首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

2.
In a long-term fertilizer experiment at the Indian Agricultural Research Institute, New Delhi, with maize, wheat, and cowpea, various forms of potassium (K) and their contribution toward K uptake were found to be affected by fertilizer use and intensive cropping. The treatments included for the study were a control, 100% nitrogen (N), 100% N–phosphorus (P), 50% NPK, 100% NPK, 100% NPK + farmyard manure (FYM at 15 t ha?1 to maize only), and 150% NPK. The concentration of nonexchangeable K was greatest, followed by exchangeable K and water-soluble K. The study revealed no significant change in water-soluble K concentration in surface soil compared to N, NP, and control, indicating existence of an equilibrium between different K forms. Application of 100% NPK significantly increased water-soluble K concentration in surface soil compared to N, NP, and control treatments after maize, wheat, and cowpea. Application of NPK + FYM and 150% NPK resulted in greater quantities of all the K forms as compared to other treatments. Among the three forms, water-soluble K contributed predominantly to K uptake by maize and wheat; however, nonexchangeable K contributed significantly to K uptake by cowpea.  相似文献   

3.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

4.
This study aims to examine the effects of long‐term fertilization and cropping on some chemical and microbiological properties of the soil in a 32 y old long‐term fertility experiment at Almora (Himalayan region, India) under rainfed soybean‐wheat rotation. Continuous annual application of recommended doses of chemical fertilizer and 10 Mg ha–1 FYM on fresh‐weight basis (NPK + FYM) to soybean (Glycine max L.) sustained not only higher productivity of soybean and residual wheat (Triticum aestivum L.) crop, but also resulted in build‐up of total soil organic C (SOC), total soil N, P, and K. Concentration of SOC increased by 40% and 70% in the NPK + FYM–treated plots as compared to NPK (43.1 Mg C ha–1) and unfertilized control plots (35.5 Mg C ha–1), respectively. Average annual contribution of C input from soybean was 29% and that from wheat was 24% of the harvestable aboveground biomass yield. Annual gross C input and annual rate of total SOC enrichment from initial soil in the 0–15 cm layer were 4362 and 333 kg C ha–1, respectively, for the plots under NPK + FYM. It was observed that the soils under the unfertilized control, NK and N + FYM treatments, suffered a net annual loss of 5.1, 5.2, and 15.8 kg P ha–1, respectively, whereas the soils under NP, NPK, and NPK + FYM had net annual gains of 25.3, 18.8, and 16.4 kg P ha–1, respectively. There was net negative K balance in all the treatments ranging from 6.9 kg ha–1 y–1 in NK to 82.4 kg ha–1 y–1 in N + FYM–treated plots. The application of NPK + FYM also recorded the highest levels of soil microbial‐biomass C, soil microbial‐biomass N, populations of viable and culturable soil microbes.  相似文献   

5.
Productivity of rainfed finger millet in semiarid tropical Alfisols is predominantly constrained by erratic rainfall, limited soil moisture, low soil fertility, and less fertilizer use by the poor farmers. In order to identify the efficient nutrient use treatment for ensuring higher yield, higher sustainability, and improved soil fertility, long term field experiments were conducted during 1984 to 2008 in a permanent site under rainfed semi-arid tropical Alfisol at Bangalore in Southern India. The experiment had two blocks—Farm Yard Manure (FYM) and Maize Residue (MR) with 5 fertilizer treatments, namely: control, FYM at 10 t ha?1, FYM at 10 t ha?1 + 50% NPK [nitrogen (N), phosphorus (P), potassium (K)], FYM at 10 t ha?1 + 100% NPK (50 kg N + 50 kg P + 25 kg K ha?1) and 100% NPK in FYM block; and control, MR at 5 t ha?1, MR at 5 t ha?1 + 50% NPK, MR at 5 t ha?1 + 100% NPK and 100% NPK in MR block. The treatments differed significantly from each other at p < 0.01 level of probability in influencing finger millet grain yield, soil N, P, and K in different years. Application of FYM at 10 t ha?1 + 100% NPK gave a significantly higher yield ranging from 1821 to 4552 kg ha?1 with a mean of 3167 kg ha?1 and variation of 22.7%, while application of maize residue at 5 t ha?1 + 100% NPK gave a yield of 593 to 4591 kg ha?1 with a mean of 2518 kg ha?1 and variation of 39.3% over years. In FYM block, FYM at 10 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.45%), available N (204 kg ha?1), available P (68.6 kg ha?1), and available K (107 kg ha?1) over years. In maize residue block, application of MR at 5 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.39%), available soil N (190 kg ha?1), available soil P (47.5 kg ha?1), and available soil K (86 kg ha?1). The regression model (1) of yield as a function of seasonal rainfall, organic carbon, and soil P and K nutrients gave a predictability in the range of 0.19 under FYM at 10 t ha?1 to 0.51 under 100% NPK in FYM block compared to 0.30 under 100% NPK to 0.67 under MR at 5 t ha?1 application in MR block. The regression model (2) of yield as a function of seasonal rainfall, soil N, P, and K nutrients gave a predictability in the range of 0.11 under FYM at 10 t ha?1 to 0.52 under 100% NPK in FYM block compared to 0.18 under MR at 5 t ha?1 + 50% NPK to 0.60 under MR at 5 t ha?1 application in MR block. An assessment of yield sustainability under different crop seasonal rainfall situations indicated that FYM at 10 t ha?1 + 100% NPK was efficient in FYM block with a maximum Sustainability Yield Index (SYI) of 41.4% in <500 mm, 64.7% in 500–750 mm, 60.2% in 750–1000 mm and 60.4% in 1000–1250 mm rainfall, while MR at 5 t ha?1 + 100% NPK was efficient with SYI of 29.6% in <500 mm, 50.2% in 500–750 mm, 40.6% in 750–1000 mm, and 39.7% in 1000–1250 mm rainfall in semi-arid Alfisols. Thus, the results obtained from these long term studies incurring huge expenditure provide very good conjunctive nutrient use options with good conformity for different rainfall situations of rainfed semiarid tropical Alfisol soils for ensuring higher finger millet yield, maintaining higher SYI, and maintaining improved soil fertility.  相似文献   

6.
Effect of integrated use of mycorrhiza, lime, inorganic fertilizers, and organic manures on microbial activities and yield performance of yam bean (Pachyrhizus erosus L.) was studied for two consecutive kharif (rainy) seasons during 2013–14 and 2014–15 in an acid Alfisol. The experiment was laid out with 16 treatments consisting of graded doses of soil test–based nitrogen, phosphors, and potassium (NPK); lime; mycorrhiza; organic sources, that is, farmyard manure (FYM), vermicompost, and green manure; secondary magnesium sulfate (MgSO4) and micronutrients zinc sulfate (ZnSO4 and borax). Significantly highest mean tuber yield (29.61 t ha?1) was recorded due to integrated application of lime + FYM + NPK + ZnSO4. Graded doses of NPK showed a mean yield response of 65%, 134%, and 191% due to addition of 50%, 100%, and 150% of NPK over control, respectively. Inoculation of vesicular–arbuscular mycorrhiza (VAM) combined with NPK and FYM recorded a mean tuber yield of 25.14 t ha?1. Highest mean dry matter (18.85%) was recorded due to application of 150% NPK, whereas highest starch content on fresh weight basis was recorded due to integrated use of lime + FYM + NPK + MgSO4 (11.11%). Application of 150% NPK has recorded highest dehydrogenase activity (2.018 µg TPF h?1 g?1) and fluorescein diacetate hydrolysis assay (2.012 µg g?1 h?1). Fungal inoculation of VAM in combination with lime + FYM + NPK recorded highest acid and alkaline phosphatase activities (82.20 and 67.02 µg PNP g?1 soil h?1, respectively). Soil biological activities and phosphatase activities had highly significant relationship with tuber yield and biochemical constituents of yam bean. The study emphasized the conjunctive use of soil test–based inorganic fertilizers, lime, and organic manures to enhance the enzymatic activities and to realize higher crop yields of yam bean in acid Alfisols.  相似文献   

7.
The effects of integrated nutrient management, cultivation method, and variety on root and shoot growth, grain yield and its components of lowland rice under alternate wetting and drying (AWD) irrigation were evaluated. Treatments included were three varieties (Pathumthani 1, RD57, and RD41), three cultivation methods [dry direct seeding, wet direct seeding, and transplanting], and three nutrient combinations [100% NPK (160?kg ha?1), 50% NPK (80?kg ha?1) + 50% FYM (5 t ha?1), and 100% FYM (10 t ha?1)] under AWD. Root dry matter of RD41 and RD57 was reduced by 12–25% at the 100% NPK and 100% FYM compared with the 50% NPK + 50% FYM. Panicle number, panicle length, and 1000-grain weight were higher at the 50% NPK + 50% FYM. Application of the 50% NPK + 50% FYM could be a feasible option under AWD irrigation; however, benefits may vary with varieties and cultivation methods.  相似文献   

8.
Carbon sequestration potential (CSP) and sustainability of gardenpea-french bean cropping system was assessed with farmyard manure (FYM) application vis-à-vis mineral fertilization as recommended NPK (NPK) and integrated nutrient management practices (INM) after six years’ cropping in Indian Himalayas. Application of 20 tons FYM ha?1 provided highest CSP (0.527 Mg C ha?1 year?1) in soil and sustainability index. With the help of quadratic equations, it was estimated that maximum profit (optimum yield) and turn over of invested money could be achieved with application of 20.0 and 15.6 t FYM ha?1, respectively. Application of 5.9 and 8.9 tons FYM ha?1 would substitute NPK and INM, respectively. Pod number plant?1 was the most important yield-contributing attribute as found from principal component analysis. Pod yield could be modelled through multiple linear equation with help of yield attributes.  相似文献   

9.
The aim of this investigation was to prepare and evaluate organic manures (vermicompost, compost and FYM) and mineral fertilizers on crop productivity and changes in soil organic carbon (SOC) and fertility under a four-year-old maize-wheat cropping system. The results demonstrated that yields and nutrient uptake by crops increased significantly in plots receiving manures and mineral fertilizers either alone or in combination than unfertilized control. Application of manures and fertilizers also enhanced SOC, mineral N, Olsen-P and ammonium acetate-extractable K (NH4OAc-K) after both the crops. Surface soil maintained greater build-up in SOC, mineral N, Olsen-P and NH4OAc-K than sub-surface soil. Plots amended with manures at 5 t ha?1 and 50% recommended dose of fertilizer (RDF) had pronounced impact on improving SOC and fertility after both the crops indicating that integrated use of manures and mineral fertilizers could be followed to improve and maintain soil fertility, increase crop productivity under intensive cropping system.  相似文献   

10.
The aim of this study was to understand impacts of long-term (43 years) fertilization on soil aggregation, N accumulation rates and δ15N in surface and deep layers in an Alfisol. Soil samples from seven treatments were analysed for N stocks, aggregate-associated N in 0–30 cm and the changes in δ15N in 0–90 cm depths. The treatments were: unfertilized control (control); recommended N dose (N); recommended N and phosphorus doses (NP); recommended N, P and potassium doses (NPK); 150% of recommended N, P and K doses (150% NPK); NPK + 10 Mg FYM ha?1 (NPK + FYM) and NPK + 0.4 Mg lime ha?1 (NPK + L). Results revealed that plots under NPK + FYM had ~39% higher total N concentrations than NPK + L in 0–30 cm soil layers. In NPK + L, macro-aggregates had 35 and 11% and microaggregates had 20 and 9% lower δ15N values than NPK + FYM in 0–15 and 15–30 cm soil layers, respectively. However, plots receiving NPK + FYM had ~39% greater deep soil (30–90 cm) N accumulation than NPK + L. These results would help understanding N supplying capacity by long-term fertilization and assist devising N management strategies in sub-tropical acidic Alfisols.  相似文献   

11.
A comprehensive long-term study (2006–2010) was undertaken to develop a balanced and integrated nutrient supply system for sunflower-based cropping sequence considering the efficient utilization of residual and cumulative soil nutrient balance along with added fertilizers by the crops grown in rotation. The fertilizer application was done in potato and sunflower while greengram was raised as such on their residual effect. Significant response in yield was observed with 150% of the recommended nitrogen, phosphorus and potassium (NPK) or inclusion of farmyard manure (FYM) with the recommended NPK in the cropping sequence indicating 6.2–7.0% gain in system productivity over the existing recommendations. Each additional unit of P and K nutrition prompted system productivity by 18.9 and 11.0 kg kg?1 of applied nutrient, respectively. Apparent yield decline was observed in K and PK omission plots to the extent of 15.8 and 27.4% in potato, 10.5 and 23.9% in sunflower and 4.2 and 8.3% in greengram, respectively, compared to the recommended fertilization. The superiority of the FYM along with the recommended NPK (potato/sunflower) was evident on the overall profitability and sustainability of the system, highlighted by the significantly higher productivity (7.16 t SFEY ha?1), sustainability yield index (SYI; 0.76), production efficiency (PE; 27.85 kg SFEY ha?1 day?1) and net returns (2520 USD ha?1) with a B:C ratio of 2.91. Apparent change in potassium permanganate (KMnO4)-N was negative in all the treatments while N and P balance was positive with 150% NPK fertilization. Nutrient uptake exceeded the replenishment with 100% NPK application and maintained net negative soil nutrient stock for all the primary nutrients, indicating the need for revalidation of the existing recommendations in the system perspective. Conspicuous improvement in residual soil fertility in terms of maximum buildup of soil organic carbon (14%) and enhancement in soil KMnO4-N (4.2%), Olsen-P (19.4%), ammonium acetate (NH4OAc)-K (5.8%) and dehydrogenase enzyme activity (44.4%) was observed in FYM-treated plots over the initial values. The study suggested that the inclusion of legumes and FYM application with the recommended NPK in potato-sunflower cropping sequence will sustain the system’s productivity through the efficient use of nutrients, enhanced microbial activity and improved soil health while combating escalating prices of fertilizers as well as environmental issues in the Indo-Gangetic plains of India and similar environments.  相似文献   

12.
A field experiment was conducted during the summer season of 2009 and 2010 at Vivekananda Parvatiya Krishi Anusandhan Sansthan, Hawalbagh, Almora, Uttarakhand, under the mid-hills of north-western Himalaya, to study the effect of farmyard manure and fertilizers on fruit yield, economics, energetics of pepper (Capsicum annuum L.) and on soil chemical properties. The highest level of farmyard manure (20 t ha?1) along with 125% of recommended NPK (125, 27.5, and 52.1 kg N, P and K ha?1) resulted in significantly higher fruit yield (33.9 t ha?1) over other combinations. Both farmyard manure and inorganic fertilizers significantly increased fruits/plant, average fruit weight, plant height, fruit length, and fruit diameter. The maximum net returns (4520 $ ha?1) was achieved at 20 t of FYM along with 125% of recommended NPK. Energy ratio of 1.29 and 1.13 was the highest under 20 t FYM ha?1 and 125% of recommended NPK, respectively. Available nutrients (N, P, and K) improved the status of the soil significantly due to 20 t ha?1 of FYM and 125% of recommended NPK over other treatments.  相似文献   

13.
Long-term effects of chemical fertilizers and farmyard manure (FYM) in rice (Oryza sativa)–wheat (Triticum aestivum) cropping system were monitored for two consecutive years after 38 and 39 years on productivity and soil biological properties of Mollisols. The study encompasses varying chemical fertilizer levels of optimum fertilizer rate (120, 26 and 37 kg ha?1 N, P and K, respectively) for both the crops. The treatments were application of 50% NPK, 100% NPK, 150% NPK, 100% NPK + hand weeding (HW), 100% NPK + Zn, 100% NP, 100% N, 100% NPK + 15 t FYM ha?1, 100% NPK(-S) and unfertilized control. The rice and wheat yields were highest with 100% NPK + 15 t FYM ha?1. This treatment also gave maximum and significantly more counts of bacteria, fungi and actinomycetes in soil than all the other treatments after crop harvest. The soil microbial biomass C (410.0 and 407.5 µg g?1) and N (44.53 and 48.30 µg g?1) after rice and wheat, respectively, were highest with 100% NPK + 15 t FYM ha?1, which were significantly higher over all the other treatments. The activities of soil enzymes like dehydrogenase, acid and alkaline phosphatase, arylsulphatase and urease and CO2 evolution rate with 100% NPK + 15 t FYM ha?1 were also found significantly higher over the other treatments. Fertilizer treatments with 100% NPK and 150% NPK were comparable and significantly better than application of 50% NPK, 100% N, 100% NP and 100% NPK(-S) in various studied soil biological properties. Integrated use of 100% NPK with FYM sustained the higher yields and soil biological properties under ricewheat cropping system in Mollisols. Application of Zn and hand weeding with 100% NPK were found better over 100% NPK alone in rice and wheat productivity. Imbalanced use of chemical fertilizers had the harmful effect on soil biological health.  相似文献   

14.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

15.
Yield development in the long-term experiment Continuous Rye Cropping Halle after the changes in the fertilization in 1990 The long-term experiment Continuous Rye Cropping being established 1878 on a degraded chernozem (from sandy loess) includes among others a treatment with application of mineral N only over 112 years in which during the last decades the grain yields ranged about 30% below that on the plots with farmyard manure (FYM) or complete mineral fertilization (NPK). The considerable depletion of available P and K in the respective soil was practically overcome in 1990 by a single application of 200 kg P ha?1 and 400 kg K ha?1 and thereafter the exclusive fertilization with mineral N was substituted by a combined application of NPK and FYM. Already in the first year the previous yield decline in comparison to ‘NPK’ or ‘FYM’ had been overcome completely. An additional yield increase, however, could only be realized under conditions especially favourable for yield production, so in 1993 and 1995.  相似文献   

16.
Enrichment of soil organic carbon (SOC) stocks through sequestration of atmospheric CO2 in agricultural soils is important because of its impacts on adaptation to and mitigation of climate change while also improving crop productivity and sustainability. In a long‐term fertility experiment carried out over 27 y under semiarid climatic condition, we evaluated the impact of crop‐residue C inputs through rainfed fingermillet (Eleusine coracana [L.] Gaertn.) cropping, fertilization, and manuring on crop yield sustainability and SOC sequestration in a Alfisol soil profile up to a depth of 1 m and also derived the critical value of C inputs for maintenance of SOC. Five treatments, viz., control, farmyard manure (FYM) 10 Mg ha–1, recommended dose of NPK (50 : 50 : 25 kg N, P2O5, K2O ha–1), FYM 10 Mg ha–1 + 50% recommended dose of NPK, and FYM 10 Mg ha–1 + 100% recommended dose of NPK imposed in a randomized block design replicated four times. Application of FYM alone or together with mineral fertilizer resulted in a higher C input and consequently built up a higher C stock. After 27 y, higher profile SOC stock (85.7 Mg ha–1), C build up (35.0%), and C sequestration (15.4 Mg C ha–1) was observed with the application of 10 Mg FYM ha–1 along with recommended dose of mineral fertilizer and these were positively correlated with cumulative C input and well reflected in sustainable yield index (SYI). For sustenance of SOC level (zero change due to cropping) a minimum quantity of 1.13 Mg C is required to be added per hectare per annum as inputs. While the control lost C, the application of mineral fertilizer served to maintain the priori C stock. Thus, the application of FYM increased the C stock, an effect which was even enhanced by additional amendment of mineral fertilizer. We conclude that organic amendments contribute to C sequestration counteracting climate change and at the same time improve soil fertility in the semiarid regions of India resulting in higher and more stable yields.  相似文献   

17.
A field study conducted for three crop years (June?–?July) from 1995?–?96 to 1997?–?98 at the Indian Agricultural Research Institute, New Delhi involving five rice-based cropping systems and six nutrient combinations indicated that rice?–?wheat?–?mungbean (RWM), rice?–?potato?–?mungbean (RPM), rice?–?rapeseed?–?mungbean (RRsM) and rice?–?clover (RC) cropping systems gave 0.7?–?1.0, 3.2?–?5.9, 0.2?–?2.2 and 1.5?–?3.6 t ha?1 yr?1, respectively, higher productivity and removed 7.9?–?22.6, 38.0?–?64.5, 53.0?–?61.8 and 51.4?–?66.1?kg ha?1 yr?1, respectively, more nitrogen, 2.3?–?7.1, 14.5?–?22.8, 3.8?–?7.2 and 17.3?–?21.7?kg ha?1 yr?1, respectively, more phosphorus and 1.6?–?11.4, 15.3?–?42.3, 8.2?–?22.7 and 40.8?–?57.8?kg ha?1 yr?1, respectively, more potassium than the rice?–?wheat (RW) cropping system which led to a net balance of +?151, +?58, ??153 and ??167?kg ha?1 of nitrogen, +?13, ??27, ??8 and ??59?kg ha?1 of phosphorus and ??549, ??551, ??558 and ??691?kg ha?1 of potassium after three cycles of RWM, RPM, RRsM and RC cropping systems, respectively against a net balance of +?201, +?26 and ??533?kg ha?1 of N, P and K, respectively in the RW cropping system. Application of FYM along with NPK in these cropping systems changed the negative balance of nitrogen and phosphorus into positive balance and reduced the negative balance of potassium by 151?–?378?kg ha?1. Application of P and K fertilizers along with nitrogen also helped in arresting the negative balance of P and K under different rice based cropping systems. These results thus indicate that balanced use of NPK and FYM plays a major role for sustaining the productivity of a cropping system.  相似文献   

18.
Based on a long-term finger millet-groundnut rotation study conducted for 24-years during 1992–2015 under Alfisols at Bangalore, organic and inorganic fertilizer effects on soil organic carbon (SOC) sequestration and sustainability of yield were assessed. Field experiments were conducted with T1:Control; T2:FYM@ 10t ha?1; T3:FYM@ 10t ha?1 + 50% NPK; T4:FYM@ 10t ha?1 + 100% NPK, and T5:100% recommended NPK in same plot every year. T5 comprised of 50 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for finger millet and 25 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for groundnut. Sustainability yield index of treatments was assessed using measurements made on variability of yield over years. The amount of carbon sequestered was assessed to identify a superior treatment for improving soil quality. Balanced use of 100% NPK+ FYM for maintenance of SOC at antecedent level with biomass-C of 1.62 Mg C ha?1 year?1 was feasible for sustaining production under semi-arid Alfisols.  相似文献   

19.
The field study was conducted in April 2006 in a long-term fertilization experiment that was set up in 1983. The aims of this study are to compare the weediness in plots with nitrogen–phosphorus–potassium (NPK), NPK + farmyard manure (FYM), and NPK + stalk treatments and to study the effect of increasing N doses on the weeds and winter wheat plants. The bifactorial test was arranged in a split-plot design with three replications. The treatments were the following: 0, 50, 100, 150, and 200 kg ha?1 N, 100 kg ha?1 phosphorus pentoxide (P2O5), and 100 kg ha?1 potassium oxide (K2O). Three weed species were dominant in the experiment: Veronica hederifolia, Consolida regalis, and Stellaria media. The NPK treatment resulted in the smallest average weed cover. The significantly greatest weed cover was found on the plots treated with NPK + FYM, but the greatest biomass production of winter wheat was measured also in the NPK + FYM treatment, which resulted in a good crop competition. The weed cover was increased proportionally by the rising N doses. The effect of increasing N rates was positive on the winter wheat biomass and on wheat competition to the weeds. Results of our study show that we can manage weeds better using favorable plant nutrition.  相似文献   

20.
A field experiment was conducted during 2008 and 2009 at the Council of Scientific and Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India, to study the effect of organic sources of nutrient on yield, nutrient uptake, fertility status of soil, and quality of stevia crop in the western Himalayan region. The experiment comprised eight different combinations of organic manure [farmyard manure (FYM), vermicompost (VC), and apple pomace manure (AP)]. Total leaf dry biomass increased by 149% over the control with application of VC 1.5 t ha?1 + AP 5 t ha?1. Application of organic manures enhanced organic carbon and available nutrient status of soil more than the control. Nitrogen (N) and phosphorus (P) content in stem were significantly affected by the application of organic manures over the control. Stevia plants supplied with FYM 10 t ha?1 + AP 2.5 t ha?1 recorded more total glycoside than other treatments. Stevioside yield (kg ha?1) was greater with application of FYM 10 t ha?1 + AP 2.5 t ha?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号