首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
To select superior seed parents for vegetable hybrid seed production, we conducted interspecific crosses between male sterile Brassica juncea (2n = 36, AABB) and eight inbred lines of Brassica rapa (2n = 20, AA). Alloplasmic lines of B. rapa with the cytoplasm of B. juncea were developed from B. juncea × B. rapa hybrids by repeated backcrossing using B. rapa as the recurrent male parent until the BC3 generation. Seed fertility, male sterility and chlorophyll content were investigated in these plants cultivated under four different temperature conditions (5, 10, 12 and 20°C). At 10°C, the alloplasmic lines of B. rapa with the cytoplasm of B. juncea were male sterile with partly chlorotic leaves. The alloplasmic B. rapa had lower chlorophyll a, chlorophyll b and carotenoid contents than those of the original B. rapa. The leaves recovered from chlorosis when the plants were cultivated at 20°C. An alloplasmic line of B. rapa (A6) is available as a seed parent for vegetable hybrid seed production and contributes seed fertility, slight chlorosis and stable male sterility.  相似文献   

2.
Brassica napus is a leading oilseed crop throughout many parts of the world. It is well adapted to long day photoperiods, however, it does not adapt well to short day subtropical regions. Short duration B. napus plants were resynthesized through ovary culture from interspecific crosses in which B. rapa cultivars were reciprocally crossed with B. oleracea. From five different combinations, 17 hybrid plants were obtained in both directions. By self-pollinating the F1 hybrids or introgressing them with cultivated B. napus, resynthesized (RS) F3 and semi-resynthesized (SRS) F2 generations were produced, respectively. In field trial in Bangladesh, the RS B. napus plants demonstrated variation in days to first flowering ranging from 29 to 73 days; some of which were similar to cultivated short duration B. napus, but not cultivated short duration B. rapa. The RS and SRS B. napus lines produced 2–4.6 and 1.6–3.7 times higher yields, respectively, as compared to cultivated short duration B. napus. Our developed RS lines may be useful for rapeseed breeding not only for subtropical regions, but also for areas such as Canada and Europe where spring rapeseed production can suffer from late spring frosts. Yield and earliness in RS lines are discussed.  相似文献   

3.
Resistance responses of resynthesized Brassica napus lines to infection with Plasmodiophora brassicae were investigated. Lines that were derived from interspecific crosses between clubroot-resistant B. rapa and resistant B. oleracea exhibited very broad and effective resistance in both greenhouse and field tests. When clubroot resistance was introduced into resynthesized lines from the B. oleracea parent only, the plants were mainly susceptible. Interspecific hybrids from the most resistant parental genotypes, i.e. B. campestris ECD-04 and the B. oleracea cultivars ECD-15 or ‘Bohmerwaldkohf’, were used to initiate a B. napus resistance-breeding programme. These artificial rapeseed lines were resistant to isolates that were virulent on all B. napus differential lines and/or parental lines. Preliminary segregation analysis suggests that their resistance is due to at least two dominant and unlinked genes. In some cases progenies from selfed resynthesized plants exhibited resistance reactions that differed from those of the parental hybrid plant; this may have been the result of cytological instability.  相似文献   

4.
W. Qian  R. Liu  J. Meng 《Euphytica》2003,134(1):9-15
This study was conducted to estimate the genetic effects on biomass yield in the interspecific hybrids between Brassica napus and B. rapa, and to evaluate the relationship between parental genetic diversity and its effect on biomass yield of interspecific hybrids. Six cultivars and lines of oilseed B. napus and 20 cultivars of oilseed B. rapa from different regions of the world were chosen to produce interspecific hybrids using NC design II. Obvious genetic differences between B. rapa and B. napus were detected by RFLP. In addition, Chinese B. rapa and European B. rapa were shown genetically differences. Plant biomass yield from these interspecific hybrids were measured at the end of flowering period. Significant differences were detected among general combining ability (GCA) effects over two years and specific combining ability (SCA) effects differences were detected in 2000. The ratios of mean squares, (σ2 GCA(f) + σ2 GCA(m)) / (σ2 GCA(f) + σ2 GCA(m) + σ2 SCA), were 89% and 88% in 1999 and 2000, respectively. This indicates that both additive effects and non-additive effects contributed to the biomass yield of interspecific hybrids and the former played more important role. Some European B. rapa had significant negative GCA effects while many of Chinese B. rapa had significant positive GCA effects, indicating that Chinese B. rapa may be a valuable source for transferring favorable genes of biomass yield to B. napus. Significant positive correlation between parental genetic distance and biomass yield of interspecific hybrids implies that larger genetic distance results in higher biomass yield for the interspecific hybrids. A way to utilize interspecific heterosis for seed yield was discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

5.
R. Wang    V. L. Ripley    G. Rakow 《Plant Breeding》2007,126(6):588-595
Pod shatter susceptibility was investigated in Brassica napus germplasm and shatter resistant species of B. juncea and Sinapis alba. The comparisons were made by measuring seed yield in field plots, detached pod rupture energy (RE) and the half‐life of pod‐opening. Pod shatter resistance was significantly greater in B. napus lines derived from interspecific hybridizations of B. napus with B. rapa, B. carinata and B. juncea, than common B. napus cultivars. While these lines exhibited no significant difference in resistance to pod shatter than B. juncea, an entry of S. alba had no yield loss caused by pod shatter. Resistance to pod shatter was characterized in the field as little or no yield loss after full maturity, delayed shattering in time, and stable yield performance under variable climatic conditions during pod maturity. Yield loss caused by pod shatter ranged from a low of 4% for the B. juncea cv. ‘AC Vulcan’ to a high of 61% for the black seeded B. napus line DH12075 in 2‐year field trials after 1 month maturity. Pod shatter resistance was not significantly associated with specific plant and pod morphological traits, except pod length (P = 0.005) in tested materials. Field visual scores of pod shatter through inspections of average pod shatter per plant within plots were highly correlated with plot yield loss. Indoor quantitative evaluations of pod strength using a pendulum machine to measure pod RE and random impact test to measure half‐life of pod‐opening resistance were highly correlated with field yield loss. Multiple evaluations of pod shatter in method and in time after pod maturity are recommended for reliable evaluation of pod shatter resistance.  相似文献   

6.
The special aspects of the Western Australian rape-seed breeding programme for the improvement of C18 fatty acids (FA) have been highlighted. Progress made through the use of ‘Oro’-mutant and IXLIN (interspecific X derived) as sources of genes fur improved C18 FA is discussed. These two donor lines were crossed or intercrossed with high yielding, disease resistant B. napus lines (summer and winter type) or their early generation progenies from interspecific crosses with B. juncea or B. carinata. Tins provided suitable genetic diversity and favourable agronomic background for the introgression of target genes or gene system for improved C18 fatty acids. Many of the polyenoic lines selected from these crosses have indicated scope for combining high linoleic and low linolenic acid levels, with maintenance of good growths and seed development in plants well adapted to the environment.  相似文献   

7.
D. Struss    U. Bellin  G. Röbbelen 《Plant Breeding》1991,106(3):209-214
By interspecific hybridization within the genus Brassica, trigenomic haploids were produced and back-crossed four times with B. napus, variety ‘Andor’. From this material, monosomic B-genome chromosome addition lines were selected with the extra chromosome derived from three different B-genome sources, i.e., B. nigra (BB), B. carinata (BBCC), and B. juncea (AABB). After selfing and/or microspore culture, disomic addition lines were obtained. Meiotic behavior was studied of the trigenomic hybrids, the pentaploid BC1 plants, and the monosomic addition lines. The addition lines were shown to possess cytological stability and good fertility.  相似文献   

8.
Brassica carinata A. Braun is a highly productive oilseed crop in the Ethiopian highlands, but the seed has a high 2-propenyl glucosinolate content, which is undesirable. The objective of this study was to introgress, through interspecific crosses, genes for low 2-propenyl glucosinolate content from the B genome of B. juncea and C genome of B. napus into the B. carinata B and C genomes and thus develop low glucosinolate B. carinata. The cross [(B. carinata×B. juncea) ×B. carinata] yielded plants that contained only ~ 20 μmoles of 2-propenyl glucosinolate, which was an 85% reduction compared with levels in B. carinata seed. Plants of the [(B. carinata×B. napus) ×B. carinata] cross had normal high concentrations of 2-propenyl glucosinolate. Backcross plants of both interspecific crosses also contained 3-butenyl and 2-hydroxy-3-butenyl glucosinolates. The results of these crosses suggested that genes for glucosinolate synthesis were located on B genome chromosomes of B. carinata because B. napus C genome introgressions did not result in reductions of total glucosinolate contents. The total alkenyl glucosinolate content of one F3 family of the B. juncea backcross was similar to that of the B. juncea parent. It was concluded that through further selection in this family, B. carinata plants could be identified that would be basically free of 2-propenyl glucosinolate, and have a low total alkenyl glucosinolate content.  相似文献   

9.
With the aim to transfer Phoma lingam resistance into rape, successful interspecific crosses were made between three oilseed rape varieties (Brassica napus) and the resistant species B. carinata and B. carinata. Although both hybrid types B. napus×B. juncea and B. napus×B. carinata showed the same high level of resistance as the respective resistant parent, the resistance could be only transferred from juncea crosses. After three backcross generations, lines morphologically undistinguishable from rape, fertile, and with a high degree of resistance were obtained. The resistance of B. carinata was practically lost in the first backcross. A possible explanation of this different behavior could be a higher recombination between the genomes B and C (juncea crosses) than between B and A (carinata crosses). The: applied embryo culture increased the yield of hybrids and first backcross plants and reduced considerably the generation time.  相似文献   

10.
This study was conducted to assess the cytoplasm effects of Brassica napus and B. juncea on the some characteristics of B. carinata, as well as the phylogenetic distances separating the three species. Alloplasmic lines of B. carinata were developed from B. napus × B. carinata and B. juncea × B. carinata hybrids by recurrent backcrossing to the BC7 generation. Sixteen populations from three generations were compared for a number of characteristics. Plants with the cytoplasm of B. napus flowered later, had shorter filaments and longer pistils, lower pollen amount, lower seed set, lower petal length and width and different petal color; plants with the cytoplasm of B. juncea had shorter pistils and filaments, and lower petal length and width than their corresponding euplasmic sibs, respectively. The results suggest that the cytoplasm is involved in the development of flower organs. The natural species, B. carinata showed a balance between the nucleus and cytoplasm. The cytoplasm from B. napus showed a stronger disturbing effect than that of B. juncea, suggesting that B. carinata might be genetically closer to B. juncea than to B. napus. The significant difference in the alloplasmic effect of the cytoplasms of B. napus and B. juncea also suggests that in B. carinata the B genome may play a greater role than the C genome. An erratum to this article can be found at  相似文献   

11.
Summary Resistance to Leptosphaeria maculans was assessed in Brassica napus, B. juncea, B. carinata, B. nigra and progeny issuing from an interspecific cross B. napus × B. juncea, using a cotyledon-inoculation test. In these individual plants, brassilexin accumulation was determined following an abiotic, non-specific, elicitation. All the tested B. napus cultivars were highly susceptible to the parasite and weakly accumulated brassilexin. In contrast, B. juncea, B. carinata, and B. nigra usually displayed a hypersensitive response to the inoculation and accumulated more brassilexin than B. napus. The same correlation between resistance to L. maculans and phytoalexin accumulation was observed in the interspecific hybrid progeny. The cotyledon-inoculation test allowed the discrimination of plants displaying a hypersensitive response to the inoculation from those highly sensitive to the parasite, but intermediate disease severity classes were not usually representative of resistance or susceptibility. In this respect, brassilexin determination allowed differentiation, within a set of plants presenting an intermediate response to the pathogen, of plants with a high (B. juncea-like), and with a weak (B. napus-like) ability to accumulate brassilexin.Abbreviations IHP interspecific hybrid progeny - JR B. juncea-type complete resistance to blackleg (Roy, 1984) - W&D test cotyledon-inoculation test as described by Williams & Delwiche (1979)  相似文献   

12.
Genetic diversity of 18 Brassica nigra accessions was estimated using amplified fragment length polymorphism (AFLP) marker technology. Two B. rapa and two B. juncea accessions were selected as outliers in the study. Eight AFLP primer combinations generated a total of 426 bands, of which 79% were polymorphic. The UPGMA method was employed to construct a dendrogram based on the Jaccard's similarity coefficient. The accessions of B. rapa separated from those of B. nigra at a genetic similarity coefficient of 0.27 while those of B. juncea did so at 0.5. The genetic similarity coefficients within the B. nigra accessions ranged from 0.58 to 0.86. Based on these coefficients it was concluded that the B. nigra accessions show high levels of genetic variation. These results have significant implications in the crop improvement programmes for the agronomically important crop B. juncea, an amphidiploid of B. nigra and B. rapa. Two incorrectly labelled B. nigra accessions were also identified. These accessions were found to cluster with those of B. juncea accessions. This result demonstrates the great value of AFLP markers in the management of genebanks.  相似文献   

13.
Development of Yellow Seeded Brassica napus Through Interspecific Crosses   总被引:12,自引:0,他引:12  
A. Rashid    G. Rakow  R. K. Downey 《Plant Breeding》1994,112(2):127-134
Yellow seeded Brassica napus was developed through interspecific crosses with the two mustard species, B. juncea and B. carinata. The objective of these two interspecific crosses was the introgression of genes for yellow seed colour from the A genome of B. juncea and C genome of B. carinata into the A and C genomes of B. napus, respectively. The interspecific F1 generations were backcrossed to B. napus in an attempt to eliminate B genome chromosomes and to improve fertility. Backcross F2 plants of the (B. napus×B. juncea) ×B. napus cross were then crossed with backcross F2 plants of the (B. napus×B. carinata) ×B. napus cross. The objective of this intercrossing was to combine the A and C genome yellow seeded characteristics of the two backcross populations into one genotype. The F2 generation of the backcross F2 intercrosses was grown in the field, plants were individually harvested and visually rated for seed colour. Ninety-one yellow seeded plants were identified among the 4858 plants inspected. This result indicated that the interspecific crossing scheme was successful in developing yellow seeded B. napus.  相似文献   

14.
Genetic diversity among the 88 entries including eighty F4 derivatives i.e., 20 each selected from Brassica crosses viz., B. juncea × B. napus, B. juncea × B. rapa var. toria, B. juncea ×B. rapa var. yellowsarson and B. tournefortii × B. juncea, and eight parent genotypes was assessed through multivariate analysis (D2 statistic). Significant differences among the family groupsas well as within the family were recorded for all the 14 characters studied. The D2 analysis revealed enormous diversity among the interspecific cross derivatives. The genetic distances calculated among different Brassica species revealed that B. tournefortii had maximumdiversity with B. juncea followed by B. napus, B.rapa var. toria and B. rapa var. yellow sarson.Amongst interspecific crosses, maximum diversity was noticed indescendants of cross B. tournefortii × B. juncea followed byB. juncea × B. napus, B. juncea × B.rapa var. toria and the least in the cross B. juncea ×B. rapa var. yellow sarson. These results indicated that the derivatives selected from cross of diverse parents revealed greater diversity. The clustering pattern showed that many derivatives of the cross fell into the same cluster but in many cases in spite of common ancestry many descendants of the cross spread over different clusters. The characters, namely, plant height, secondary branches per plant, days to flowering and1000-seed weight were contributed maximum towards genetic divergence. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The rate of natural crosses occurring among the cultivated Brassica species B. napus, B. rapa, and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis was studied in co-cultivation experiments under field conditions in Saskatchewan, Canada, with special reference to evaluation of the possibility of transgene escape from the cultivated to the weedy species. Natural crosses occurred among B. napus, B. rapa, and B. juncea, indicating that hybridizations among these three species do occur under field conditions. On the other hand, no natural crosses occurred between the cultivated species and B. nigra or S. arvensis. It is concluded that the crosses between the cultivated and weedy species are practically impossible under field conditions in Saskatchewan, and that the escape of transgenes from transgenic cultivars of B. napus, B. rapa and B. juncea into B. nigra and S. arvensis is basically zero in this region.  相似文献   

16.
Lines of Brassica juncea with tetralocular (four-valved) pods were produced by interspecific hybridization between dilocular (two-valved) B. juncea var. Pusa Barani and tetralocular yellow-seeded turnip rape (Brassica rapa ssp. trilocularis) var. YID-1. Some selected lines were significantly superior to their parents for some agronomic traits, including seed yield and harvest index. Line 11 was the best among these and recorded 70% yield advantage in plot yield.  相似文献   

17.
B. R. Choudhary    P. Joshi  S. Rama  Rao 《Plant Breeding》2002,121(4):292-296
Interspecific hybridization is an important tool to elucidate intergenomic relationships, transfer characters across species and develop synthetic amphidiploids, and it has been widely applied for improving Brassicas. The objective of the present study was to create genetic variability in Brassica through interspecific hybridization. Crosses between Brassica juncea (AABB, 2n= 36), and Brassica rapa (AA, 2n = 20) vars toria, yellow sarson, and brown sarson were attempted, and the hybrid derivatives were advanced to the F4 generation. Hybrids were obtained from the crosses B. juncea× toria and B. juncea× yellow sarson. The F1 plants were vigorous and intermediate to the parents in many morphological traits. The meiotic study of AAB hybrids showed 10 II + 8 I in the majority (71.8%) of cells analysed. A maximum of 12 and a minimum of seven bivalents were also observed in a few cells. The occurrence of multivalent associations (trivalents to pentavalents) at diakinesis/metaphase I and a bridge‐fragment configuration at anaphase I were attributed to homoeology between A and B genomes. A high percentage of plants resembling B. juncea was observed in the F2 generation. Transgressive segregation in both directions was found for plant height, primary branches, main raceme length, siliquae on main raceme, siliqua intensity, seeds per siliqua and seed yield. There were significant differences for the 14 characters in the F4 derivatives. Moderate to high estimates of phenotypic and genotypic coefficients of variation, broad‐sense heritability, and expected genetic advance were found for seed yield, 1000‐seed weight, siliquae per plant, seeds per siliqua and days to flowering. Intergenomic recombination, reflected as wide variation in the hybrid progenies, permitted the selection of some useful derivatives.  相似文献   

18.
Production of yellow-seeded Brassica napus through interspecific crosses   总被引:12,自引:0,他引:12  
M. H. Rahman   《Plant Breeding》2001,120(6):463-472
Yellow‐seeded Brassica napus was developed from interspecific crosses between yellow‐seeded Brassica rapa var.‘yellow sarson’ (AA), black‐seeded Brassica alboglabra (CC), yellow‐seeded Brassica carinata (Bbcc) and black‐seeded B. napus (AACC). Three different interspecific crossing approaches were undertaken. Approaches 1 and 2 were designed directly to develop yellow‐seeded B. napus while approach 3 was designed to produce a yellow‐seeded CC genome species. Approaches 1 and 2 differed in the steps taken after trigenomic interspecific hybrids (ABC) were generated from B. carinata×B. rapa crosses. The aim of approach 1 was to transfer the yellow seed colour genes from the A to the C genome as an intermediate step in developing yellow‐seeded B. napus. For this purpose, the ABC hybrids were crossed with black‐seeded B. napus and the three‐way interspecific hybrids were self‐pollinated for a number of generations. The F7 generation resulted in the yellowish‐brown‐seeded B. napus line, No. 06. Crossing this line with the B. napus line No. 01, resynthesized from a black‐seeded B. alboglabra x B. rapa var.‘yellow sarson’ cross (containing the yellow seed colour genes in its AA genome), yielded yellow‐seeded B. napus. This result indicated that the yellow seed colour genes were transferred from the A to the C genome in the yellowish‐brown seed colour line No. 06. In approach 2, trigenomic diploids (AABBCC) were generated from the above‐mentioned trigenomic haploids (ABC). The seed colour of the trigenomic diploid was brown, in contrast to the yellow seed colour of the parental species. Trigenomic diploids were crossed with the resynthesized B. napus line No. 01 to eliminate the B genome chromosomes, and to develop yellow‐seeded B. napus with the AA genome of ‘yellow sarson’ and the CC genome of B. carinata with yellow seed colour genes. This interspecific cross failed to generate any yellow‐seeded B. napus. Approach 3 was to develop yellow‐seeded CC genome species from B. alboglabra×B. carinata crosses. It was possible to obtain a yellowish‐brown seeded B. alboglabra, but crossing this B. alboglabra with B. rapa var.‘yellow sarson’ failed to produce yellow seed in the resynthesized B. napus. The results of approaches 2 and 3 demonstrated that yellow‐seeded B. napus cannot be developed by combining the yellow seed colour genes of the CC genome of yellow‐seeded B. carinata and the AA genome of ‘yellow sarson’.  相似文献   

19.
M. H. Rahman 《Plant Breeding》2002,121(4):357-359
The fatty acid composition of seed oil of four interspecific hybrids, resulting from crosses between zero erucic acid Brassica rapa (AA), and high erucic acid Brassica alboglabra/Brassica oleracea (CC) and Brassica carinata (BBCC), void of erucic acid genes in their A‐genomes was examined. The erucic acid content in resynthesized Brassica napus (AACC) lines derived from these crosses was only about half that of the high erucic acid CC genome parents, indicating equal contributions of the two genomes to oil (fatty acid) synthesis and accumulation. The differences in C18 fatty acid synthesis between the parents were also evident in the resulting resynthesized B. napus plants. Hexaploid Brassica plants of the genomic constitution AABBCC, in which the AA genome was incapable of erucic acid synthesis, had lower erucic acid contents than the B. carinata (BBCC) parent. This is plausible considering the fact that the zero erucic acid AA genome contributes to oil synthesis in AABBCC plants, thus reducing erucic acid content.  相似文献   

20.
A microspore mutagenesis protocol was developed for Brassica rapa, Brassica napus and Brassica juncea for the production of double haploid lines with novel fatty acid profiles in the seed oil. Freshly isolated Brassica microspores were first cultured with ethyl methane sulphonate (EMS) for 1.5 h. The EMS was removed and the microspores were then cultured according to the standard Brassica microspore culture protocol. This protocol was used to generate over 80 000 Brassica haploid/double haploid plants. Field evaluation of B. napus and B. juncea double haploids was conducted between 2000 and 2003. Fatty acid analysis of the B. napus double haploid lines showed that saturated fatty acid proportions ranged from 5.0% to 7.7%. For B. juncea, saturate proportions ranged from 5.4% to 9.5%. Of the 7000 B. rapa lines that were analysed, 197 lines had elevated oleic acid (>55%), 69 lines had reduced α‐linolenic acid (<8%) and 157 lines had low saturated fatty acid proportions (<5%), when compared with the parental lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号