首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

In two pot experiments, cucumber (Cucumis sativus L. cv. Jinlu No. 3) seedlings were each inoculated with one of three arbuscular mycorrhizal fungi (AMF), Glomus mosseae, Glomus intraradices, or Glomus versiforme, or uninoculated. Seedling growth and weight of single fruit were investigated. The results indicated that growth of seedlings was significantly enhanced by G. mosseae, inhibited by G. versiforme, and not significantly influenced by G. intraradices. The dry weight of seedlings inoculated with G. mosseae was 1.2 times its counterparts. The concentrations of nitrogen (N) and phosphorus (P) in roots and magnesium (Mg), copper (Cu), and zinc (Zn) concentration in shoots were increased by inoculating the three AMF, and potassium (K) and iron (Fe) concentrations in shoots decreased significantly. The weights of single fruit of plants preinoculated with G. mosseae and G. versiforme were about 1.4 and 1.3 times higher than those from the uninoculated treatment, respectively.  相似文献   

2.
A pot experiment was conducted to investigate the biocontrol effects of arbuscular mycorrhizal fungi (AMF) Glomus mosseae and Glomus versiforme on Fusarium oxysporum wilt disease of cucumber (Cucumis sativus L.). The results indicated that both AMF improved the growth of cucumber seedlings and reduced disease severity, but G. versiforme was more efficient. Compared with nonmycorrhizal plants infected by F. oxysporum, shoots and roots dry weights increased by 100% and 80% in G. versiforme–inoculated plants, and the qualities of seedlings were significantly improved; meanwhile, nitrogen, phosphorus, and potassium contents in shoots of G. versiforme–inoculated plants were significantly greater than those of G. mosseae–inoculated plants and nonmycorrhizal plants. Moreover, for mycorrhizal plants, soluble sugar and free proline contents in mycorrhizal roots were significantly greater than those of nonmycorrhizal treatment; however, malonaldehyde content in roots and the quantity of fungi in rhizosphere decreased when the plants were attacked by F. oxysporum.  相似文献   

3.
A pot experiment was conducted to evaluate the influence of pre-inoculation of cucumber plants with each of the three arbuscular mycorrhizal (AM) fungi Glomus intraradices, Glomus mosseae, and Glomus versiforme on reproduction of the root knot nematode Meloidogyne incognita. All three AM fungi tested significantly reduced the root galling index, which is the percentage of total roots forming galls. Numbers of galls per root system were significantly reduced only in the G. intraradices + M. incognita treatment. The number of eggs per root system was significantly decreased by AM fungus inoculation, no significant difference among the three AM fungal isolates. AM inoculation substantially decreased the number of females, the number of eggs g−1 root and of the number of eggs per egg mass. The number of egg masses g−1 root was greatly reduced by inoculation with G. mosseae or G. versiforme. By considering plant growth, nutrient uptake, and the suppression of M. incognita together, G. mosseae and G. versiforme were more effective than G. intraradices.  相似文献   

4.
The main objective of this study was to investigate the effects of co-inoculation with different strains of Bradyrhizobium japonicum (i.e. Helinitro, Rizoking, and Nitragin) and arbuscular mycorrhizal fungi (AMF) species (i.e. Glomus fasciculatum, Glomus versiforme, Glomus intraradices, Glomus mosseae, and Glomus etunicatum) on soybean growth, fungal root colonization, and nutrient uptake of nitrogen (N), phosphorus (P), zinc (Zn), iron (Fe), and copper (Cu). Co-inoculation with various AMF species and rhizobia significantly (p<0.01) increased the soybean biomass production as compared to the non-inoculated controls. Furthermore, AMF colonization of roots of soybean plants increased by 79, 70.1, 67, 63, 57.5, and 50.1% in the presence of G. fasciculatum (GF), G. versiforme (GV), G. intraradices (GI), G. mosseae (GM), and G. etunicatum (GE), and Gmix (a mixed culture of fungi), respectively. Higher nutrient contents were observed in plants co-inoculated with Helinitro and GF. More insight into these results will enable optimization of the effective use of AM fungi in combination with their bacterial partners as a tool for increasing soybean yields in Iran; however, its general analytical framework could be applied to other parts of the world.  相似文献   

5.
Micropropagated plantlets lack mycorrhizal symbionts and therefore present some physiological hindrances when transferred from axenic to ex vitro conditions. The purpose of the present study was to research the effects of Glomus mosseae and G. versiforme on growth, photosynthesis, and nutrient uptake of micropropagated citrus plantlets at the acclimatization stage. The two mycorrhizal fungi successfully colonized the roots of citrus plantlets after an acclimatization period of 170 days, and the mycorrhizal developments were apt to low levels. Inoculation with G. mosseae improved acclimatized growth performance; increased photosynthetic rates, transpiration rates, and stomatal conductance; and stimulated the accumulations of nitrogen (N), phosphorus (P), calcium (Ca), copper (Cu), zinc (Zn), and manganese (Mn) in leaves and roots compared to the noninoculated treatment. These observations suggested that only G. mosseae was the more efficient fungus, exhibited better adaptation to transplanted conditions, and therefore is appropriate to introduce into the micropropagation protocol of citrus.  相似文献   

6.
A pot experiment was conducted to evaluate native plant species associated with exogenous AMF for their suitability in the revegetation of iron mine tailings of Inner Mongolia grassland. Agropyron cristatum (L.) Gaertn. and Elymus dahuricus Turcz. associated with AMF, Glomus mosseae, or Glomus versiforme, were grown on iron mine tailings to assess the mycorrhizal effects on plant growth, mineral nutrition uptake, C:N:P stoichiometry, and heavy metals uptake. The symbiotic associations were successfully established between exogenous AMF and two native plants, and root colonization rates of G. versiforme were significantly (P?<?0.05) higher than those of G. mosseae. G. versiforme was more effective than G. mosseae in promoting plant growth by significantly (P?<?0.05) increasing the concentrations of N, P, and K and decreasing the ratios of C:N:P. The shoot and root dry weights of A. cristatum and E. dahuricus were increased by 51–103 %. The N, P, and K concentrations of shoots and roots of two plants were increased by 18–236 %. Inoculation with AMF also significantly (P?<?0.05) decreased concentrations of heavy metals in the shoots and increased those in the roots, indicating that AMF could confer some degree of heavy metal tolerance to plants. The results indicated that plant inoculation with G. versiforme was more suitable than inoculation with G. mosseae for the revegetation of iron mine tailings. The experiment provided evidence for the potential use of local plant species in combination with exogenous AMF for ecological restoration of metalliferous tailings in arid and semi-arid grassland.  相似文献   

7.
Rare earth elements (REE) of mine tailings have caused various ecological and environmental problems. Revegetation is one of the most cost-effective ways to overcome these problems, but it is difficult for plants to survive in polluted tailings. Arbuscular mycorrhizal fungi (AMF) can provide biotic and abiotic stress tolerance to its host plant and has widely adopted for the revegetation of degraded ecosystems. However, little is known about whether AMF plays role in facilitating the revegetation of REE of mine tailings. The objective was to investigate the uptake of nutrients and REE when plants are inoculated with AMF. A greenhouse pot experiment was conducted on the effects of Glomus mosseae and Glomus versiforme for the growth, nutritional status, and uptake of REE and heavy metals by maize (Zea mays L.) or sorghum (Sorghum bicolor L. Moench) grown in REE of mine tailings. The results indicated that symbiotic associations were successfully established between AMF and the two plant species. G. versiforme was more effective than G. mosseae at promoting plant growth by significantly increasing the uptake of nitrogen (N), phosphorus (P), and potassium (K) and decreasing carbon:nitrogen:phosphorus (C:N:P) stoichiometry. The shoot and root dry weights of the two plant species were increased by 211–387% with G. versiforme inoculation. Maize and sorghum exhibited significant differences in the REE concentrations in response to the colonization by AMF. The shoot and root lanthanum (La), cerium (Ce), praseodymium (Pr), and neodymium (Nd) concentrations of the maize inoculated with G. versiforme were decreased by approximately 70%, whereas those in the roots of sorghum were increased by approximately 70%. G. mosseae only significantly decreased the La, Ce, Pr, and Nd concentrations in the maize shoots. Inoculation with AMF also significantly decreased the concentration of certain heavy metals in the shoots and roots of maize and sorghum. These findings indicate that AMF can alleviate the effects of REE and heavy metal toxicity on plants and enhance the ability of plants to adapt to the composite adversity of REE in mine tailings.  相似文献   

8.
Summary Wheat cultivars assumed to be non-susceptible to vesicular-arbuscular (VA) mycorrhizae became colonized, and this effect persisted under different growth conditions. Colonization of all cultivars was similar regardless of the amount of inoculum and the time interval of inoculation. Different plant growth temperatures and the support given by the culture media, inoculation with different endophytes, and inoculation with sterilized and unsterilized spores affected VA colonization levels, although the level of colonization reached in cv. Champlein was similar to that reached in cv. 7-Cerros under each condition. VA mycorrhizal colonization was also affected by different plant growth conditions. After VA reinoculation, the plant dry weight of Castan and 7-Cerros increased, but not Negrillo and Champlein cultivars. VA mycorrhizae increased the shoot dry weight of 7-Cerros only, but not of Champlein, when grown at 35/24°C, and had no effect on the dry weight of either cultivar grown at 18/12°C and 42/24°C. Inoculation with Glomus mosseae increased the dry weight of the cultivars more than inoculation with G. fasciculatum or G. agregatum. The effect on the plant dry weight was greater in plants grown in soil than in sand/vermiculite pots. Inoculation with sterilized and unsterilized spores of G. mosseae, either in soil pots or in sand/vermiculite tubes, did not increase the plant dry weight. Our results indicate that there was no close relationship between the level of root colonization and the effect on plant growth. The effects of accompanying microorganisms in the VA inoculum on VA mycorrhizal symbiosis are discussed.  相似文献   

9.
A study was carried out to evaluate the influence of single or dual inoculation with Glomus mosseae and Azorhizobium caulinodans with and without rock phosphate on the growth of and N, P and K accumulation in Sesbania rostrata grown in sterilized soil. Height of plants inoculated with G. mosseae in combination with A. caulinadans and/or rock phosphate was significantly higher than that of uninoculated plants or plants inoculated with A. caulinodans alone before but not after 28 days. However, the oven-dry weight of shoots and roots from all treatments did not vary significantly. Generally, concentration and uptake of N and P but not K in shoots and roots of plants were improved by dual inoculation with G. mosseae and A. caulinodans plus or minus P. Mycorrhizal infection of roots was enhanced significantly by A. caulinodans. Received: 18 March 1996  相似文献   

10.
ABSTRACT

A pot experiment was conducted to study the growth and pungency of Allium cepa L. grown in Perlite as affected by colonization by the arbuscular mycorrhizal (AM) fungi Glomus versiforme and Glomus intraradices BEG141 and by ammonium:nitrate (NH4 +:NO3 ?) ratios of 3:1, 1:1, and 1:3 in 4 mM solutions. Plants were harvested when bulb formation commenced. In general, mycorrhizal colonization resulted in increased shoot dry weight, shoot length, sheath diameter, root nitrogen (N) and phosphorus (P) content (except with G. intraradices and a NH4 +:NO3 ? ratio of 1:3), shoot N and P concentrations (except with G. versiforme and a NH4 +:NO3= ratio of 3:1) and content. Plants inoculated with G. versiforme had higher growth parameters and N and P content than those with G. intraradices, whereas N and P concentrations showed the opposite trends. Growth parameters and N and P content of non-mycorrhizal plants were highest at a NH4 +:NO3= ratio of 1:3, while those of plants inoculated with G. versiforme or G. intraradices were highest at a ratio of NH4 +:NO3 ? 3:1 or 1:1. Neither mycorrhizal colonization nor proportion of inorganic N species significantly affected bulb enzyme-produced pyruvate or total or organic sulfur (S) concentrations in plant shoots. Colonization by AM fungi made a substantial contribution to onion growth and may not have been directly related to bulb pungency at early stages of plant growth. However, the influence of AM fungi on plant N and P metabolism may have implications for onion flavor at later stages of plant growth.  相似文献   

11.
We assessed the effect of mycorrhizal inoculation on short‐term uptake kinetics of arsenate and arsenite by excised roots of upland rice (Oryza sativa L. cv. Zhonghan 221). A concentration of 0.01–0.05 mM arsenic (As) differentially affected the influx rates of both arsenate and arsenite into rice roots non‐inoculated or inoculated with Glomus mosseae and G. versiforme. While Vmax for arsenate uptake by non‐mycorrhizal roots was 1.02 µmol g?1 fresh weight h?1, it was reduced by a factor of 2.4 for mycorrhizal roots (about 0.42 µmol g?1 fresh weight h?1) in the high‐affinity uptake system. However, at high concentrations of 0.5–2.5 mM As only G. versiforme was able to reduce As influx. The results show that mycorrhizal effects on As uptake of upland rice are both concentration and species‐specific.  相似文献   

12.
A pot experiment was conducted to examine the effects of arbuscular mycorrhizal fungi, Glomus versiforme, G. mosseae, and G. intraradices on growth and nutrition of trifoliate orange (Poncirus trifoliata) seedlings under magnesium (Mg)-nontreated and Mg-treated conditions. Whether treated with Mg or not, G. versiforme inoculation significantly enhanced the growth and concentrations of Mg, phosphorus, calcium, potassium, zinc, and copper in shoots or roots, and activities of acid phosphatase, catalase, invertase, and urease in rhizosphere soils. Additionally, there were higher levels of chlorophyll, proline, soluble sugar and protein in leaves, root viability, superoxide dismutase, peroxidase and catalase in leaves and roots, but lower malondialdehyde content in leaves and roots of mycorrhizal seedlings than non-mycorrhizal ones. Data demonstrated that G. versiforme-inoculated citrus seedlings exhibited higher levels of soil enzymes, osmoregulation, and antioxidant matters, leading to improvement of growth and nutrition of seedlings in low Mg soil.  相似文献   

13.
Rhizosphere organisms affect plant development and soil stability. This study was conducted to determine the effects of a vesicular-arbuscular mycorrhizal (VAM) fungus [Glomus mosseae (Nicol. &>; Gerd.) Gerd. and Trappe] and a rhizobacterium (Bacillus sp.) on nitrate-fertilized or nodulated pea (Pisum sativum L.) plants and on the status of water-stable soil aggregates. The plants were grown in pots in a yellow clay-loam soil, and inoculated with the VAM fungus and the rhizobacterium, with one of the two, or with neither. The Bacillus sp. and G. mosseae did not affect shoot dry mass in nodulated plants. Under N fertilization, the VAM fungus enhanced plant growth, while the rhizobacterium inhibited shoot growth, VAM root colonization, and nodule formation, but enhanced the root:shoot and the seed:shoot ratios. The inhibition of shoot growth and of root colonization appeared to be related. The water stability and pH of the VAM soils were higher than those of the non-VAM soils. The rhizobacterium enhanced the water-stable aggregate status in the non-VAM soils only. Under both N-nutrition regimes, the soils had the greatest proportion of the water-stable aggregates when inoculated with both rhizo-organisms and the lowest when colonized by neither. The two rhizo-organisms affected both plants and soil, and these effects were modified by the source of N input through N2 fixation or fertilization. Received: 5 April 1995  相似文献   

14.
The effect of the hormonal herbicide MCPA on VA mycorrhizal infection and on pea plant growth was examined. Plant growth was decreased by MCPA applied at the rate of 120 ppm. The VA infections of pea roots inoculated with G. mosseae was decreased by the MCPA when applied at high dosis (120 ppm), but those of indigenous endophytes were decreased at the rate of 12 and 120 ppm. MCPA applied to VA inoculated pots eight weeks before pea planting also decreased the VA infection of these plants. These results suggest that VA mycorrhizas was affected not only through the plant but also directly by the application of the herbicide. Glomus mosseae may help plants recover from the deleterious effect of MCPA when applied at intermediary (12 ppm) but not at high dosis (120 ppm).  相似文献   

15.
The effects of arbuscular mycorrhizal (AM) fungi on water status and stomatal behaviour of cowpea, Vigna unguiculata (L.) Walp. cv. B89-504, under water-stressed conditions in the greenhouse were studied. The 3 × 2 experimental design included two levels of mycorrhizal colonisation (Glomus mosseae, Glomus versiforme) and non-mycorrhizal control treatment and two soil moisture levels (well-watered pots and pots allowed to dry). Relative water content and leaf water potential values were higher in well-watered mycorrhizal and non-mycorrhizal plants than in water-stressed mycorrhizal and non-mycorrhizal plants. AM species had no significant effect on leaf osmotic potential, stomatal conductance and leaf transpiration in both well watered and water-stressed plants. The values of stomatal conductance and leaf transpiration were high during the vegetative stage and low during the flowering stage. These responses which can be related to the age of the plant suggest that mycorrhizal colonisation did not affect stomatal closure of cowpea plants during water stress. The decrease in plant growth and dry matter production in both mycorrhizal and non-mycorrhizal plants shows that drought resistance in cowpea was unaffected by mycorrhiza in the vegetative phase.  相似文献   

16.
A greenhouse pot experiment was conducted to investigate heavy metal [copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd)] uptake by two upland rice cultivars, ‘91B3’ and ‘277’, grown in a sterilized field soil contaminated by a mixture of Cu, Zn, Pb, and Cd. Rice plants were inoculated with each of three arbuscular mycorrhizal fungi (AMF), Glomus versiforme (GV), Glomus mosseae (GM), and Glomus diaphanum (GD), or remained noninoculated (NM). Both rice cultivars could be colonized by the three AMF used in this experiment. The percentage of mycorrhizal colonization by the three AMFs on the two rice cultivars ranged from 30% to 70%. Mycorrhizal colonization of both upland rice cultivars had a large influence on plant growth by increasing the shoot and root biomass compared with non-inoculated (NM) plants. The results indicate that mycorrhiza exert some protective effects against the combined toxicity of Cu, Zn, Pb, and Cd in the contaminated soil. This conclusion is supported by the partitioning of heavy metals (HMs) in the two cultivars. In the two cultivars, colonization by AMF reduced the translocation of HMs from root to shoot (except that the colonization of AMF increased the Cu translocation of HMs in cultivar ‘277’). Immobilization of the HMs in roots can alleviate the potential toxicity to shoots induced by the mixture of Cu, Zn, Pb, and Cd. The two rice cultivars showed significant differences in uptake of Cu, Zn, Pb, and Cd when uninoculated. GM inoculation gave the most protective effects on the two cultivars under the combined soil contamination.  相似文献   

17.
Summary Pot-culture studies were carried out to examine the response of barley (Hordeum vulgare L.) to inoculation with Azospirillum brasilense and Glomus versiforme, singly and/or in combination, under varying levels of nitrogenous [(15NH4)2SO4] and soluble phosphatic (single superphosphate) fertilizers. The interaction between both the endophytes led to increased growth and nutrition of the barley plants. Roots from plants inoculated with Azospirillum brasilense and Glomus versiforme exhibited very low acetylene reduction activity. N2 fixation in the plants increased with the increase in plant growth but the mycorrhiza alone gave a low level of N2 fixation in the plants compared to combined inoculation with both the endophytes.  相似文献   

18.
ABSTRACT

A pot experiment was conducted out to investigate the yield and pungency of spring onion (Allium fistulosum L.) as affected by inoculation with arbuscular mycorrhizal (AM) fungi and addition of nitrogen (N) and sulfur (S) fertilizers. Plants were inoculated with either Glomus mosseae or Glomus intraradices or grown as uninoculated controls. Two levels of N and S were applied to the soil in factorial combinations of 50 and 250 mg N kg?1 soil and 0 and 60 mg S kg?1 soil. Plants were grown in a greenhouse for 25 weeks and then harvested. Mycorrhizal colonization resulted in increased shoot dry weight, shoot-to-root ratio, shoot length, sheath diameter, and phosphorus (P) concentrations. Shoot dry-matter yield was significantly affected by added N, but not by S. Shoot dry weight increased with increasing N supply (except for non-mycorrhizal controls without additional S fertilizer). Shoot total S concentration (TSC), enzyme-produced pyruvate (EPY), and organic sulfur concentration (OSC) in plants inoculated with Glomus mosseae were significantly lower than those of non-mycorrhizal controls, while these parameters in plants inoculated with Glomus intraradices were comparable to or higher than in the controls. Neither N nor S supply affected shoot EPY or OSC, whereas shoot TSC (except in plants inoculated with Glomus mosseae) and SO4 2? concentrations were usually significantly increased by S supply. In soil of high S and low P availability, mycorrhizal colonization had a profound influence on both the yield and the pungency of spring onion.  相似文献   

19.
Effects of inoculation with three different arbuscular mycorrhizal (AM) fungi (Glomus etunicatum, Glomus constrictum, and Glomus mosseae) on arsenic (As) accumulation by maize were investigated by using soil spiked with As at rates of 0, 25, 50, and 100 mg kg?1. The root colonization rates by the three fungi were significantly different (G. mosseae > G. etunicatum > G. constrictum) and decreased markedly with increasing As concentration in the soil. Inoculation with G. etunicatum or G. mosseae increased maize biomass and phosphorus (P) accumulation (G. mosseae > G. etunicatum) and reduced As accumulation in shoots (G. mosseae ≈ G. etunicatum), whereas inoculation with G. constrictum had little effect on these parameters. Inoculation with G. mosseae produced greater biomass and P uptake and less shoot As accumulation, and therefore it may be a promising approach to reduce As translocation from contaminated soils to plants.  相似文献   

20.
In a greenhouse pot experiment, maize was grown inoculated with the spores of the VAM fungi Glomus mosseae and Glomas multicaulis or non‐inoculated. Low soluble ferrous phosphate (FePO4.4H2O) was added to the mycorrhized and non‐mycorrhized maize. The fresh and dry weights of mycorrhized plants with added phosphate (P) were higher than in mycorrhized plants without added P or non‐mycorrhized plants with added P. The amount of P in the soil samples from pots with mycorrhizal plants fertilized with P was evidently smaller than those in samples also fertilized non‐mycorrhizal plants. The percentage of P was higher in tissues of fertilized mycorrhizal plants than in those mycorrhized plants without or non‐mycorrhized plants with added low‐ soluble P. These results indicated that plants in VAM symbiosis mobilize P better from low‐soluble P than non‐mycorrhized plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号