首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paddy soils in subtropical China are usually deficient in phosphorus (P) and require regular application of chemical fertilizers. This study evaluated the effects of chemical fertilizers on the distribution of soil organic carbon (SOC), total nitrogen (N) and available P, and on the activity of the associated enzymes in bulk soil and aggregates. Surface soils (0–20 cm) were collected from a 24‐yr‐old field experiment with five treatments: unfertilized control (CK), N only (N), N and potassium (NK), N and P (NP), and N, P and K (NPK). Undisturbed bulk soils were separated into >2, 1–2, 0.25–1, 0.053–0.25 and <0.053 mm aggregate classes using wet sieving. Results showed that both NP‐ and NPK‐treated soils significantly increased mean weight diameter of aggregates, SOC, available P in bulk soil and aggregates, as compared to CK. Most SOC and total N adhered to macro‐aggregates (>0.25 mm), which accounted for 64–81% of SOC and 54–82% of total N in bulk soil. The activities of invertase and acid phosphatase in the 1–2 mm fraction were the highest under NPK treatment. The highest activity of urease was observed in the <0.053 mm fraction under NP treatment. Soil organic carbon and available P were major contributors to variation of enzyme activities at the aggregate scale. In conclusion, application of NP or NPK fertilizers promoted the formation of soil aggregates, nutrient contents and activities of associated enzymes in P‐limited paddy soils, and thus enhanced soil quality.  相似文献   

2.
Soil water-stable aggregation is an important process for carbon sequestration and is a key factor controlling soil sustainability and resilience; therefore, the objectives of the present study were to (1) evaluate the differences in soil organic matter state, its specific and labile fractions and their importance in the formation of water-stable aggregates in vineyard soils differing in their genesis and texture under different soil management (vineyard rows – tilled and grassed in-between strips), and (2) estimate the ability of the vineyard soils to sequester soil organic carbon (SOC) into water-stable macro-aggregates (WSAma). The results showed that the WSAma content of the soils ranged from 47% to 97%. Soils with grasses had a higher SOC and labile carbon (CL) contents than the bulk soil and, as a result, the higher total WSAma content. Soils ranged in a decreasing order in their ability to sequester SOC and CL from bulk soil to WSAma: Haplic and Stagni-Haplic Luvisols > Calcaric Fluvisol = Rendzic Leptosol > Haplic and Luvi-Haplic Chernozem > Dystric and Eutric Cambisols. Our results showed that the maximum ratio of SOC content in WSAma to that in bulk soil was 1.0 at the maximum WSAma content regardless of the soil type. An increase in the ratio above this threshold value (1.0) resulted in a decrease in WSAma content.  相似文献   

3.
Organomineral complexes form the basis of soil fertility and have significant effects on the soil environment. In this research, we aimed to study the composition and organic carbon (C) distribution of organomineral complexes in a black soil under different land uses and management by means of ultrasonic dispersion and particle assortment. The results showed that the fine sand–size complex (20–200 μm) was dominant under different land uses and management. Silt-size (2–20 μm) and fine sand-size content increased with nitrogen and phosphorus application (NP) and NPM (NP together with organic manure) treatment, whereas clay-size (0–2 μm) content decreased. The content of <20-μm complex in GL (grassland) was less than in BL (bareland), and >20-μm complex showed the opposite trend. The silt-size content increased with the increase of SOC (soil organic C). A negative relationship was observed between the clay-size complex content and SOC content. Land-use change resulted in different dynamics in C sequestration in soil. The content of <20-μm complex in GL was more than in NP and NPM; GL has potential to sequester more C than tilled soil because of the stability of SOC stored in the <20-μm fraction. Long-term application of organic manure and vegetation restoration increased the OC (organic carbon) content of all sizes of complexes; the OC contents of clay-size complex were in the order GL > NPM > NP > BL > NF (no fertilizer applied) and increased the proportion of OC in >20-μm complexes, indicating that OC content in sand-size fractions increased with total SOC content.  相似文献   

4.
This study investigated long‐term effects of soil management on size distribution of dry‐sieved aggregates in a loess soil together with their organic carbon (OC) and their respiratory activity. Soil management regimes were cropland, which was either abandoned, left bare fallow or cropped for 21 yr. Abandonment increased the abundance of macroaggregates (>2 mm) in the surface soil layer (0–10 cm) and reduced that of microaggregates (<0.25 mm) relative to Cropping, whereas the Fallow treatment reduced the abundance of macroaggregates at depths of 0–10 and 10–20 cm. All treatments yielded similar aggregate size distributions at a depth of 20–30 cm. The SOC content of aggregate size fractions in the surface soil from the Abandoned plots was greater (by 1.2–4.8 g/kg) than that of the corresponding fractions from the Cropped plots, but the opposite trend was observed in the subsurface soils. Conversely, the Fallow treatment reduced the SOC content of every aggregate size fraction. Smaller aggregates generally exhibited greater cumulative levels of C mineralization than larger ones. However, the bulk of the SOC losses from the soils via mineralization was associated with aggregates of >2 mm. Abandonment significantly increased the relative contribution of macroaggregates (>2 mm) to the overall rate of SOC loss, whereas the Fallow treatment significantly reduced the contribution of 0.25–2 mm aggregates to total SOC loss in the surface soil while substantially increasing their contribution in the subsurface soil.  相似文献   

5.
土地利用变化与长期施肥对黑土有机碳密度的影响   总被引:4,自引:2,他引:4  
土壤管理方式影响土壤碳库储量,进而影响土壤的源汇功能。该研究通过测定草地(GL)、裸地(BL)、农田无肥(NF)、化肥(NP)和化肥配施有机肥(NPM)处理的有机碳含量和土壤容重,估算了不同土地利用和施肥管理方式下的土壤有机碳密度的变化及农田的固碳潜力。结果表明,土壤有机碳含量表层最高而且变化较大,向下逐渐降低且变化较小。对于不同植被覆盖的3个处理,草地0-20cm土层土壤有机碳含量比裸地和无肥分别高出20.6%和16.4%。对于不同施肥管理方式,化肥有机肥配施土壤有机碳含量比无肥和化肥分别高出25.4%和15.5%,所有处理有机碳含量在160-200cm土层没有显著差异。0-40cm土层及0-100cm土体有机碳密度的变化趋势是NPMGLNPNFBL;40cm以下有机碳储量无规律性变化,表现出较大的变异性,这可能与土壤本身的空间异质性有关。草地100cm土体有机碳储量比裸地和无肥分别增加6.8%和5.7%,裸地和无肥无显著差异;化肥加有机肥100cm土体有机碳储量比化肥和无肥分别增加10.4%和5.9%。经估算,松嫩平原黑土区0-100cm土体有机碳库储量约为1.35Pg,农田有机培肥后碳库储量可达到0.96Pg,其固碳潜力约为0.05Pg。0-100cm土体有机碳密度与0-20cm土层有机碳含量及有机碳密度呈极显著正相关(r=0.99;r=0.97,P0.01),表明土壤表层有机碳含量及密度对0-100cm土壤有机碳库具有决定作用。  相似文献   

6.
Drought has significant effects on soil physicochemical properties and thereby crop productivity. Intercropping is a traditional agricultural practice with a good ecological effect and can improve soil structure. However, the effects of intercropping on soil aggregate distribution and associated organic carbon (OC) and nitrogen (N) compared with monoculture under drought remains unclear. Therefore, a two-year controlled rainfall field (i.e., 30–40 days of 100% rainfall reduction during crop growth) was carried out to examine the effects of intercropping and short-term drought on soil aggregate stability and associated OC and N in Northeast China. Results showed that soil OC and N were predominant in macroaggregates (2–0.25 mm), accounting for 39%–51% of SOC, 36%–51% of N at 0–10 cm depth, and 44%–67% of SOC, 43%–66% of N at 10–20 cm depth. After 2 years of a rainfall reduction treatment, large macroaggregates (>2 mm) increased by 84.7% at 0–10 cm and the aggregate stability improved. There was no difference in the mass of aggregates between monoculture and intercropping, but short-term drought increased >0.25 mm aggregates and stability in intercropping soil at 0–10 cm depth. Moreover, drought significantly increased bulk soil OC in 10–20 cm but decreased the OC and N concentrations in large macroaggregates and silt + clay fractions (<0.053 mm) in 0–10 cm. Compared with the monoculture, intercropping enhanced OC and N concentrations in aggregates, and decreased soil C/N ratio. Therefore, these findings provide insights into how intercropping and short-term drought interactively influence soil aggregation, and C and N processes.  相似文献   

7.
The phosphorus (P) forms in long-term fertilization determine the fate and transport of P in soil. However, the fate of various pools of organic P of added P in the long-term measured with sequential chemical fractionation is not well-understood. Four soil physical aggregates (>250, 125–250, 63–125 and <63 μm) from 0- to 20-cm depth after 35 years of long-term fertilization treatments including control (CK), nitrogen and phosphorus fertilizer (NP) and NP combined with farmyard manure (NPM) under continuous winter wheat were separated using settling tube apparatus. Results showed that the application of long-term P fertilization had no apparent effects on promoting the mass proportion of soil aggregates except for >250 μm, where the NP and NPM treatments significantly increased the mass proportion by 60% and 70% over CK, respectively. Compared with CK, P fertilizer (NP and NPM) treatments significantly increased organic P (Po) contents in each size aggregate. In particular, mean labile Po increased by 35% and 246%, moderately labile Po by 125% and 161%, nonlabile Po by 105% and 170% and total Po (TPo) by 101% and 178%, respectively, under NP and NPM treatments, respectively. There was a significant correlation between soil organic carbon (SOC) and Po fractions. SOC was exponentially positively correlated with labile Po but linearly positively correlated with moderately labile Po, nonlabile Po and TPo fractions among soil aggregates. A reduced C:Po ratio (<100) in soil aggregates among treatment indicates a large amount of available P accumulated in soils, and soil P loss risk in the study site is still high. Our results show that the Po pool measured by sequential chemical fractionation may represent an important, yet often overlooked, source of P in agriculture ecosystems. According to the result, long-term mineral P fertilizer combined with organic amendments better sustains soil structural stability in large aggregates, contributing more Po availability in the moderately labile P followed by labile P in soil aggregates.  相似文献   

8.
The effects of tillage on soil organic carbon (SOC) and nutrient content of soil aggregates can vary spatially and temporally, and for different soil types and cropping systems. We assessed SOC and nutrient levels within water‐stable aggregates in ridges with no tillage (RNT) and also under conventional tillage (CT) for a subtropical rice soil in order to determine relationships between tillage, cation concentrations and soil organic matter. Surface soil (0–15 cm) was fractionated into aggregate sizes (>4.76 mm, 4.76–2.00 mm, 2.00–1.00 mm, 1.00–0.25 mm, 0.25–0.053 mm, <0.053 mm) under two tillage regimes. Tillage significantly reduced the proportion of macroaggregate fractions (>2.00 mm) and thus aggregate stability was reduced by 35% compared with RNT, indicating that tillage practices led to soil structural change for this subtropical soil. The patterns in SOC, total N, exchangeable Ca2+, Mg2+ and total exchangeable bases (TEB) were similar between tillage regimes, but concentrations were significantly higher under RNT than CT. This suggests that RNT in subtropical rice soils may be a better way to enhance soil productivity and improve soil C sequestration potential than CT. The highest SOC was in the 1.00–0.25 mm fraction (35.7 and 30.4 mg/kg for RNT and CT, respectively), while the lowest SOC was in microaggregate (<0.025 mm) and silt + clay (<0.053 mm) fractions (19.5 and 15.7 mg/kg for RNT and CT, respectively). Tillage did not influence the patterns in SOC across aggregates but did change the aggregate‐size distribution, indicating that tillage affected soil fertility primarily by changing soil structure.  相似文献   

9.
土壤的团聚状况是土壤重要的物理性质之一,团聚体数量是衡量和评价土壤肥力的重要指标。施用有机肥是提高土壤有机碳(SOC)含量、促进土壤团聚体形成和改善土壤结构的重要措施。本文以华北地区曲周长期定位试验站的温室土壤和农田土壤为研究对象,运用湿筛法,对比研究施用化肥(NP)、有机肥加少量化肥(NPM)、单施有机肥(OM)3种施肥方式对温室和农田两种利用方式土壤水稳性团聚体含量、分布和稳定性的影响,以提示施肥措施对不同土地利用方式土壤水稳性团聚体特征的影响。结果表明:在温室土壤和农田土壤中,OM处理较NP和NPM处理显著降低了土壤容重,增加了土壤有机质含量(P0.05),且在0~10 cm土层中效果最为明显。其中在温室土壤0~10 cm土层,单施有机肥处理(OM1)的土壤容重为1.17 g·cm~(-3),分别较施用化肥(NP1)和有机肥加少量化肥(NPM1)处理降低12.0%和8.6%,OM1的土壤有机质含量为54.81 g·kg~(-1),较NP1和NPM1增加104.8%和35.7%;在农田土壤0~10 cm土层,单施有机肥处理(OM2)的土壤容重为1.19 g·cm~(-3),较施用化肥(NP2)、有机肥加少量化肥(NPM2)分别降低8.5%和7.0%,OM2的土壤有机质为22.67 g·kg~(-1),较NP2、NPM2分别增加23.1%和15.0%。温室土壤和农田土壤中,0~10 cm、10~20 cm和20~40 cm层土壤团聚体的平均重量直径(MWD)和几何平均直径(GMD)均为OMNPMNP;OM处理下水稳性团聚体的分形维数(D)值最低,NP处理下最大。OM处理显著降低0~20 cm土层内水稳性团聚体的D值,表层0~10 cm土层效果最为明显,土壤结构明显得到改善;相比农田土壤,温室土壤稳定性指标变化最为明显,团聚体结构改善效果最好。土壤有机质含量与0.25 mm水稳性团聚体含量间呈极显著正相关关系(P0.001),说明土壤有机质含量越高,0.25 mm水稳性团聚体的含量就越高,土壤团聚体水稳性越强,土壤结构越稳定。因此有机施肥方式能在补充土壤有机碳库和有效养分含量的同时,显著增加土壤中大团聚体的含量及其水稳性,是提高华北平原农田土壤、尤其是温室土壤结构稳定性和实现土壤可持续发展的有效措施。  相似文献   

10.
The proportional differences in soil organic carbon (SOC) and its fractions under different land uses are of significance for understanding the process of aggregation and soil carbon sequestration mechanisms. A study was conducted in a mixed vegetation cover watershed with forest, grass, cultivated and eroded lands in the degraded Shiwaliks of the lower Himalayas to assess land‐use effects on profile SOC distribution and storage and to quantify the SOC fractions in water‐stable aggregates (WSA) and bulk soils. The soil samples were collected from eroded, cultivated, forest and grassland soils for the analysis of SOC fractions and aggregate stability. The SOC in eroded surface soils was lower than in less disturbed grassland, cultivated and forest soils. The surface and subsurface soils of grassland and forest lands differentially contributed to the total profile carbon stock. The SOC stock in the 1.05‐m soil profile was highest (83.5 Mg ha−1) under forest and lowest (55.6 Mg ha−1) in eroded lands. The SOC stock in the surface (0–15 cm) soil constituted 6.95, 27.6, 27 and 42.4 per cent of the total stock in the 1.05‐m profile of eroded, cultivated, forest and grassland soils, respectively. The forest soils were found to sequester 22.4 Mg ha−1 more SOC than the cultivated soils as measured in the 1.05‐m soil profiles. The differences in aggregate SOC content among the land uses were more conspicuous in bigger water‐stable macro‐aggregates (WSA > 2 mm) than in water‐stable micro‐aggregates (WSA < 0.25 mm). The SOC in micro‐aggregates (WSA < 0.25 mm) was found to be less vulnerable to changes in land use. The hot water soluble and labile carbon fractions were higher in the bulk soils of grasslands than in the individual aggregates, whereas particulate organic carbon was higher in the aggregates than in bulk soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Glomalin, a substance produced by arbuscular mycorrhizal fungi, is reported to play a role in soil aggregation, but this role has been questioned in soils rich in calcium carbonate. We studied the relationship between aggregation stability and glomalin in a Haplic Calcisol comparing abandoned and active cultivation of olive groves. Abandonment was associated with increases in soil organic carbon, the percentage of water stable aggregates (WSA1-2mm), and easily extractable and total Bradford-reactive soil protein. WSA1-2mm was strongly positively correlated with both easily extractable and total Bradford-reactive soil protein. While easily extractable Bradford-reactive soil protein measured in both stable and unstable aggregates did not show any significant differences, Bradford-reactive soil protein was twice as high in stable than in unstable aggregates under both tillage and abandonment. Our results suggest that Bradford-reactive soil protein influences aggregate stability, even in soils with low organic matter and high calcium carbonate contents. However, more research is needed to elucidate the role of easily extractable Bradford-reactive soil protein in soil aggregation.  相似文献   

12.
Abstract

Soil aggregate-size distribution and soil aggregate stability are used to characterize soil structure. Quantifying the changes of structural stability of soil is an important element in assessing soil and crop management practices. A 5-year tillage experiment consisting of no till (NT), moldboard plow (MP) and ridge tillage (RT), was used to study soil water-stable aggregate size distribution, aggregate stability and aggregate-associated soil organic carbon (SOC) at four soil depths (0–5, 5–10, 10–20 and 20–30 cm) of a clay loam soil in northeast China. Nonlinear fractal dimension (Dm) was used to characterize soil aggregate stability. No tillage led to a significantly greater aggregation for >1 mm aggregate and significant SOC changes in this fraction at 0–5 cm depth. There were significant positive relationships between SOC and >1 mm aggregate, SOC in each aggregate fraction, but there was no relationship between soil aggregate parameters (the proportion of soil aggregates, aggregate-associated SOC and soil stability) and soil bulk density. After 5 years, there was no difference in Dm of soil aggregate size distribution among tillage treatments, which suggested that Dm could not be used as an indicator to assess short-term effects of tillage practices on soil aggregation. In the short term, > 1 mm soil aggregate was a better indicator to characterize the impacts of tillage practices on quality of a Chinese Mollisol, particularly in the near-surface layer of the soil.  相似文献   

13.

Purpose

Because the stability of soil aggregates is affected by many factors, we studied aggregates formed in forest and agricultural soils in different soil types (Cambisols, Luvisols, Chernozems). We evaluated: (1) the differences in water-stable aggregates (WSA) as related to soil type and land management and (2) the relationships between quantitative and qualitative parameters of soil organic matter (SOM), particle-size distribution and individual size classes of WSA.

Materials and methods

Soil samples were taken from three localities (Sobě?ice, Báb, Vieska nad ?itavou). Each study locality included both a forest and an agricultural soil-sampling area.

Results and discussion

We found that in forest soils, the proportion of water-stable macroaggregates (WSAma) relative to water-stable microaggregates (WSAmi) was greater than in agricultural soils. When all soils were assessed together, positive statistically significant correlations were observed between the size classes WSAma > 1 mm and organic carbon (Corg) content; however, the WSAmi content was negatively correlated with Corg content. Favorable humus quality positively influenced the stabilization of WSAma > 5 mm; however, we found it had a negative statistically significant effect on stabilization of WSAma 1–0.25 mm. In agricultural soils, the stabilization of WSAma was associated with humified, i.e., stable SOM. The WSAma content was highly positively influenced mainly by fulvic acids bound with clay and sesquioxides; therefore, we consider this humus fraction to be a key to macroaggregate stability in the studied agricultural soils. On the other side, all fractions of humic and fulvic acids participated on the formation of WSAma in forest soil, which is a major difference in organic stabilization agents of macroaggregates between studied forest and agricultural soils. Another considerable difference is that WSAmi in agricultural soils were stabilized primarily with humic acids and in forest soils by fulvic acids. Moreover, in forest soils, a higher content of labile carbon in WSA had a positive effect on formation of WSAmi.

Conclusions

The observed changes in individual size classes of WSA and interactions between SOM, particle-size distribution, and WSA have a negative impact on soil fertility and thereby endanger agricultural sustainability.
  相似文献   

14.
【目的】研究小麦/玉米轮作体系不同施肥方式下土壤有机碳(SOC)和全氮(TN)在(?)土不同水稳性团聚体中的分布特征,以期深入理解不同施肥方式对土壤碳、氮固持的机制。【方法】采集(?)土21年长期肥料定位试验不同施肥处理0-10 cm和10-20 cm土层土样,分析其水稳性团聚体(2 mm、2~1 mm、1~0.5 mm、0.5~0.25 mm以及0.25 mm)有机碳和全氮的分布特征。试验设不施肥(CK),化肥氮磷钾配施(N、NP、NK、PK、NPK)和秸秆还田配施氮磷钾(SNPK)以及两个水平有机肥与氮磷钾配施(M1NPK、M2NPK)9个处理。【结果】长期施肥0-10 cm土层土壤团聚体SOC和TN含量明显高于10-20 cm,平均增幅20%以上。2~1 mm或1~0.5mm团聚体中SOC和TN的含量最高,0.25 mm团聚体最低。长期不施磷肥处理的土壤团聚体SOC和TN含量均与CK相似。NP、NPK以及SNPK处理,0-10 cm土层SOC较CK分别增加16%~43%、9%~40%和22%~47%;TN增幅分别为28%~48%、39%~61%和39%~91%。10 20 cm土层,NP、NPK以及SNPK处理2mm、2~1 mm、1~0.5 mm土壤团聚体SOC较CK增幅分别为35%~49%、17%~40%和45%~46%,TN增幅分别为44%~47%、39%~54%和54%~64%。长期有机肥与氮磷钾配施处理(M1NPK、M2NPK),0-10 cm土层的团聚体SOC平均较CK分别增加68%~122%和61%~163%,TN平均分别增加84%~133%和97%~175%;10-20 cm土层,SOC较CK平均增幅分别为20%~61%和39%~118%,TN增幅平均分别为43%~86%和107%~136%。SOC和TN主要储存于0.25 mm团聚体中(40%)2~1 mm团聚体储存最少(10%)。长期不施氮或不施磷对SOC和TN在团聚体中的储存比例基本没有影响。长期NP、NPK以及M1NPK、M2NPK均降低了各土层SOC和TN在2 mm或2~1 mm的储存比例增加了在1~0.25 mm团聚体储存比例。2 mm或2~1 mm团聚体的C/N比值高于微团聚体(0.25 mm),而与CK相比,长期施肥降低了土壤团聚体的C/N比值。【结论】关中地区(?)土长期偏施化肥对有机碳和全氮在团聚体的含量及分布没有显著影响而长期氮磷或氮磷钾化肥配合、氮磷钾与有机物配合均明显增加土壤团聚体的有机碳及全氮含量,特别是长期氮磷钾配合有机肥能显著增加土壤1~0.25 mm团聚体对土壤有机碳和全氮的固存比例,提高土壤有机碳和全氮储量减少温室气体的排放。  相似文献   

15.
土壤团聚体的数量和质量直接影响着土壤性质和有机碳固存。研究不同施肥措施及施肥年限对采煤塌陷区复垦土壤团聚体的重量分布比例及其稳定性的影响,可为该区农业生产和土壤质量提升提供科学依据。采集复垦6,11年定位试验不同施肥处理耕层(0—20 cm)土样,选取不施肥(CK)、平衡施氮磷钾化肥(NPK)、单施有机肥(M)、有机无机肥配施(MNPK)4个处理,利用干筛法和湿筛法获得4种粒径的团聚体/粉黏粒组分(>2,0.25~2,0.053~0.25,<0.053 mm),用>0.25 mm团聚体的含量(R0.25)、平均重量直径(MWD)、团聚体破坏率(PAD)和土壤不稳定团粒指数(ELT)表示团聚体的稳定性,同时测定土壤有机碳含量。结果表明:施肥年限较施肥措施对土壤团聚体的含量及稳定性产生了更显著的影响。干筛条件下,施肥6,11年均显著降低了各处理0.053~0.25 mm团聚体和<0.053 mm组分的含量,降幅分别为68.39%~87.37%,69.63%~78.32%(6年)和90.01%~93.68%,78.29%~83.93%(11年);湿筛条件下,施肥11年显著提高了各处理>2 mm团聚体的含量,增幅达473.35%~645.16%,但是显著降低了0.053~0.25 mm团聚体的含量,降幅为43.67%~57.54%。土壤团聚体的稳定性也随着施肥年限的增加而逐渐增强,表现为DR0.25、WR0.25和MWD值呈增加趋势,而PAD和ELT值呈降低趋势。土壤有机碳含量与DR0.25、WR0.25、MWD水稳性呈极显著正相关关系,而与PAD和ELT呈极显著负相关关系。本研究表明,该区域连续培肥11年提高了土壤大团聚体的含量而伴随着微团聚体含量的显著减少,导致土壤结构越来越稳定。这对于提高采煤塌陷区复垦土壤肥力、改善土壤结构产生了良好的效果。  相似文献   

16.
土壤团聚体的数量和质量直接影响着土壤性质和有机碳固存。研究长期不同施肥措施及复垦年限对采煤塌陷区土壤团聚体的重量分布比例及其稳定性的影响,为该区域的农业生产和土壤质量提升提供科学依据。采集复垦6年和11年定位试验不同施肥处理耕层土样,选取不施肥(CK)、平衡施氮磷钾肥(NPK)、单施有机肥(M)、有机无机肥配施(MNPK)4个处理,利用干筛法和湿筛法获得4种粒径的团聚体/粉黏粒组分(> 2 mm、0.25-2 mm、0.053-0.25 mm和< 0.053 mm),用> 0.25 mm团聚体含量(R0.25)、平均重量直径(MWD)、团聚体破坏率(PAD)和土壤不稳定团粒指数(ELT)表示团聚体的稳定性,并测定了土壤有机碳含量。结果表明:复垦年限对土壤团聚体的含量及稳定性影响产生了显著影响。干筛条件下,复垦6年和11年均显著降低了各处理0.053-0.25 mm团聚体和< 0.053 mm组分的含量,降幅分别为68.39%-87.37%、69.63%-78.32%(6年)和90.01%-93.68%、78.29%-83.93%(11年);湿筛条件下,复垦11年显著提高了各处理> 2 mm团聚体的含量,增幅达473.35%-645.16%,但是显著降低了0.053-0.25 mm团聚体的含量,降幅为43.67%-57.54%。土壤团聚体的稳定性也随着复垦年限的增加而逐渐增强,表现为DR0.25、WR0.25和MWD值呈增加趋势,而PAD和ELT值呈降低趋势。土壤有机碳含量与DR0.25、WR0.25、MWD水稳性呈极显著正相关关系,而它与PAD和ELT呈极显著负相关关系。本研究表明,该区域连续复垦11年提高了土壤大团聚体的含量而伴随着微团聚体含量的显著减少,导致土壤结构越来越稳定。它对提高采煤塌陷区复垦土壤肥力、改善土壤结构效果最佳。  相似文献   

17.

Purpose

The objectives of the study were (1) to quantify the long-term effects of nitrogen-phosphorus fertilizer (NP) and a combination of nitrogen-phosphorus with organic manure (NPM) on total soil organic carbon (SOC) and total soil inorganic carbon (SIC), (2) to identify the changes of SOC and SIC in soil particle-size fractions, and (3) to investigate the relationship between SOC and SIC.

Materials and methods

Two long-term field experiments (sites A and B) were performed in 1984 (site A) and 1979 (site B) in the North China Plain. The soil samples were collected in 2006 and separated for clay, silt and sand size particle fractions and then determined for SOC and SIC.

Results and discussion

The long-term fertilization significantly increased SOC in 0–20 cm soil layer by 9–68% but significantly decreased or had no effect on SIC. In total, soil carbon storage was little affected by NP, but significantly increased by NPM application (p < 0.05). Fertilization affected both SOC and SIC in sand- and silt-sized particles but not in clay-size fraction. Both NP and NPM increased SOC in sand- and silt-sized particles by 8.7–123.9% in the 0–20 cm layer but decreased SIC up to 80.4% in the 40–60 cm layer. The SOC concentration in the particle-size fractions was negatively correlated with SIC concentration, which may imply an antagonistic interaction between organic and inorganic carbon levels.

Conclusions

These results illustrate the importance of soil inorganic carbon pool in evaluating soil total carbon pool in semi-arid farmlands. Previous assessments of the effects of fertilizers on the soil carbon pool, using only SOC determinations, require re-evaluation with the inclusion of SIC determinations.
  相似文献   

18.
本研究选择陕北黄土高原绥德、吴旗、宜川3个地区,调查分析了不同植被恢复类型(草、灌、乔)下05cm表层土壤水稳性团聚体粒径分布及其有机碳含量的变化。结果表明:不同植被恢复类型均显著提高了 2mm和2~0.25mm 两个粒级的水稳性团聚体及其有机碳(SOC)的含量,但不同植被恢复类型的作用在3个地区有所不同。与农地相比,在绥德,油松和柠条、分别使 2mm和2~0.25mm粒级的水稳性团聚体中的SOC含量分别提高了99%~153%和219%~350% ,但苜蓿没有明显作用;在吴旗,苜蓿、沙棘、刺槐分别使 2mm和2~0.25mm水稳性团聚体中SOC含量分别提高了28%~30%和85%~130%,而刺槐对 2mm水稳性团聚体没有作用,而使2~0.25mm粒级的水稳性团聚体SOC含量提高了210% ; 在宜川,白草、羊胡草、狼牙刺和油松使 2mm和2~0.25mm粒级的水稳性团聚体中的SOC含量分别提高了405%~932%和724%~1130%。植被恢复土壤增碳主要是提高了2~0.25mm和2mm 两个粒级的水稳性团聚体中SOC的含量,提高值分别为514%和470%,占土壤有机碳库增量的49%和43%,而对其它粒级水稳性团聚体中SOC含量的贡献小于16%。以上研究结果说明,植被恢复稳定土层结构、促进土壤水稳性大团聚体中SOC的形成,可能在黄土丘陵侵蚀景观土壤固碳过程中起重要作用。  相似文献   

19.
Soil aggregates and organic matter are considered to be important indicators of soil quality. The objective of this study was to determine land-use effects on the distribution of soil organic carbon (SOC) associated with aggregate-size fractions. Bulk soil samples were collected from incremental soil depths (0–10, 10–20 20–40, 40–70, and 70–100 cm) under three land-use types: fruit tree orchards established in 1987, cropland, and forage field. Soil samples collected from these plots were analyzed for aggregate stability after wet sieving into four aggregate-size classes (>2000, 250–2000, 53–250, and <53 μm), and the concentration of SOC was determined in each size fraction. Cropland and forage field soils were significantly more alkaline than the fruit tree soil. Bulk densities were greater in cropland and forage field (1.40–1.52 g cm?3) than in fruit tree orchards (1.33–1.37 g cm?3). The total weight of soil aggregates varied in the order of forage field > cropland > fruit tree orchard. Aggregate stability was greater in cropland and forage field than under fruit tree orchards. Soil organic C decreased with increasing soil depth but was greater under fruit tree orchards than others and was mainly concentrated in the topsoil layer (0–20 cm). Sieved fraction (<53 μm) had a greater SOC concentration, regardless of soil depth or land use. Our data supported the hypothesis that perennial vegetation (fruit tree orchard) and the proportion of aggregates with diameter <53 μm are suitable indicators of SOC accumulation and may therefore have a greater potential for SOC sequestration than the cropland.  相似文献   

20.
Based on a 28‐year in situ experiment, this paper investigated the impacts of organic and inorganic fertiliser applications on soil organic carbon (SOC) content and soil hydraulic properties of the silt loam (Eumorthic Anthrosols) soils derived from loess soil in the Guanzhong Plain of China. There were two crop (winter wheat and summer maize) rotations with conventional tillage. The treatments included control without fertiliser application, organic manure application (M), chemical fertiliser application (NP), and the application of organic manure with chemical fertiliser (MNP). The results showed that the 28‐year organic manure applications (M and MNP) significantly (p < 0·05) increased SOC content at surface layer (0–10 cm), but the effect of chemical fertilisers alone on SOC was not significant. Organic manure treatments (M and MNP) apparently improved soil hydraulic properties. Compared with control, field capacity and total porosity significantly (p < 0·05) increased while soil bulk density significantly (p < 0·05) decreased for organic manure applications. The M and MNP treatments increased soil water retentions by 3·2–10·8%, which was dependent of suction tensions. However, the NP treatment had no significantly impact on soil water retention compared with control. Neither organic nor inorganic fertiliser applications significantly changed saturated hydraulic conductivity. However, a clear difference was observed for unsaturated hydraulic conductivity between the M and the control at 0–5 cm. Overall, long‐term applications of organic manuring increased SOC content and amended soil hydraulic properties. However, the effects of chemical fertilisers on these soil properties were limited. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号