首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 5 毫秒
1.
The interactive effect of salicylic acid and sodium chloride (NaCl) salinity on wheat (Triticum aestivum L.) cv. ‘Inqlab’ (salt‐sensitive) and cv. ‘S‐24’ (salt‐tolerant) was studied in a sand‐culture pot experiment in a net house. Wheat seeds soaked in water and 100 ppm salicylic acid solution for 6 h were sown in sand salinized with 0, 50, and 100 mM NaCl. Pots were irrigated with quarter‐strength Hoagland's nutrient solution. Fourteen‐day‐old seedlings were harvested, and growth parameters (leaf and root length, leaf and root dry weight) were recorded. Chlorophyll a and b content; soluble sugar (reducing, nonreducing, and total sugars) content; nitrate (NR) and nitrite reductase activity (NiR); soluble proteins, and total soluble amino acid content of fresh leaves were determined. Sodium chloride salinity significantly reduced growth parameters. Salicylic acid treatment alleviated the adverse salinity effect on growth. Salinity decreased the chlorophyll a and b content and chlorophyll a/b ratio in both varieties, but a decrease in the chlorophyll a/b ratio was less in salt‐tolerant wheat variety (‘S‐24’), which could be a useful marker for selecting a salt‐tolerant variety. Salinity (NaCl) stress considerably increased the accumulation of reducing sugars, nonreducing sugars, and total soluble sugars in leaves of 14‐day‐old wheat seedlings of both varieties. The salt‐tolerant variety (‘S‐24’) accumulated a higher sugar content, which also could be a useful marker for selecting a salt‐tolerant variety for slat‐affected areas. Salinity caused a reduction in nitrate reductase and nitrite reductase activity. The salt‐tolerant variety (‘S‐24’) showed resistance to a decrease of nitrate reductase activity under salinity. This could be a useful criterion for selecting salt‐tolerant varieties. In response to salinity, wheat seedlings accumulated soluble proteins and amino acids, which might reflect a salt‐protective mechanism.  相似文献   

2.
《Journal of plant nutrition》2013,36(12):2391-2401
Abstract

Availability of phosphorus (P) in soil and its acquisition by plants is affected by the release of high and low molecular weight root exudates. A study was carried out to ascertain the qualitative and quantitative differences in root exudation among the genotypes of maize (Zea mays L.) and green gram (Vigna radiata L.) under P‐stress. Results showed that both inter‐ and intra‐species differences do exist among maize and green gram in terms of root exudation, P uptake, and shoot and root P content. In general, green gram, a legume crop, had greater root exudation compared to maize. However, the amino acid content of the total root exudates in maize was two‐fold as compared to green gram. The maize and green gram genotypes possessed genetic variability in root exudation. Irrespective of the species or genotypes, a positive relationship was found among P uptake rates, total root exudation, and shoot and root 32P content. The amount of sugars and amino acid present in the root exudates of P‐starved seedlings also add to the variation in P uptake efficiency of genotypes.  相似文献   

3.
Abstract

Bell pepper (Capsicum annuum cv. Urfa Isoto) and cucumber (Cucumis sativus cv. Beith Alpha F1) were grown in pots containing field soil to investigate the effects of supplementary potassium phosphate applied to the root zone of salt‐stressed plants. Treatments were (1) control: soil alone (C); (2) salt treatment: C plus 3.5 g NaCl kg?1 soil (C + S); and (3) supplementary potassium phosphate: C + S plus supplementary 136 or 272 mg KH2PO4 kg?1 soil (C + S + KP). Plants grown in saline treatment produced less dry matter, fruit yield, and chlorophyll than those in the control. Supplementary 136 or 272 mg KH2PO4 kg?1 soil resulted in increases in dry matter, fruit yield, and chlorophyll concentrations compared to salt‐stressed (C + S) treatment. Membrane permeability in leaf cells (as assessed by electrolyte leakage from leaves) was impaired by NaCl application. Supplementary KH2PO4 reduced electrolyte leakage especially at the higher rate. Sodium (Na) concentration in plant tissues increased in leaves and roots in the NaCl treatment. Concentrations of potassium (K) and Phosphorus (P) in leaves were lowered in salt treatment and almost fully restored by supplementary KH2PO4 at 272 mg kg?1 soil. These results clearly show that supplementary KH2PO4 can partly mitigate the adverse effects of high salinity on both fruit yield and whole plant biomass in pepper and cucumber plants.  相似文献   

4.
Abstract

The effects of irrigating with saline water on native soil fertility and nutrient relationships are not well understood. In a laboratory experiment, we determined the extent of indigenous nutrient [calcium (Ca), magnesium (Mg), potassium (K), manganese (Mn), and zinc (Zn)] release in salt-saturated soils. Soils were saturated with 0, 75, and 150 mmolc L?1 sodium chloride (NaCl) solution and incubated for 1, 5, 10, and 15 days. The saturation extracts were analyzed for pH, ECe, and water‐soluble Ca, Mg, K, Mn, and Zn, and the remainder soil samples were analyzed for exchangeable forms of these elements. In a subexperiment, three soil types (masa, red‐yellow, and andosol) were saturated individually either with 100 mmolc L?1 of NaCl, sodium nitrate (NaNO3), or sodium sulfate (Na2SO4) salt. These salts were also compared for nutrient release. Soils treated with NaCl released higher amounts of water‐soluble than exchangeable nutrients. Except for Zn, the average concentrations of these nutrients in the soil solution increased significantly with time of incubation, but concentrations of the exchangeable forms varied inversely with time of incubation. The masa soil exhibited the highest concentrations of Ca and Mg, whereas K was highest in andosol. The extract from soils treated with NaCl contained greater amounts of soluble cations, whereas soils treated with Na2SO4 produced the lowest concentration of these elements irrespective of the type of soil used.  相似文献   

5.
Abstract

In semiarid and arid regions, plant growth is limited by high pH, salinity, and poor physical properties of salt‐affected soils. A field experiment was conducted in the semiarid region of Kangping in northeast China (42°70′ N, 123°50′ E) to evaluate a soil‐management system that utilized a by‐product of flue‐gas desulfurization (FGD). Soil was treated with 23,100 kg ha?1 of the by‐product. Results of corn growth were grouped into three grades (GD) according to stages of corn growth: GD1, seeds did not germinate; GD2, seeds germinated but corn was not harvested; and GD3, plants grew well and corn was harvested. The pH, electrical conductivity (EC), bicarbonate (HCO3 ?), carbonate (CO3 2?), exchangeable and soluble calcium (Ca2+), chloride (Cl), and sulfate (SO4 2?) in surface soils of the three grades (>20 cm) was measured to assess the correlation between corn growth and soil properties. Vertical differences in subsoil properties (0‐100 cm) between GD1 and GD3 were compared to known benchmark soil profiles. The FGD by‐product significantly increased EC, exchangeable and soluble Ca2+, and SO4 2? and decreased CO3 2?, exchangeable sodium (Na+), and soluble Na+. pH, EC, HCO3 ?, CO3 2?, and Cl? were higher in surface soils of GD1 than GD3. Soil hardness, soil moisture content, Cl?, and calcium carbonate (CaCO3) were higher in GD1 than in GD3, whereas the amount of available P was lower in GD1. Interestingly, the concentration of Cl?, a toxic element for plant growth, was 2.5 and 1.5 times higher in GD1 than in GD3 and control soil, respectively. In the comparison study of subsoils, GD1 and GD3 were classified as having typical characteristics of saline‐alkali soil (pH>8.5; exchangeable‐sodium‐percentage [ESP]>15; EC>4.0) and alkali soil (pH>8.5; ESP>15; EC<4.0), respectively.  相似文献   

6.
《Journal of plant nutrition》2013,36(10-11):1997-2007
Abstract

Two tomato (Lycopersicon esculentum Mill., cvs. Pakmor and Target) genotypes differing in resistance to iron (Fe) deficiency were grown in nutrient solution under controlled environmental conditions over 50 days to study the relationships between severity of leaf chlorosis, total concentration of Fe, and activities of Fe‐containing enzymes in leaves. The activities of Fe‐containing enzymes ascorbate peroxidase, catalase, and guaiacol peroxidase, and additionaly the activity of glutathione reductase, an enzyme that does not contain Fe, were measured. Plants were supplied with 2 × 10?7 M (Fe deficient) and 10?4 M (Fe sufficient) FeEDTA, respectively. Leaf chlorosis appeared more rapidly and severely in Target (Fe deficiency senstive genotype) than Pakmor (Fe deficiency resistant genotype). On day 50, Pakmor had 2‐fold more chlorophyll than Target under Fe deficiency, while at adequate supply of Fe the two genotypes were very similar in chlorophyll concentration. Despite distinct differences in development of leaf chlorosis and chlorophyll concentrations, Pakmor and Target were very similar in concentrations of total Fe under Fe deficiency. In contrast to Fe concentration, activities of Fe‐containing enzymes were closely related to the severity of leaf chlorosis. The Fe‐containing enzymes studied, especially catalase, showed a close relationship with the concentration of chlorophyll and thus differential sensitivity of tomato genotypes to Fe deficiency. Glutathione reductase did not show relationship between Fe deficiency chlorosis and enzyme activity. The results confirm that measurement of Fe‐containing enzymes in leaves is more reliable than the total concentration of Fe for characterization of Fe nutritional status of plants and for assessing genotypical differences in resistance to Fe deficiency. It appears that Fe deficiency‐resistant genotype contains more physiologically available Fe in tissues than the genotype with high sensitivity to Fe deficiency.  相似文献   

7.
《Journal of plant nutrition》2013,36(10-11):2307-2319
Abstract

Iron deficiency is estimated to affect over one‐half the world population. Improving the nutritional quality of staple food crops through breeding for high bioavailable iron represents a sustainable and cost effective approach to alleviating iron malnutrition. Forty‐nine late maturing tropical elite maize varieties were grown in a lattice design with two replications in three locations representing three agroecologies in West and Central Africa to identify varieties with high levels of kernel‐Fe. Bioavailable iron was assessed for some varieties selected for high Fe concentration in kernel and improved agronomic traits using an in vitro digestion/Caco‐2 cell model. Significant differences in kernel‐Fe and ‐zinc concentration were observed among varieties (P < 0.001). Kernel‐Fe levels ranged from 16.8 to 24.4 mg kg?1, while kernel‐Zn levels ranged from 16.5 to 24.6 mg kg?1. Environment did not have a significant effect on kernel‐iron and ‐zinc levels, but genotype by environment (G × E) interaction was highly significant. The genetic component accounted for 12% of the total variation in kernel‐Fe and 29% for kernel‐Zn levels. Kernel‐Fe was positively correlated with kernel‐Zn (R 2 = 0.51, P < 0.0001). Significant differences in iron bioavailability were detected among selected Fe‐rich varieties grown at one location. Mean bioavailable Fe ranged between 30% below to 88% above the reference control variety. The results indicate that genetic differences exist in kernel‐Fe and ‐Zn concentrations and Fe bioavailability. These differences may be useful in biofortification intervention programs, but additional research is needed to determine the efficacy of iron‐rich maize varieties in alleviating iron deficiency in humans.  相似文献   

8.
Abstract

A greenhouse experiment was carried out to study severity of the zinc (Zn) deficiency symptoms on leaves, shoot dry weight and shoot content and concentration of Zn in 164 winter type bread wheat genotypes (Triticunt aestivum L.) grown in a Zn‐deficient calcareous soil with (+Zn=10 mg Zn kg?1 soil) and without (‐Zn) Zn supply for 45 days. Tolerance of the genotypes to Zn deficiency was ranked based on the relative shoot growth (Zn efficiency ratio), calculated as the ratio of the shoot dry weight produced under Zn deficiency to that produced under adequate Zn supply. There was a substantial difference in genotypic tolerance to Zn deficiency. Among the 164 genotypes, 108 genotypes had severe visible symptoms of Zn deficiency (whitish‐brown necrotic patches) on leaves, while in 25 genotypes Zn deficiency symptoms were slight or absent, and the remaining genotypes (e.g., 31 genotypes) showed mild deficiency symptoms. Generally, the genotypes with higher tolerance to Zn deficiency originated from Balkan countries and Turkey, while genotypes originating from the breeding programs in the Great Plains of the United States were mostly sensitive to Zn deficiency. Among the 164 wheat genotypes, Zn efficiency ratio varied from 0.33 to 0.77. The differences in tolerance to Zn deficiency were totally independent of shoot Zn concentrations, but showed a close relationship to the total amount (content) of Zn per shoot. The absolute shoot growth of the genotypes under Zn deficiency corresponded very well with the differences in tolerance to Zn deficiency. Under adequate Zn supply, the 10 most Zn‐ inefficient genotypes and the 10 most Zn‐efficient genotypes were very similar in their shoot dry weight. However, under Zn deficiency, shoot dry weight of the Zn‐efficient genotypes was, on average, 1.6‐fold higher compared to the Zn‐inefficient genotypes. The results of this study show large, exploitable genotypic variation for tolerance to Zn deficiency in bread wheat. Based on this data, total amount of Zn per shoot, absolute shoot growth under Zn deficiency, and relative shoot growth can be used as reliable plant parameters for assessing genotypic variation in tolerance to Zn deficiency in bread wheat.  相似文献   

9.
The potassium/sodium (K/Na) ratio in the shoots of six rapid‐cycling Brassica species was greatly reduced by seawater salinity. It proportionally decreased with increasing salinity from 4 dS/m to 12 dS/m. This decrease was correlated with salt‐induced growth reduction (expressed as the percentage of control) within a species. The change in K/Na ratio with increasing salinity, however, was not correlated with K‐Na selectivity. The change in K/Na ratio at the callus level corresponded to that at the whole plant level. Both K/Na ratio and K‐Na selectivity were not found to be correlated with the relative salt tolerance of these Brassica species, indicating that the maintenance of a high K/Na ratio as a mechanism for salt tolerance in these Brassica species was not operative. These results also suggest that a high shoot K/Na ratio or K‐Na selectivity may not be reliable selection criteria for salinity resistance in some species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号