贵州地方紫苏资源叶色有面绿背紫、全绿、全红(紫)等多种性状。全红(紫)紫苏花青素含量较高,叶绿素含量较低;绿色紫苏则相反。不同紫苏材料间,花青素含量差异最高可达到60倍,叶绿素含量差异最高在3倍左右。但是,其中有2个材料同时具有较高的叶绿素及花青素含量。叶片中花青素与叶绿素含量差异,导致贵州地方紫苏资源叶色存在着较大的多样性,该工作为紫苏资源研究打下基础。  相似文献   

13.
七个紫甘薯品种块根花色苷含量的比较   总被引:3,自引:0,他引:3  
运用紫外-可见分光光谱法,对引自日本和徐州并在云南昆明种植的7个紫甘薯品种进行分析,研究了不同甘薯品种块根中花色苷含量及其在同一块根中的分布和花色苷产量。结果表明:不同品种花色苷含量和产量差异显著,花色苷含量以徐13-4含量最高,为107.22mg/100gFW;花色苷产量以种子岛紫最高,达13036.5g/hm2,其次是徐13-4,为11663.7g/hm2;花色苷在块根中的分布不均匀,含量表现为块根表皮>中心组织>薯肉。徐13-4可作为选育花色苷专用品种的亲本,种子岛紫可作为企业生产花色苷原料的品种加以利用。  相似文献   

14.
旨在探究三七地上茎积累花色苷对其抗寒性的效应。研究了冰水模拟低温胁迫下三七一年生紫、绿地上茎植株叶片可溶性蛋白质和丙二醛(MDA)含量及抗氧化酶比活力。结果表明,在冰水模拟低温胁迫下,紫、绿地上茎植株叶片的可溶性蛋白质含量和过氧化氢酶(CAT)比活力及绿地上茎植株叶片的MDA含量均上升,紫、绿茎植株叶片的过氧化物酶(POD)和超氧化物歧化酶(SOD)比活力及紫茎植株叶片的MDA含量均下降,且紫茎叶片可溶性蛋白质含量和CAT比活力的升幅及绿茎叶片POD和SOD比活力的降幅均更大;在冰水处理结束时,紫茎植株叶片的可溶性蛋白质含量、POD和SOD的比活力均高于绿茎的,但CAT比活力和MDA含量略低于绿茎的。但是,紫、绿茎植株叶片的可溶性蛋白质和MDA含量及抗氧化酶比活力的差异均未达到显著水平。因此,三七地上茎积累花色苷利于其抗寒。  相似文献   

15.
为获得目前紫色叶用莴苣的叶色相关数据,建立分级标准,利用色差仪及高效液相色谱仪对40个品种的叶用莴苣叶片颜色及花色苷含量进行测定,对数据进行相关分析,并建立分级系统。结果表明,根据色泽参数和花色苷的含量可将紫色叶用莴苣的分成绿色、浅紫色、中紫色、深紫色和特紫色5 个等级。据此建立了一个叶色分级标准,根据紫色部分在叶片分布特征可将紫色叶用莴苣分成裙边紫、渐变紫、全叶紫、花斑紫4 类。试验结果提供测量、评价叶片颜色性状的科学方法,有助于培育、筛选出外观品质优良的新品种。  相似文献   

16.
紫果黑蕊猕猴桃营养品质变化及其相关性分析   总被引:1,自引:0,他引:1  
为更好地促进高品质彩色猕猴桃的选育和开发,本研究以秦岭地区野生的紫果型黒蕊猕猴桃为材料,在果实成熟过程中采集不同果色时期(绿色、浅紫色、紫色和深紫色)的猕猴桃果实,对其营养成分(可溶性固形物、可溶性糖、可滴定酸、Vc和花青素)含量进行分析,探寻果实营养品质变化规律。结果发现,紫果黑蕊猕猴桃果实随着成熟,果色由绿色逐渐变为深紫色,其可溶性固形物、可溶性糖、花青素含量逐渐增加,各时期含量差异显著且两两间分别呈极显著正相关;可滴定酸和Vc含量逐渐降低,两者含量呈极显著负相关,但与可溶性固形物、可溶性糖、花青素含量分别呈显著负相关。结果表明,该紫果黒蕊猕猴桃果实成熟度越高,紫色特征越明显,可溶性固形物和可溶性糖含量越高,可滴定酸含量越低,但同时Vc含量也越低。  相似文献   

17.
栽培因子调控马铃薯、甘薯等作物花青素合成研究进展   总被引:1,自引:0,他引:1  
紫色马铃薯、紫色甘薯等紫色作物富含天然抗氧化活性物质——花青素而受到消费者的青睐。为推动紫色马铃薯、紫色甘薯的进一步发展,本研究收集了部分有关马铃薯、甘薯等作物花青素合成和积累的研究报道和数据,对施肥(氮肥、磷肥、钾肥、硒肥、有机肥、复合肥)、种植技术(密度、收获期、覆盖方式、遮荫、海拔高度)、外源物质(糖类、激素类、生根粉)等栽培因子调控马铃薯、甘薯等作物地下部块茎、块根中花青素合成进行了分析,并探讨了其研究方向,为紫色马铃薯、紫色甘薯花青色合成的深入研究提供借鉴。  相似文献   

18.
河南省夏大豆再高产主要农艺性状量化的探讨   总被引:1,自引:0,他引:1  
利用河南省已定和区试通过的26个夏大豆品种,对主要农艺性状与产量的关系进行二次逐步回归筛选,确定了主要性状最高理论产量指标并模拟出高产指标,此两项指标可比当前高产对照豫豆8号增产71.8%和30.0%。  相似文献   

19.
为研究不结球白菜[Brassica campestris L. ssp. chinensis (L.) Makino var. communis Tsen et Lee]叶片紫色性状的遗传规律,选用紫色和绿色不结球白菜亲本纯系各一个配制正反交组合,并构建该杂交组合的6 个世代群体(P1、P2、F1、B1、B2和F2),利用分光光度计在540 nm处测定6 世代家系的不结球白菜叶片花青素相对含量,最后花青素相对含量的遗传规律采用多世代联合的数量性状分离分析方法研究。结果表明:不结球白菜杂交组合后代的花青素相对含量介于2 个亲本之间,呈现出多峰或单峰偏态分布,且偏向于紫色亲本。其遗传模式符合2 对加性-显性-上位性主基因+加性-显性-上位性多基因模型(E-0模型);其中F2 的主基因遗传率为59.17%,多基因遗传率为27.58%,环境方差占表型方差的比例为19.48%;B1(F1×紫)的主基因遗传率为74.12%。环境因素对不结球白菜花青素相对含量存在一定的影响,因此建议在光照充足及温度适宜的秋季,且在分离早期世代进行不结球白菜紫叶性状的遗传选择,其中B1的遗传效率较高。  相似文献   

20.
温度对植物花青素苷合成影响研究进展   总被引:2,自引:0,他引:2  
柯燚  高飞  金韬  郑丽 《中国农学通报》2015,31(19):101-105
为了探明温度对植物花色呈色的影响,归纳了温度在植物花青素苷合成过程中的重要作用,总结了温度通过多种途径影响花青素苷的合成,分析了温度对植物花青素苷生理代谢、稳定性及关键色素酶活性的影响。认为温度在花青素苷的合成途径中以对关键色素酶活性的影响最大,指出花青素苷合成过程受多重因子影响,要探明植物呈色机制还应综合大量单因子及多因子的研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号