首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Abstract

Recent interest in soil tillage, cropping systems, and residue management has focused on low‐input sustainable agriculture. This study was carried out to evaluate the effects of various management systems on aspartase activity in soils. This enzyme [L‐aspartate ammonia‐lyase, EC 4.3.1.1] catalyzes the hydrolysis of L‐aspartate to fumarate and NH3. It may play a significant role in the mineralization of organic N in soils. The management systems consisted of three cropping systems [continuous corn (Zea mays L.) (CCCC); corn‐soybean [Glycine max (L.) Merr.]‐corn‐soybean (CSCS); and corn‐oat (Avena sativa L.)‐meadow‐meadow (COMM) {meadow was a mixture of alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.)] at three long‐term field experiments initiated in 1954, 1957, and 1978 in Iowa and sampled in June 1987. The plots received 0 or 180 (or 200) kg ha?1 before corn and an annual application of 20 kg P and 56 kg K ha?1. The tillage systems (no‐tillage, chisel plow, and moldboard plow) were initiated in 1981 in Wisconsin and sampled in May 1991. The crop residue treatments were: bare, normal, mulch, and double (2×) mulch. The residue in the study was corn stalks. Results showed that, in general, crop rotation in combination with N fertilizer treatments affected aspartase activity in the following order: COMM>CSCS>CCCC. Because of nitrification of the NH4 + or NH4 +‐forming fertilizers, which resulted in decreasing the pH values, N fertilizer application, in general, decreased the aspartase activity in soils in the order: CCCC>CSCS>COMM. The effect of tillage and residue management practices on aspartase activity in soils showed a very wide variation. The trend was as follows: no‐till/2× mulch>chisel plow/mulch>moldboard plow/mulch>no‐till normal>chisel plow/normal>no‐till bare>moldboard plow/normal. Aspartase activity decreased with increasing depth in the plow layer (0–15 cm) of the no‐till/2× mulch. The decreased activity was accompanied by decreasing organic C and pH with depth. Statistical analyses using pooled data (28 samples) showed that aspartase activity was significantly, linearly correlated with organic C (r=0.78***) and exponentially with soil pH (r=0.53**). The variation in the patterns and magnitudes of activity distribution among the profiles of the four replicated plots was probably due to the spatial variability in soils.  相似文献   

2.
Effect of cropping systems on nitrogen mineralization in soils   总被引:3,自引:0,他引:3  
 Understanding the effect of cropping systems on N mineralization in soils is crucial for a better assessment of N fertilizer requirements of crops in order to minimize nitrate contamination of surface and groundwater resources. The effects of crop rotations and N fertilization on N mineralization were studied in soils from two long-term field experiments at the Northeast Research Center and the Clarion-Webster Research Center in Iowa that were initiated in 1979 and 1954, respectively. Surface soil samples were taken in 1996 from plots of corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) that had received 0 or 180 kg N ha–1 before corn and an annual application of 20 kg P and 56 kg K ha–1. N mineralization was studied in leaching columns under aerobic conditions at 30  °C for 24 weeks. The results showed that N mineralization was affected by cover crop at the time of sampling. Continuous soybean decreased, whereas inclusion of meadow increased, the amount of cumulative N mineralized. The mineralizable N pool (N o) varied considerably among the soil samples studied, ranging from 137 mg N kg–1 soil under continuous soybean to >500 mg N kg–1 soil under meadow-based rotations, sampled in meadow. The results suggest that the N o and/or organic N in soils under meadow-based cropping systems contained a higher proportion of active N fractions. Received: 10 February 1999  相似文献   

3.
Abstract

NutraSweet sludge, a by‐product of the production of the noncarbohydrate sweetener aspartame, is often used as a N fertilizer for crops. However, its performance with respect to inorganic N fertilizers is not well understood. This work was conducted to compare NutraSweet sludge to ammonium sulfate and urea as an N fertilizer for wheat and corn. Samples from two soils were mixed with one of the three N sources to achieve rates of 0, 25, 50, 100, or 150 mg N kg‐1. The treated soil was placed in pots, which were used to grow corn or wheat for 45 days in the greenhouse. Above‐ground dry matter yields of com and wheat increased as N rate increased from 0 to 50 or 100 mg N kg‐1. Above 100 mg N kg‐1, dry matter yields decreased. In general, at a given N rate, NutraSweet sludge produced dry matter yields that were equal to or higher than those obtained with ammonium sulfate or urea. The results suggest that NutraSweet sludge could be managed as an ammoniacal N fertilizer when applied to crops.  相似文献   

4.
Abstract

Numerous experiments have been conducted in Maryland and Pennsylvania since 1981 to determine if adding the nitrification inhibitor dicyandiamide (DCD) to an ammonium‐containing or producing N fertilizer source would increase the efficiency of that source with turfgrass, wheat, or corn. Greater yields per unit of fertilizer N were attained in three of eight experiments with wheat when DCD was included with an early spring application of N as urea or UAN. There was no significant beneficial effect of DCD on turf clipping yields or color in the 3 years of the turf study or on corn grain yields in the 22 field comparisons of N fertilizer with and without DCD. In five of the 22 comparisons with corn, there was a significantly lower grain yield with DCD than when it was not included. In three of these five cases, it was hypothesized that the lower yields with DCD were due to increased NH3 volatilization from urea or urea‐ammonium nitrate solutions containing DCD that were surface‐applied to no‐till corn. It was concluded that there was little likelihood that the inclusion of a nitrification inhibitor such as DCD with N fertilizer would increase N fertilizer efficiency with corn or turf on the predominantly well‐drained silt loam soils in the two states.  相似文献   

5.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

6.
Abstract

Experiments were conducted to assess the potential influence of a commercial product, EXTEND, on nitrogen transformations and movement in a sandy soil. Neither nitrapyrin (a commercially‐available nitrification inhibitor) nor EXTEND significantly affected the rate of NH4 +‐N or NO3 ‐N movement through a column of soil treated with urea‐ammonium nitrate liquid fertilizer. Nitrapyrin effectively inhibited nitrification, but the nitrification rate in the EXTEND treated systems were the same as control.  相似文献   

7.
Abstract

Tillage, cropping system, and cover crops have seasonal and long‐term effects on the nitrogen (N) cycle and total soil organic carbon (C), which in turn affects soil quality. This study evaluated the effects of crop, cover crop, and tillage practices on inorganic N levels and total soil N, the timing of inorganic N release from hairy vetch and soybean, and the capacity for C sequestration. Cropping systems included continuous corn (Zea mays L.) and stalk residue, continuous corn and hairy vetch (Vicia villosa Roth), continuous soybeans (Glycine max L.) plus residue, and two corn/soybean rotations in corn alternate years with hairy vetch and ammonium nitrate (0, 85, and 170 kg N ha?1). Subplot treatments were moldboard plow and no tillage. Legumes coupled with no tillage reduced the N fertilizer requirement of corn, increased plant‐available N, and augmented total soil C and N stores.  相似文献   

8.
Notice     
Abstract

Interest is increasing in alternative, reduced input cropping systems. Potential interactive effects of input additions or eliminations on crop yield must be delineated to develop the most resource‐efficient cropping systems. Information of this type is especially lacking in the southern United States. The principal objective of this field study was to determine the main and interactive effects of nitrogen (N) fertilization, herbicide, and insecticide on grain yields in a corn (Zea mays L.)‐soybean [(Glycine max (L.) Merr.)] rotation. Dryland studies were conducted for four years (1990–1993) on a Weswood silt loam soil (fine, mixed, thermic Fluventic Ustochrept). Variables included none or “optimal”; applications of N fertilizer, herbicide, and insecticide. Mean corn grain yield was increased 156% by N fertilization compared to the no N control. Herbicide significantly increased corn grain yield two of four years, while soil‐applied insecticide had no effect. Johnsongrass [Sorghum halepense (L.) Pers.] was identified as the primary competitive weed species in corn. No interactions of inputs were observed for corn grain yield. Nitrogen fertilization and herbicide did not affect soybean yield, but insecticide increased average soybean yield by 29%. Interactions of N fertilization and insecticide and herbicide and insecticide were significant for soybean yield.  相似文献   

9.
Abstract

A corn‐small grain cropping sequence resulted in a greater total grain yield than corn or small grain alone or grain sorghum double cropped with small grain. Drought restricted yield responses to N, P and K in non‐irrigated plots but under irrigation grain yield for each cropping sequence was directly related to fertilizer applied. All fertilizer treatments increased soil acidity. Phosphorus and K applied at 26 and 50 kg/ha, respectively for each crop in the sequence maintained P and K levels in the soil. After three years, the high rate of fertilizer (87 and 166 kg/ha of P and K, respectively) resulted in greater soil P and K values than the low rate of fertilizer.  相似文献   

10.
Glycosidases are a group of soil enzymes that play a major role in degradation of carbohydrates. This study was conducted to assess the impact of crop rotation and N fertilization on the activities of α‐ and β‐glucosidases and α‐ and β‐galactosidases in plots of two long‐term field experiments at the Clarion‐Webster Research Center (CWRC) and Northeast Research Center (NERC) in Iowa. Surface‐soil (0–15 cm) samples were taken in 1996 and 1997 in corn (Zea mays L.), soybean (Glycine max (L.) Merr.), oats (Avena sativa L.), or meadow (alfalfa) (Medicago sativa L.) plots that received 0 or 180 kg N ha–1, applied as urea before corn, and an annual application of 20 kg P ha–1 and 56 kg K ha–1. Activities of the four glycosidases were significantly affected by crop rotations in both years at the two sites but not by nitrogen application. In general, higher activities were observed in plots under meadow or oat and the lowest in continuous corn (CWRC) and soybean (NERC). Four‐year rotation showed the highest activity, followed by 2‐year rotation and monocropping systems. Linear‐regression analyses indicated that, in general, the activities of the glycosidases were significantly correlated with microbial‐biomass C (r > 0.302, p ≤ 0.05) and microbial‐biomass N (r > 0.321, p ≤ 0.05), organic‐C (r > 0.332, p ≤ 0.05) and organic‐N (r > 0.399, p ≤ 0.01) contents of the soils. Results of this work suggest that multicropping stimulated the activities of the glycosidases. The specific activities of the glycosidases in soils of the two sites studied, expressed as g p‐nitrophenol released per kg of organic C, differed among the four enzymes. The lowest values were obtained for β‐galactosidase and α‐glucosidase, followed by α‐galactosidase and β‐glucosidase.  相似文献   

11.
Abstract

Laboratory and greenhouse studies were conducted on a moderately fertile Taloka (fine, mixed, thermic mollic Albaqualf) silt loam and a low fertility Leadvale (fine‐silty, siliceous, thermic typic Fragiudult) silt loam to evaluate nutrient release and fertilizer value of soybean [Glycine max (L.) Herr.] and corn (Zea mays L.) residues as compared to the inorganic fertilizer 13–13–13–13 (N‐P2O5‐K2O‐S). Residues and the inorganic fertilizer were applied at 50 mg N/kg in a incubation study and at 25 and 50 mg N/kg in a greenhouse study. The incubation study indicted that carbon dioxide (CO2) evolution and nitrogen (N) mineralization followed a identical sequence: soybean > corn residues, similar to residue N concentration and carbon/nitrogen (C/N) ratio sequence. Application of corn residues produced N immobilization in both soils (‐20 mg N/kg soil), whereas soybean increased inorganic soil N in the Leadvale soil (3 mg N/kg soil) and particularly in the Taloka soil (17 mg N/kg soil). The greenhouse study showed the superiority of the inorganic fertilizer over corn and soybean residues for sorghum‐sudan yield, and N, phosphorus (P), potassium (K), and sulfur (S) total uptake. No significant differences were found among the residues and between residues and the control with the exception of the higher soybean rate for total N uptake in the Taloka soil, and the higher corn and soybean residue rate in the Leadvale soil for total K uptake. It also appeared that soybean residues provided a substantial amount of N and S to sorghum‐sudan. Higher rates of both soybean and corn residues constituted a prime source of K, particularly in the Landvale soil which had a low exchangeable soil K level.  相似文献   

12.
In recent years, organic agriculture has been receiving greater attention because of the various problems like deterioration in soil health and environmental quality under conventional chemical‐intensive agriculture. However, little information is available on the comparative study related to the impact of use of mineral fertilizers and organic manures on the soil quality and productivity. A long‐term field experiment was initiated in 2001 to monitor some of the important soil‐quality parameters and productivity under soybean–wheat crop rotation. The treatments consisted of 0, 30, and 45 kg N ha–1 for soybean and of 0, 120, and 180 kg N ha–1 for wheat. The entire amount of N was supplied to both the crops through urea and farmyard manure (FYM) alone or in combination at 1:1 ratio. Results indicated that Walkley‐and‐Black C (WBC; chromic acid–oxidizable) exhibited a marginal increase under only organic treatments as compared to control treatment (without fertilizers and manure) after completion of five cropping cycles. In case of labile‐C (KMnO4‐oxidizable) content in soil, relatively larger positive changes were recorded under organic, mixed inputs (integrated) and mineral fertilizers as compared to WBC. Maximum improvement in the values of C‐management index (CMI), a measure of soil quality was recorded under organic (348–362), followed by mixed inputs (268–322) and mineral fertilizers (198–199) as compared to the control treatment after completion of five cropping cycles. Similarly there was a substantial increase in KCl‐extractable N; in Olsen‐P; as well as in DTPA‐extractable Zn, Fe, and Mn under organic treatments. Although labile soil C positively contributed to the available N, P, K, Zn, Fe, and Mn contents in soil, it did not show any relationship with the grain yield of wheat. After completion of the sixth cropping cycle, organic treatments produced 23% and 39% lower grain yield of wheat as compared to that under urea‐treated plots. Relatively higher amount of mineral N in soil at critical growth stages and elevated N content in plant under mineral‐fertilizer treatments compared to FYM treatments were responsible for higher yield of wheat under mineral fertilizers.  相似文献   

13.
《Journal of plant nutrition》2013,36(7):1383-1402
Abstract

Narrow‐row soybean [Glycine max (L.) Merr.] production in corn [Zea mays L.]–soybean rotations results in various distances of soybean rows from previous corn rows, yet little is known about soybean responses to proximity to prior corn rows in no‐till systems. The objective of this study was to evaluate the impacts of preceding corn rows on potassium (K) nutrition and yield of subsequent no‐till soybeans. Four field experiments involving a corn–soybean rotation were conducted on long‐term no‐till fields with low to medium K levels from 1998 to 2000 near Paris and Kirkton, Ontario, Canada. In the corn year, treatments included K application rate and placement in conjunction with tillage systems or corn hybrids. Before soybean flowering, soil exchangeable K concentrations (0–20 cm depth) in previous corn rows were significantly higher than those between corn rows. At the initial flowering stage, trifoliate leaf K concentrations of soybeans in preceding corn rows were 2.0 to 5.3 g kg?1 higher than those from corresponding plants between corn rows. Yield of no‐till soybeans in previous corn rows increased 10 to 44% compared to those between previous corn rows. Positive impacts of prior corn rows on soil K fertility, soybean leaf K, and soybean yield occurred even when K fertilizer was not applied in the prior corn season. Deep banding of K fertilizer tended to accentuate row vs. between‐row effects on soybean leaf K concentrations in low‐testing soils. Corn row effects on soybeans were generally not affected by either tillage system or corn hybrid employed in the prior corn crop. Potassium management strategies for narrow‐row no‐till soybeans should take the potential preceding corn row impacts on soil K distribution into account; adjustments to current soil sampling protocols may be warranted when narrow‐row no‐till soybeans follow corn on soils with low to medium levels of exchangeable K.  相似文献   

14.
Abstract

Preliminary soil incubation studies established that the nitrification inhibitor, Dicyandiamide (DCD), could maintain the ratio of NH.‐N to NO3‐N at predetermined levels. When one part DCD was mixed with 10 parts of the ammonium fertilizer prior to incorporation with the soil, nitrification was inhibited for at least six weeks. In a greenhouse experiment, wheat was grown to maturity and millet to the flowering stage in pots containing nitrate and ammonium fertilizers treated with DCD. Soil analyses during the plant growth period indicated that ammonium oxidation in soil was effectively inhibited. Plants of both species exposed to ammonium only with DCD produced lower yields than those exposed to a mixture of nitrate and ammonium nitrogen with DCD. Plants supplied with nitrate‐only gave somewhat lower yields than the mixtures. The nitrate‐only treatments resulted in the lowest accumulation of reduced nitrogen compounds in shoots of both species. Magnesium uptake by millet and calcium and magnesium uptake by wheat were reduced as the proportion of ammonium in soil was increased.  相似文献   

15.
Perennial biofuel crops such as Miscanthus and switchgrass are thought to increase soil organic matter and therefore may increase soil nitrogen (N) mineralization rates. Our objective was to evaluate a range of N-mineralization indices for soils with established biofuel crops and compare these results with soils in a traditional corn and soybean rotation. We sampled surface soil (0–10 cm deep) from switchgrass (6 years after establishment) and Miscanthus plots (5 years) in a high-organic-matter Mollisol. The longest potential N mineralization index, a 24-day incubation, was significantly greater in Miscanthus soils compared to switchgrass and corn–soybean. In addition, 7-day anaerobic N and potassium chloride–extractable ammonium N were both greater in Miscanthus soils compared to switchgrass and corn–soybean. Our results do support our hypothesis that N-mineralization rates are greater in soils under biofuel production.  相似文献   

16.
Effect of cropping systems on phosphatases in soils   总被引:2,自引:0,他引:2  
Phosphatases are widely distributed in nature and play a major role in phosphorus nutrition of plants. The effects of crop rotations and nitrogen fertilization on the activities of phosphatases (acid phosphatase, alkaline phosphatase, and phosphodiesterase) were studied in soils from two long‐term cropping systems at the Northeast Research Center (NERC) in Nashua and the Clarion Webster Research Center (CWRC) in Kanawha, Iowa, USA. Surface soils (0—15 cm) were taken in 1996 and 1997 from replicated field plots in corn, soybeans, oats, or meadow (alfalfa) that received 0 or 180 kg N ha—1 before corn. Because of differences in organic C contents among soils of the two sites, the soils from the CWRC sites contained greater enzyme activity values than those from the NERC site. Plots under oats or meadow showed the greatest activity values, whereas those under continuous corn at the CWRC site and soybean at the NERC site showed the least activities. Analysis of variance indicated that the activities of the phosphatases were significantly affected by crop rotation (P < 0.001) in both years at the NERC site but not at the CWRC site. Nitrogen fertilization affected the activity of acid phosphatase in soils from the CWRC site in both years and alkaline phosphatase only in 1997; but it did not affect the activities of the phosphatases in the soils from the NERC site. With the exception of alkaline phosphatase (CWRC) and phosphodiesterase (NERC) in soils sampled in 1997, activities of alkaline phosphatase and phosphodiesterase were significantly correlated with microbial biomass C (C mic) in soils from both sites and years, with r values ranging from 0.366* to 0.599***. Cropping systems and N fertilization affected the specific activities of phosphomonoesterases, especially acid phosphatase, but not of phosphodiesterase. Regression analysis showed that activities of phosphatases were significantly correlated with organic C contents of soils from the NERC site but not from the CWRC site.  相似文献   

17.
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3--N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.  相似文献   

18.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

19.
ABSTRACT

Cool and wet soils at the time of soybean [Glycine max (L.) Merrill] planting in the northern Great Plains may reduce early crop growth and retard nitrogen (N) fixation. Application of N as starter fertilizer may increase initial growth of soybean, but may also negatively impact N fixation when environmental conditions improve. The objective of this study was to evaluate the impact of low rates of N applied at planting on soybean N fixation and crop growth in the northern Great Plains. A field experiment (2000–2002) was established within a two-year corn [Zea mays (L.)] soybean rotation using a split-plot design with four replications. Whole plots were no-tillage (NT) and conventional tillage (CT) and the split plots were starter fertilizer (two sources × four rates) treatments. Nitrogen sources were either ammonium nitrate (AN) or urea (UR) each applied at 0, 8, 16, and 24 kg N ha?1. Biomass in both 2000 and 2001 growing seasons increased significantly with increasing N rate at both growth stages (R1 and R7) and at the R1 stage in 2002. Ureide concentration and relative ureide decreased with increasing N rate at the R1 stage in all years, indicating a decrease in N fixation up to that point in crop development. This decrease in N fixation was not present at the R7 stage, but the significant increase in plant growth including yield was still present, indicating possibly that starter fertilizer can positively impact soybean production in the cool environmental conditions of the northern Great Plains. However, the positive impact on plant growth and yield is dependent on in-season environmental conditions and time of planting.  相似文献   

20.
Abstract

The effectiveness of Dwell, a nitrification inhibitor, was tested in a greenhouse with two fertilizers and three Arizona soils. Tomato plants (Lycopersicum esculentum Mill., cv. Row Pak) were grown in ABS plastic columns 10 cm diameter and 50 cm long containing 4500 g soil. Urea and ammonium sulfate (AS) were applied at 112 and 224 kg N/ha and Dwell (5‐ethoxy‐3‐trichloromethyl‐l,2,4‐thiadiazole) was applied at rates of 0 and 1.27 kg/ha of active ingredient. Both fertilizers and Dwell were added by mixing uniformly or in a band. Dwell increased ? uptake by 41%. The highest ? uptake was with Dwell with the highest urea rate, but Dwell was effective with both fertilizers in all soils. The lowest response to Dwell was with AS‐Laveen loam treatment, whereas the highest response, but the lowest ? uptake, was with urea ‐ Vinton loamy sand treatment. Dwell did not affect the inorganic‐N contents of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号