首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial activity is affected by changes in the availability of soil moisture. We examined the relationship between microbial activity and water potential in a silt loam soil during four successive drying and rewetting cycles. Microbial activity was inferred from the rate of CO2 accumulating in a sealed flask containing the soil sample and the CO2 respired was measured using gas chromatography. Thermocouple hygrometry was used to monitor the water potential by burying a thermocouple in the soil sample in the flask. Initial treatment by drying on pressure plates brought samples of the test soil to six different water potentials in the range -0.005 to -1.5MPa. Water potential and soil respiration were simultaneously measured while these six soil samples slowly dried by evaporation and were remoistened four times. The results were consistent with a log-linear relationship between water potential and microbial activity as long as activity was not limited by substrate availability. This relationship appeared to hold for the range of water potentials from ?0.01 to ?8.5 MPa. Even at ?0.01 MPa (wet soil) a decrease in water potential from ?0.01 to ?0.02 MPa caused a 10% decrease in microbial activity. Rewetting the soil caused a large and rapid increase in the respiration rate. There was up to a 40-fold increase in microbial activity for a short period when the change in water potential following rewetting was greater than 5 MPa. Differences in microbial activity between the wetter and drier soil treatments following rewetting to the original water potentials are discussed in terms of the availability of energy substrate.  相似文献   

2.
Nitrogen (N) and carbon (C) mineralisation are triggered by pulses of water availability in arid and semi-arid systems. Intermittent streams and their associated riparian communities are obvious ‘hot spots’ for biogeochemical processes in arid landscapes where water and often C are limiting. Stream landscapes are characterized by highly heterogeneous soils that may respond variably to rewetting. We used a laboratory incubation to quantify how N and C mineralisation in rewetted soils and sediments from an intermittent stream in the semi-arid Pilbara region of north-west Australia varied with saturation level and substrate addition (as ground Eucalyptus litter). Full (100%) saturation was defined as the maximum gravimetric moisture content (%) achieved in free-draining soils and sediments after rewetting, with 50% saturation defined as half this value. We estimated rates and amounts of N mineralised from changes in inorganic N and microbial respiration as CO2 efflux throughout the incubation. In soils and sediments subject to 50% saturation, >90% of N mineralised accumulated within the first 7 d of incubation, compared to only 48% when soils were fully saturated (100% saturation). Mineralisation rates and microbial respiration were similar in riparian and floodplain soils, and channel sediments. N mineralisation rates in litter-amended soils and sediments (0.73 mg N kg−1 d−1) were only one-third that of unamended samples (3.04 mg N kg−1 d−1), while cumulative microbial respiration was doubled in litter-amended soils, suggesting N was more rapidly immobilized. Landscape position was less important in controlling microbial activity than soil saturation when water-filled pore space (% WFPS) was greater than 40%. Our results suggest that large pulses of water availability resulting in full soil saturation cause a slower release of mineralisation products, compared to small pulse events that stimulate a rapid cycle of C and N mineralisation-immobilization.  相似文献   

3.
The roles of microbial biomass (MBC) and substrate supply as well as their interaction with clay content in determining soil respiration rate were studied using a range of soils with contrasting properties. Total organic C (TOC), water-soluble organic carbon, 0.5 M K2SO4-extractable organic C and 33.3 mM KMnO4-oxidisable organic carbon were determined as C availability indices. For air-dried soils, these indices showed close relationship with flush of CO2 production following rewetting of the soils. In comparison, MBC determined with the chloroform fumigation-extraction technique had relatively weaker correlation with soil respiration rate. After 7 d pre-incubation, soil respiration was still closely correlated with the C availability indices in the pre-incubated soils, but poorly correlated with MBC determined with three different techniques—chloroform fumigation extraction, substrate-induced respiration, and chloroform fumigation-incubation methods. Results of multiple regression analyses, together with the above observations, suggested that soil respiration under favourable temperature and moisture conditions was principally determined by substrate supply rather than by the pool size of MBC. The specific respiratory activity of microorganisms (CO2-C/MBC) following rewetting of air-dried soils or after 7 d pre-incubation was positively correlated with substrate availability, but negatively correlated with microbial pool size. Clay content had no significant effect on CO2 production rate, relative C mineralization rate (CO2-C/TOC) and specific respiratory activity of MBC during the first week incubation of rewetted dry soils. However, significant protective effect of clay on C mineralization was shown for the pre-incubated soils. These results suggested that the protective effect of clay on soil organic matter decomposition became significant as the substrate supply and microbial demand approached to an equilibrium state. Thereafter, soil respiration would be dependent on the replenishment of the labile substrate from the bulk organic C pool.  相似文献   

4.
Short-term response of soil C mineralization following drying/rewetting has been proposed as an indicator of soil microbial activity. Houston Black clay was amended with four rates of arginine to vary microbial responses and keep other soil properties constant. The evolution of CO2 during 1 and 3 days following rewetting of dried soil was highly related to CO2 evolution during 10 days following chloroform fumigation (r2 = 0.92 and 0.93, respectively) which is a widely used method for soil microbial biomass C, which disrupts cellular membranes. This study suggest that the release of CO2 following rewetting of dried soil with no amendments other than heat and water can be highly indicative of soil microbial activity and possibly be used as a quantitative measurement of soil biological quality in Houston Black soils.  相似文献   

5.
The effect of drying and rewetting (DRW) on C mineralization has been studied extensively but mostly in absence of freshly added residues. But in agricultural soils large amounts of residues can be present after harvest; therefore, the impact of DRW in soil after residue addition is of interest. Further, sandy soils may be ameliorated by adding clay‐rich subsoil which could change the response of microbes to DRW. The aim of this study was to investigate the effect of DRW on microbial activity and growth in soils that were modified by mixing clay subsoil into sandy top soil and wheat residues were added. We conducted an incubation experiment by mixing finely ground wheat residue (20 g kg–1) into top loamy sand soil with clay‐rich subsoil at 0, 5, 10, 20, 30, and 40% (w/w). At each clay addition rate, two moisture treatments were imposed: constantly moist control (CM) at 75% WHC or dry and rewet. Soil respiration was measured continuously, and microbial biomass C (MBC) was determined on day 5 (before drying), when the soil was dried, after 5 d dry, and 5 d after rewetting. In the constantly moist treatment, increasing addition rate of clay subsoil decreased cumulative respiration per g soil, but had no effect on cumulative respiration per g total organic C (TOC), indicating that the lower respiration with clay subsoil was due to the low TOC content of the sand‐clay mixes. Clay subsoil addition did not affect the MBC concentration per g TOC but reduced the concentration of K2SO4 extractable C per g TOC. In the DRW treatment, cumulative respiration per g TOC during the dry phase increased with increasing clay subsoil addition rate. Rewetting of dry soil caused a flush of respiration in all soils but cumulative respiration at the end of the experiment remained lower than in the constantly moist soils. Respiration rates after rewetting were higher than at the corresponding days in constantly moist soils only at clay subsoil addition rates of 20 to 40%. We conclude that in presence of residues, addition of clay subsoil to a sandy top soil improves microbial activity during the dry phase and upon rewetting but has little effect on microbial biomass.  相似文献   

6.
Soil compaction and soil moisture are important factors influencing denitrification and N2O emission from fertilized soils. We analyzed the combined effects of these factors on the emission of N2O, N2 and CO2 from undisturbed soil cores fertilized with (150 kg N ha−1) in a laboratory experiment. The soil cores were collected from differently compacted areas in a potato field, i.e. the ridges (ρD=1.03 g cm−3), the interrow area (ρD=1.24 g cm−3), and the tractor compacted interrow area (ρD=1.64 g cm−3), and adjusted to constant soil moisture levels between 40 and 98% water-filled pore space (WFPS).High N2O emissions were a result of denitrification and occurred at a WFPS≥70% in all compaction treatments. N2 production occurred only at the highest soil moisture level (≥90% WFPS) but it was considerably smaller than the N2O-N emission in most cases. There was no soil moisture effect on CO2 emission from the differently compacted soils with the exception of the highest soil moisture level (98% WFPS) of the tractor-compacted soil in which soil respiration was significantly reduced. The maximum N2O emission rates from all treatments occurred after rewetting of dry soil. This rewetting effect increased with the amount of water added. The results show the importance of increased carbon availability and associated respiratory O2 consumption induced by soil drying and rewetting for the emissions of N2O.  相似文献   

7.
Sudden pulse-like events of rapidly increasing CO2-efflux occur in soils under seasonally dry climates in response to rewetting after drought. These occurrences, termed “Birch effect”, can have a marked influence on the ecosystem carbon balance. Current hypotheses indicate that the “Birch” pulse is caused by rapidly increased respiration and mineralization rates in response to changing moisture conditions but the underlying mechanisms are still unclear. Here, we present data from an experimental field study using straight-forward stable isotope methodology to gather new insights into the processes induced by rewetting of dried soils and evaluate current hypotheses for the “Birch“-CO2-pulse. Two irrigation experiments were conducted on bare soil, root-free soil and intact vegetation during May and August 2005 in a semi-arid Mediterranean holm oak forest in southern Portugal. We continuously monitored CO2-fluxes along with their isotopic compositions before, during and after the irrigation. δ13C signatures of the first CO2-efflux burst, occurring immediately after rewetting, fit the hypothesis that the “Birch” pulse is caused by the rapid mineralization of either dead microbial biomass or osmoregulatory substances released by soil microorganisms in response to hypo-osmotic stress in order to avoid cell lyses. The response of soil CO2-efflux to rewetting was smaller under mild (May) than under severe drought (August) and isotopic compositions indicated a larger contribution of anaplerotic carbon uptake with increasing soil desiccation. Both length and severity of drought periods probably play a key role for the microbial response to the rewetting of soils and thus for ecosystem carbon sequestration.  相似文献   

8.
Spatial variability in carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) emissions from soil is related to the distribution of microsites where these gases are produced. Porous soil aggregates may possess aerobic and anaerobic microsites, depending on the water content of pores. The purpose of this study was to determine how production of CO2, N2O and CH4 was affected by aggregate size and soil water content. An air-dry sandy loam soil was sieved to generate three aggregate fractions (<0.25 mm, 0.25–2 mm and 2–6 mm) and bulk soil (<2 mm). Aggregate fractions and bulk soil were moistened (60% water-filled pore space, WFPS) and pre-incubated to restore microbial activity, then gradually dried or moistened to 20%, 40%, 60% or 80% WFPS and incubated at 25 °C for 48 h. Soil respiration peaked at 40% WFPS, presumably because this was the optimum level for heterotrophic microorganisms, and at 80% WFPS, which corresponded to the peak N2O production. More CO2 was produced by microaggregates (<0.25 mm) than macroaggregate (>0.25 mm) fractions. Incubation of aggregate fractions and soil at 80% WFPS with acetylene (10 Pa and 10 kPa) and without acetylene showed that denitrification was responsible for 95% of N2O production from microaggregates, while nitrification accounted for 97–99% of the N2O produced by macroaggregates and bulk soil. This suggests that oxygen (O2) diffusion into and around microaggregates was constrained, whereas macroaggregates remained aerobic at 80% WFPS. Methane consumption and production were measured in aggregates, reaching 1.1–6.4 ng CH4–C kg−1 soil h−1 as aggregate fractions and soil became wetter. For the sandy-loam soil studied, we conclude that nitrification in aerobic microsites contributed importantly to total N2O production, even when the soil water content permitted denitrification and CH4 production in anaerobic microsites. The relevance of these findings to microbial processes controlling N2O production at the field scale remains to be confirmed.  相似文献   

9.
Abstract

Higher rates of nitrification often reported in fine than in coarse textured soils may not be a direct effect of soil texture because in most of the earlier studies, soil water content has been usually expressed as gravimetric, volumetric or soil's water‐holding capacity without consideration of differences in density/ porosity for soils of varying texture. The same water content in texturally different soils could provide very different conditions of soil aeration and associated nitrifying activity. Effects of soil texture on nitrification was studied by incubating three semiarid subtropical soils having sandy loam, loam, and silty clay textures at 35°C for 30 days using water‐filled pore space (WFPS) as the criterion of soil aeration. Upland or aerobic soil conditions, simulated by incubating soil at 60% WFPS, exhibited very fast nitrification of added fertilizer nitrogen (N) and most of the applied 100 mg of ammonium‐nitrogen (NH4+‐N/kg soil) was nitrified within 10 days of incubation in all three soils irrespective of the differences in texture. Under flooded soil conditions (120% WFPS), nitrification was slow and only 84 to 92% of the applied NH4+‐N was nitrified even after 30 days. Nitrification could be described by first‐order kinetics for both the upland and flooded moisture regimes, thus nitrification rate depended upon NH4+ concentration. At similar gravimetric water contents, rates of nitrification differed greatly in soils of varying texture, but when varying water‐holding capacity and bulk density were accounted for using WFPS, all the soils behaved similarly at 60% WFPS. Under impeded aeration (flooded conditions), however, substantial differences were observed in nitrification in soils of varying texture, the largest in fine‐textured Chamror silty clay followed by Habowal loam and the smallest in Tolewal sandy loam soil. These results illustrate the utility of WFPS, compared with soil water content, and its reliability as an indicator of aeration dependent nitrification for soils of varying texture.  相似文献   

10.
干湿交替对土壤碳库和有机碳矿化的影响   总被引:15,自引:0,他引:15  
水分是影响土壤活性碳库和惰性碳库周转过程的主导因子,而土壤有机碳的周转速率会对气候变化造成潜在的重要影响。以农田水稻土为供试土壤,通过培育试验研究了干湿交替过程对土壤有机碳矿化的影响,并利用两库叠加模型对土壤不同碳库及其降解动力学进行初步评估。结果表明:干湿交替激发了土壤呼吸,增加了土壤微生物代谢活性。三次湿润过程对土壤呼吸的激发量分别为119.3%、159.5%和87.3%,激发效应随干湿交替频率的增加先升高后降低。多次干湿交替后,土壤累积CO2释放量低于恒湿土壤,湿润所引起的激发的矿化量不足以弥补干旱期降低的矿化量。在湿润的数小时内,土壤溶解性有机碳含量先升高后降低。干湿交替提升了土壤活性碳库的降解速率,降低了惰性碳库的降解速率,湿润后土壤活性碳库显著增加。多次干湿交替降低了土壤真菌/细菌比,使土壤微生物群落结构发生变化,细菌成为优势种群。  相似文献   

11.
The drying of samples of mountain-meadow soils characterized by their permanently high moisture under natural conditions fundamentally changes the concentrations of the labile nitrogen and carbon compounds, as well as the patterns of their microbial transformation. When the soil samples are dried, a four- to fivefold increase in the content of the extractable organic nitrogen compounds, carbon compounds, and inorganic nitrogen compounds is observed, while the content of nitrogen and carbon of the microbial biomass decreases by two-three times. The rewetting of the dried soil launches the process of the replenishment of the nitrogen and carbon reserves in the microbial biomass. However, even after two weeks of incubation, their values were 1.5–2 times lower than the initial values typical of the natural soil. The restoration of the microbial community in the samples of the previously dried soils occurs in the absence of a deficiency of labile organic compounds and is accompanied by their active mineralization and the low uptake of ammonium nitrogen by the microorganisms.  相似文献   

12.
ABSTRACT

The United States Department of Agriculture Natural Resources Conservation Service (NRCS) launched a national “Soil health initiative” in 2012; as a part of that effort, a soil health index (SHI) has been developed. The SHI is calculated using results of three soil tests: 24-h carbon mineralization following rewetting of air-dried soil (Cmin, by the “Solvita” proprietary method) and water-extractable organic carbon (C) and nitrogen (N). These tests are being promoted both as the inputs into the SHI calculation and as predictors of soil N mineralization potential. Soil was collected from 35 California fields in annual crop rotations; 20 fields were under certified organic management and the other 15 under conventional management, to provide a range of soil properties and management effects. Carbon mineralization was determined by the Solvita method, and by a comparison method utilizing head space carbon dioxide (CO2) monitoring by infrared gas analyzer (IRGA); additionally, two soil wetting protocols were compared, capillary wetting (the Solvita method) and wetting to 50% water-filled pore space (WFPS). Both water-extractable C (WEOC) and N (WEON) were determined using NRCS-recommended protocols. Net N mineralization (Nmin) was also determined after a 28-day aerobic incubation at 25°C. Solvita Cmin was highly correlated with the IRGA method using capillary wetting (R2 = 0.81). However, capillary soil wetting resulted in high gravimetric water content that significantly suppressed Cmin compared to the 50% WFPS method. Nmin was correlated with Solvita Cmin (r = 0.54) and with WEOC and WEON (r = 0.62 for each comparison); combining these three measurements into the SHI slightly improved the correlation with Nmin. The organically managed soils scored higher than the conventional soils on the SHI, with a minority of organic soils and the majority of conventional soils scoring below the NRCS target threshold. SHI and soil organic matter were correlated, suggesting an inherent bias that would complicate the application of a national SHI standard.  相似文献   

13.
Drying and rewetting are common events in soils during summer, particularly in Mediterranean climate where soil microbes may be further challenged by salinity. Previous studies in non-saline soils have shown that rewetting induces a flush of soil respiration, but little is known about how the extent of drying affects the size of the respiration flush or how drying and rewetting affects soil respiration in saline soils. Five sandy loam soils, ranging in electrical conductivity of the saturated soil extract (ECe) from 2 to 48 dS m−1 (EC2, EC9, EC19, EC33 and EC48), were kept at soil water content optimal for respiration or dried for 1, 2, 3, 4 or 5 days (referred to 1D, 2D, 3D, 4D and 5D) and maintained at the achieved water content for 4 days. Then the soils were rewet to optimal water content and incubated moist for 5 days. Water potential decreased with increasing drying time; in the 5D treatment, the water potential ranged between −15 and −30 MPa, with the lowest potentials in soil EC33. In moist and dry conditions, respiration rates per unit soil organic C (SOC) were highest in soil EC19. Respiration rates decreased with increasing time of drying; when expressed relative to constantly moist soil, the decline was similar in all soils. Rewetting of soils only induced a flush of respiration compared to constantly moist soil when the soils were dried for 3 or more days. The flush in respiration was greatest in 5D and smallest in 3D, and greater in EC2 than in the saline soils. Cumulative respiration per unit SOC was highest in soil EC19 and lowest in soil EC2 Cumulative respiration decreased with increasing time of drying, but in a given soil, the relationship between water potential during the dry phase and cumulative respiration at the end of the experiment was weaker than that between respiration rate during drying and water potential. In conclusion, rewetting induced a flush in respiration only if the water potential of the soils was previously decreased at least 3-fold compared to the constantly moist soil. Hence, only marked increases in water potential induce a flush in respiration upon rewetting. The smaller flush in respiration upon rewetting of saline soils suggests that these soils may be less prone to lose C when exposed to drying and rewetting compared to non-saline soils.  相似文献   

14.
Drying and rewetting cycles are known to be important for the dynamics of carbon (C), phosphorus (P), and nitrogen (N) in soils. This study reports the short‐term responses of these nutrients to consecutive drying and rewetting cycles and how varying soil moisture content affects microbial biomass C and P (MBC and MBP), as well as associated carbon dioxide (CO2) and nitrous oxide (N2O) emissions. The soil was incubated for 14 d during which two successive drying–rewetting episodes were imposed on the soils. Soils subjected to drying (DRW) were rewetted on the seventh day of each drying period to return them to 60% water holding capacity, whilst continually moist samples (M), with soil maintained at 60% water holding capacity, were used as control samples. During the first seven days, the DRW samples showed significant increases in extractable ammonium, total oxidized nitrogen, and bicarbonate extractable P concentrations. Rewetting after the first drying event produced significant increases only in CO2 flux (55.4 µg C g?1 d?1). The MBC and MBP concentrations fluctuated throughout the incubation in both treatments and only the second drying–rewetting event resulted in a significantly MBC decrease (416.2 and 366.8 mg kg?1 in M and DRW soils, respectively). The two drying–rewetting events impacted the microbial biomass, but distinguishing the different impacts of microbial versus physical impacts of the perturbation is difficult. However, this study, having a combined approach (C, N, and P), indicates the importance of understanding how soils will react to changing patterns of drying–rewetting under future climate change.  相似文献   

15.
The measurement of soil carbon dioxide (CO2) respiration is a means to gauge biological soil fertility. Test methods for respiration employed in the laboratory vary somewhat, and to date the equipment and labor required have limited more widespread adoption of such methodologies. A new method to measure soil respiration was tested along with the traditional alkali trap and titration method. The new method involves the Solvita gel system, which was originally designed for CO2 respiration from compost but has been applied in this research to soils with treatments of increasing dairy manure compost. The objectives of this research are to (1) examine the relationship between the CO2 release after 1 day of incubation from soils amended with dairy manure compost that have been dried and rewetted as determined using the titration method and the Solvita gel system, and (2) compare water‐soluble organic nitrogen (N), as well as carbon (C), N, and phosphorus (P) mineralization after 28 days of incubation with 1‐day CO2 release from the titration method and Solvita gel system. One‐day CO2 from both titration and the Solvita gel system were highly correlated with cumulative 28‐day CO2 as well as the basal rate from 7–28 days of incubation. Both methods were also highly correlated with 28‐day N and P mineralization as well as the initial water‐extractable organic N and C concentration.

The data suggest that the Solvita gel system for soil CO2 analysis could be a simple and easily used method to quantify soil microbial activity and possibly provide an estimate of potential mineralizable N and P. Once standardized soil sampling and laboratory analysis protocols are established, the Solvita method could be easily adapted to commercial soil testing laboratories as an index of soil microbial activity.  相似文献   

16.
Little is known about the effects of temperature and drying–rewetting on soil phosphorus (P) fractions and microbial community composition in regard to different fertilizer sources. Soil P dynamics and microbial community properties were evaluated in a soil not fertilized or fertilized with KH2PO4 or swine manure at two temperatures (10 and 25 °C) and two soil water regimes (continuously moist and drying–rewetting cycles) in laboratory microcosm assays. The P source was the dominant factor determining the sizes of labile P fractions and microbial community properties. Manure fertilization increased the content of labile P, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents, whereas KH2PO4 fertilization increased the content of labile inorganic P and microbial P. Water regimes, second to fertilization in importance, affected more labile P pools, microbial biomass, alkaline phosphomonoesterase activity, and fatty acid contents than temperature. Drying–rewetting cycles increased labile P pools, decreased microbial biomass and alkaline phosphomonoesterase activity, and shaped the composition of microbial communities towards those with greater percentages of unsaturated fatty acids, particularly at 25 °C in manure-fertilized soils. Microbial C and P dynamics responded differentially to drying–rewetting cycles in manure-fertilized soils but not in KH2PO4-fertilized soils, suggesting their decoupling because of P sources and water regimes. Phosphorus sources, temperature, and water regimes interactively affected the labile organic P pool in the middle of incubation. Overall, P sources and water availability had greater effects on P dynamics and microbial community properties than temperature.  相似文献   

17.
Drying and rewetting cycles are known to be important for the turnover of carbon (C) in soil, but less is known about the turnover of phosphorus (P) and its relation to C cycling. In this study the effects of repeated drying-rewetting (DRW) cycles on phosphorus (P) and carbon (C) pulses and microbial biomass were investigated. Soil (Chromic Luvisol) was amended with different C substrates (glucose, cellulose, starch; 2.5 g C kg−1) to manipulate the size and community composition of the microbial biomass, thereby altering P mineralisation and immobilisation and the forms and availability of P. Subsequently, soils were either subjected to three DRW cycles (1 week dry/1 week moist) or incubated at constant water content (70% water filled pore space). Rewetting dry soil always produced an immediate pulse in respiration, between 2 and 10 times the basal rates of the moist incubated controls, but respiration pulses decreased with consecutive DRW cycles. DRW increased total CO2 production in glucose and starch amended and non-amended soils, but decreased it in cellulose amended soil. Large differences between the soils persisted when respiration was expressed per unit of microbial biomass. In all soils, a large reduction in microbial biomass (C and P) occurred after the first DRW event, and microbial C and P remained lower than in the moist control. Pulses in extractable organic C (EOC) after rewetting were related to changes in microbial C only during the first DRW cycle; EOC concentrations were similar in all soils despite large differences in microbial C and respiration rates. Up to 7 mg kg−1 of resin extractable P (Presin) was released after rewetting, representing a 35-40% increase in P availability. However, the pulse in Presin had disappeared after 7 d of moist incubation. Unlike respiration and reductions in microbial P due to DRW, pulses in Presin increased during subsequent DRW cycles, indicating that the source of the P pulse was probably not the microbial biomass. Microbial community composition as indicated by fatty acid methyl ester (FAME) analysis showed that in amended soils, DRW resulted in a reduction in fungi and an increase in Gram-positive bacteria. In contrast, the microbial community in the non-amended soil was not altered by DRW. The non-selective reduction in the microbial community in the non-amended soil suggests that indigenous microbial communities may be more resilient to DRW. In conclusion, DRW cycles result in C and P pulses and alter the microbial community composition. Carbon pulses but not phosphorus pulses are related to changes in microbial biomass. The transient pulses in available P could be important for P availability in soils under Mediterranean climates.  相似文献   

18.
The effects of compaction on soil porosity and soil water relations are likely to influence substrate availability and microbial activity under fluctuating soil moisture conditions. We conducted a short laboratory incubation to investigate the effects of soil compaction on substrate availability and biogenic gas (CO2 and N2O) production during the drying and rewetting of a fine-loamy soil. Prior to initiating the drying and wetting treatments, CO2 production (−10 kPa soil water content) from uncompacted soil was 2.3 times that of compacted soil and corresponded with higher concentrations of microbial biomass C (MBC) and dissolved organic C (DOC). In contrast, N2O production was 67 times higher in compacted than uncompacted soil at field capacity. Soil aeration rather than substrate availability (e.g. NO3 and DOC) appeared to be the most important factor affecting N2O production during this phase. The drying of compacted soil resulted in an initial increase in CO2 production and a nearly two-fold higher average rate of C mineralization at maximum dryness (owing to a higher water-filled pore space [WFPS]) compared to uncompacted soil. During the drying phase, N2O production was markedly reduced (by 93-96%) in both soils, though total N2O production remained slightly higher in compacted than uncompacted soil. The increase in CO2 production during the first 24 h following rewetting of dry soil was about 2.5 times higher in uncompacted soil and corresponded with a much greater release of DOC than in compacted soil. MBC appeared to be the source of the DOC released from uncompacted soil but not from compacted soil. The production of N2O during the first 24 h following rewetting of dry soil was nearly 20 times higher in compacted than uncompacted soil. Our results suggest that N2O production from compacted soil was primarily the result of denitrification, which was limited by substrates (especially NO3) made available during drying and rewetting and occurred rapidly after the onset of anoxic conditions during the rewetting phase. In contrast, N2O production from uncompacted soil appeared to be primarily the product of nitrification that was largely associated with an accumulation of NO3 following rewetting of dry soil. Irrespective of compaction, the response to drying and rewetting was greater for N2O production than for CO2 production.  相似文献   

19.
Temperature, drying, and rewetting are important climatic factors that control microbial properties. In the present study we looked at the respiration rates, adenosine 5′‐triphosphate (ATP) content, and adenylate energy charge (AEC) as a measure for energy status of microbial biomass in the upper 5 cm of mineral soils of three beech forests at different temperatures and after rewetting. The soils differed widely in pH (4.0 to 6.0), microbial biomass C (92 to 916 μg (g DW)—1) and ATP content (2.17 to 7.29 nmol ATP (g DW)—1). The soils were incubated for three weeks at 7 °C, 14 °C, and 21 °C. After three weeks the microbial properties were determined, retaining temperature conditions. The temperature treatment did not significantly affect AEC or ATP content, but respiration rates increased significantly with increasing temperature. In a second experiment the soils were dried for 12 hours at 40 °C. Afterwards the soils were rewetted and microbial properties were monitored for 72 hours. After the drying, respiration rates dropped below the detection limit, but within one hour after rewetting respiration rates increased above control level. Drying reduced AEC by 16 % to 44 % and ATP content by 47 % to 78 %, respectively. Rewetting increased AEC and ATP content significantly as compared to dry soil, but after 72 hours the level of the controls was still not reached. The level of AEC values indicated dormant cells, but ATP content increased. These results indicate that the microbial carbon turnover was not directly linked to microbial growth or microbial energy status. Furthermore our results indicate that AEC may describe an average energy status but does not reflect phases of growing, dormant, or dying cells in the complex microbial populations of soils.  相似文献   

20.
Contemporary soil organic matter (SOM) models have been successful at simulating decomposition across a range of spatial and temporal scales using first-order kinetics to represent the decomposition process; however, recent work suggests the simplicity of the first-order representation of decomposition is not adequate to capture the microbially-driven dynamics of SOM decomposition over short timescales. For example, the response of soils to drying-rewetting events may best be explained by microbial and/or exoenzyme controls on decomposition. To test if adding these microbial mechanisms improves the ability of SOM models to simulate the response of soils to short-term environmental changes, we developed four different SOM decomposition models with varying mechanistic complexity and compared their ability to simulate soil respiration from a pulsed drying-rewetting laboratory-based experiment. Specifically, we tested the ability of the models to capture the timing and magnitude of soil CO2 efflux in response to rewetting or constant moisture conditions. The results of the comparison suggest that the inclusion of exoenzyme and microbial controls on decomposition can improve the ability to simulate pulsed rewetting dynamics; however, less mechanistic first-order models prevail under steady-state moisture conditions. These modeling results may have implications for understanding the long-term response of soil carbon stocks in response to local and regional climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号