首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Low‐molecular‐weight (LMW) organic acids are found in soils. They originate from the activities of various microorganisms in soils or may be exuded from the roots of living plants. Several of those organic acids are capable of forming stable organo‐metal complexes with various metal ions found in soil solutions. As a result, these processes may lead to the release of inorganic phosphorus (P) associated with aluminum (Al), iron (Fe), and calcium (Ca) in soil minerals. The release of P from soils by LMW organic acids may be important to the P nutrition of plants. Studies on the release of P from soils by a variety of LMW organic acids showed that, in general, the di‐ and tricarboxylic acids were the most effective in releasing P from two Iowa soils, whereas the monocarboxylic, phenolic, and mineral acids released similar amounts of P. Oxalic, malonic, citric, and, in some cases, malic and tartaric acids were the most effective in releasing inorganic P from the two surface soils studied. There was an inverse relationship between the amounts of P released from soils and the pKa values of the organic acids. The amounts of P released from soils were significantly correlated with the published stability constants for the formation of organic complexes of Al, Fe, or Ca (log KAl, log KFe, or log KCa values). In general, the aliphatic acids containing α‐caboxyl and β‐hydroxyl functional groups or phenolic acids containing ortho‐hydroxyl groups were more effective in causing the release of P from soils than similar organic acids having other functional group combinations.  相似文献   

2.
Abstract

A greenhouse study was conducted to determine the effects of low‐rate commercial humic acid (HA) on phosphorus (P), iron (Fe), and zinc (Zn) availability and spring wheat yields, in both a calcareous soil and a noncalcareous soil. In Phase I, soluble P concentrations were monitored at 1.9, 3.8, and 5.7 cm from a monoammonium phosphate (MAP) fertilizer band that had either been coated with one of two HA products at the equivalent of 1.7 kg HA ha?1, a label rate, or left uncoated. Sampling occurred periodically up to 48 d after fertilizer application. In Phase II, uptake of P, Fe, and Zn and grain yield were measured in soils that had been fertilized with 7.5 or 25 kg P ha?1, either coated with HA or left uncoated. In Phase I, only three significant differences (P=0.05) out of 66 comparisons were found in soluble P concentrations between HA and control treatments at time points ranging from 4 to 48 d after fertilization. In addition, no significant differences were found in nutrient uptake, shoot biomass, or grain yield between HA and control treatments. These greenhouse results suggest that low commercial HA rates (~1.7 kg HA ha?1) may be insufficient to enhance spring wheat growth.  相似文献   

3.
《Journal of plant nutrition》2013,36(5):1085-1099
Abstract

Phosphorus (P)–zinc (Zn) interactions in two barley cultivars (Clipper and Sahara) differing in P and Zn efficiencies were investigated in a pot experiment carried out in a growth chamber. A highly calcareous field soil from a semi‐arid region of South Australia was used. Five levels of P addition and three levels of Zn addition were used. Plants were harvested five weeks after emergence. Increase in P supply significantly increased plant shoot biomass and tissue P concentrations in both cultivars, indicating that the soil used is P deficient. Zinc additions with low P additions caused slight decreases in plant biomass. However, Zn addition did increase plant growth when higher levels of P were applied demonstrating the importance of the balance Zn and P supply. Results showed that the genotypic difference between the two cultivars in P uptake efficiency (specific P uptake, SPU) can be altered by Zn–P interactions, and that total Zn uptake by Sahara was higher than Clipper irrespective of P supply. Tissue Zn concentrations decreased significantly with an increase in P supply in both cultivars. Increase in P supply drastically reduced the molar ratio of Zn to P in shoots (MRZP), and addition of Zn compensated for the reduction in MRZP due to P addition. The role of P–Zn interactions in the context of nutritional quality of plant food is also discussed.  相似文献   

4.
Phosphorus fertilizer is critical to crop production but inefficiently absorbed and consequently linked to surface water pollution. Phosphorus mobility was measured on three soils using 0.18 m soil columns treated with Carbond® P (CBP, 7-24-0), ammonium polyphosphate (APP, 10-34-0) and monoammonium phosphate (MAP, 11-52-0) applied either by mixing thoroughly or in concentrated bands at rates of 20 and 30 kg P ha?1. Mobility of P was measured in leachate collected 24, 48, 110 and 365 d after fertilization (daf). Carbond® P produced the highest total P leachate values over 365 d study period compared to MAP or APP for both mixed and band applications. On individual days, CBP generally allowed more soluble P leachate than MAP or APP up until 110 daf (one exception) but not at 365 daf. Higher solubility of P with CBP explains higher P uptake by plants from soils and could reduce total P applications to crops.  相似文献   

5.
Abstract

The large variation in phosphorus acquisition efficiency of different crops provides opportunities for screening crop species that perform well on low phosphorus (P) soil. To explain the differences in P efficiency of winter maize (Zea mays L.), wheat (Triticum aestivum L.), and chickpea (Cicer arietinum L.), a green house pot experiment was conducted by using P‐deficient Typic ustochrept loamy sand soil (0.5 M NaHCO3‐extractable P 4.9 mg kg?1, pH 7.5, and organic carbon 2.7 g kg?1) treated with 0, 30, and 60 mg P kg?1 soil. Under P deficiency conditions, winter maize produced 76% of its maximum shoot dry weight (SDW) with 0.2% P in shoot, whereas chickpea and wheat produced about 30% of their maximum SDW with more than 0.25% P in shoot. Root length (RL) of winter maize, wheat, and chickpea were 83, 48, and 19% of their maximum RL, respectively. Considering relative shoot yield as a measure of efficiency, winter maize was more P efficient than wheat and chickpea. Winter maize had lower RL/SDW ratio than that of wheat, but it was more P efficient because it could maintain 2.2 times higher P influx even under P deficiency conditions. In addition, winter maize had low internal P requirement and 3.3 times higher shoot demand (i.e., higher amount of shoot produced per cm of root per second). Even though chickpea had 1.2 times higher P influx than winter maize, it was less P efficient because of few roots (i.e., less RL per unit SDW). Nutrient uptake model (NST 3.0) calculations satisfactorily predicted P influxes by all the three crops under sufficient P supply conditions (CLi 48 µM), and the calculated values of P influx were 81–99% of the measured values. However, in no‐P treatment (CLi 3.9 µM), under prediction of measured P influx indicated the importance of root exudates and/or mycorrhizae that increase P solubility in the rhizosphere. Sensitivity analysis showed that in low P soils, the initial soil solution P concentration (CLi) was the most sensitive factor controlling P influx in all the three crops.  相似文献   

6.
The objectives of this research were to determine inorganic phosphorus (P) fractions in calcareous soils of southern Khorasan and find their relationship with sorghum‐available P. Eighty soil samples were obtained and analyzed for some physical and chemical characteristics, among them 24 samples that varied in plant‐available P and soil properties were used for soil testing. From 24, 8 samples were selected for P fractionation as well. Five extraction procedures were used for soil testing. Results indicate that the extracted plant‐available P by the Olsen et al. (1954 Olsen, S. R., Cole, C. V., Watanabe, F. S. and Dean, L. A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (USDA Circ. 939), Washington, D.C.: U.S. Government Printing Office.  [Google Scholar]) and Paauw (1971 Paauw, F. V. 1971. An effective water extraction method for the determination of plant available phosphorus.. Plant and Soil, 34: 497481.  [Google Scholar]) methods show the greatest correlation coefficients with plant P uptake and sorghum dry matter. The sequential inorganic P extraction analyzing indicated that the abundance of various inorganic fractions was in the order Ca10‐P > Al‐P > Ca8‐P > Ca2‐P > Oc‐P > Fe‐P. The results also indicate Olsen P correlates positively and significantly with Ca2‐P and Fe‐P fractions and positively but not significantly with the Al‐P fraction.  相似文献   

7.
Abstract

This work aimed to calibrate Mehlich 1, Mehlich 3, Bray 1, Olsen, and ion‐exchange resin extraction methods with maize phosphorus (P) responses in a pot study with lowland and upland soils with different P‐buffer capacities and to evaluate whether the calibration can be enhanced through the knowledge of remaining P. The experimental design was completely randomized with four replications in a factorial arrangement involving five P concentrations and four lowland or seven upland soils. The remaining P for each soil was determined, P‐buffer capacity was estimated, and the soils were grouped according to the results. Correlation coefficients showed that the remaining P is strongly dependent on clay and soil organic‐matter content, and its determination was useful to the evaluation of the extractants. The classification and grouping of soils according to their P‐buffer capacity improved the correlations between extracted P and plant response for Mehlich 1 and Bray 1 extractants. The Mehlich 3, Olsen, and resin methods presented better performances, independent of soil grouping.  相似文献   

8.
Phosphorus (P) deficiency is a principal yield‐limiting factor for annual crop production in acid soils of temperate as well as tropical regions. The objective of this study was to screen nine corn (Zea mays L.) genotypes at low (0 mg P kg‐1), medium (75 mg P kg‐1), and high (150 mg P kg‐1) levels of P applied in an Oxisol. Plant height, root length, shoot dry weight, root dry weight, shoot‐root ratio, P concentration in shoot and root, P uptake in root and shoot, and P‐use efficiency parameters were significantly (P<0.01) influenced by P treatments. Significant genotype differences were found in plant height, shoot and root dry weight, P uptake in root and shoot, and P‐use efficiency. Based on dry matter production and P‐use efficiency, genotypes were classified as efficient and responsive, efficient and nonresponsive, nonefficient and responsive, and nonefficient and nonresponsive.  相似文献   

9.
Although many studies have examined the effect of different application rates of cattle manure, swine manure, and urea fertilizer on the distribution of phosphorus (P) fractions in soil, few studies have correlated P fractions in soil with inorganic P (Pi) and organic P (Po) in leachates. As part of a long-term field study, cattle and swine manures were applied to a loamy soil based on a nitrogen (N) content equivalent of 100 (low) and 400 (high) kg total N ha?1 yr?1 and were compared to urea fertilizer at 100 kg N ha?1 yr?1 and an unamended control soil. Readily available Pi [resin and sodium bicarbonate (NaHCO3)] was significantly greater in cattle manure– and swine manure–amended soil at a high application rate than in the control. With some exceptions, urea did not significantly affect P fractions in sequentially extracted P pools. Leaching of Pi and Po was at levels of environmental concern when cattle and swine manures were applied at the high application rate but not at the low application rate. Cattle manure had significantly greater concentrations of Pi and Po removed by leaching compared to swine manure, most likely because of its narrow N/P ratio and greater amount of P added. Positive correlations were observed between resin Pi and total leachate Pi and between NaHCO3-Pi and total leachate Pi, indicating the value of these measurements in predicting P mobility. The results suggest that a threshold (40 μg P g?1 of soil) must be exceeded before a positive correlation occurs.  相似文献   

10.
A new inorganic phosphorus (IP) fractionation scheme developed by Jiang and Gu was used in an incubation experiment to investigate the transformation of applied P in a calcareous fluvisol. The results show that after addition of common superphosphate (CSP), the Ca2-P in the soil decreased gradually and transformed largely to the less available Fe-P, Al-P and Ca8-P, rather than to the unavailable forms of Ca10-P and O-P. The different IP fractions ranked in the following order with respect to the increment by addition of CSP after 120 days of incubation: Fe-P> Al-P>Ca8-P>Ca2-P. After addition of pig manure, the content of Ca2-P in the soil increased rapidly at first and then decreased slowly, and the amount of different IP fractions accumulated after 120 days of incubation ranked in the following order: Ca2-P > Fe-P > Ca8-P > Al-P.  相似文献   

11.
Abstract

Phosphorus (P) fertilizer recommendations for no‐till small grain production are poorly defined. These studies were conducted to determine small grain‐P response relative to the Olsen‐P soil test and compare P‐fertilizer placements with the seed and banded below and to the side of the seed under no‐till field conditions. Phosphorus rates of 0 to 26 kg P/ha were evaluated on seven spring barley (Hordeum vulgare L.), 11 spring wheat, and six winter wheat (Triticum aestivum L.) locations in central and northcentral Montana between 1986 and 1990. Grain yield, grain protein, test weight, above‐ground crop yield, plant P concentration at maturity, and P uptake were measured. One winter wheat location had a significant yield response to P; all other locations had non‐significant yield responses. Grain protein, test weight, P concentration, and P uptake were all unaffected by P rate or P placement. Both the ANOVA and paired t‐test were used to analyze the P‐placement data and were all nonsignificant. Slopes of grain yield response (grain yield for each P rate minus the grain yield without P), P concentration, and P uptake versus P rate were analyzed with the t‐test; none of the P‐response slopes were greater than zero. The P responses by individual crop were regressed against P rate, Olsen‐P soil test, available soil water at planting, and pH. Phosphorus rate was not a significant factor in any of the equations. Significant and useful predictive equations for grain yield response could not be generated; however, equations predicting P concentration and P uptake were developed. The Cate‐Nelson graphical analysis was unsuccessful in estimating an Olsen‐P soil test critical level. All attempts failed to relate grain yield or grain yield response to the Olsen‐P soil test and/or P rate. When P soil tests are higher than 12 mg/kg, no‐till grain growers should consider applying a maintenance level of P fertilizer, about 5 to 10 kg P/ha either banded below or with the seed, to maintain soil P levels.  相似文献   

12.
Phosphorus (P) and zinc (Zn) interact both in plants and soils and hence may affect the availability and utilization of each other. To investigate P and Zn nutritional status and P–Zn interactions, two genetically diverse Brassica cultivars classified as P tolerant (Brown Raya) and P sensitive (Sultan Raya) were grown in a sand-based pot culture. Jordan rock phosphate (RP) and monocalcium phosphate [Ca(H2PO4)2] were used as P sources, and ammonium nitrate (NH4NO3) or nitrate (NO3 --) only were used as nitrogen (N) sources. Two Zn levels [0.25 (low Zn) and 2.5 (high Zn) mg zinc sulfate (ZnSO4·5H2O) kg?1 sand, respectively] were applied along with recommended doses of other essential nutrients in the culture media. Cultivars differed significantly for their response to added P for biomass accumulation, but Zn supply had little effect. Cultivar Brown Raya had greater P uptake and P-utilization efficiency (PUE) than Sultan Raya under a P-stress environment, irrespective of Zn and N supply. Zinc supply had little effect on tissue P concentration and P uptake per unit of root dry matter (RDM) in either cultivar, irrespective of N supply. An increase in P supply caused a significant reduction in specific Zn uptake (Zn uptake per unit of RDM; SZnU) and tissue Zn concentration of both cultivars. The reduction in tissue Zn concentration cannot be ascribed entirely to a dilution effect. Zinc concentrations and uptake by P-efficient cultivar Brown Raya were significantly lower and more sensitive to P uptake than those of P-sensitive Sultan Raya cultivar. It is suggested that high PUE may depress plant Zn uptake and therefore cause a reduction in Zn concentration of Brassica grown in low-P and possibly low-Zn soils. In NH4NO3 nutrition, plants had significantly lower cation concentrations compared to NO3 -- nutrition only. Brown Raya consistently had lower cation concentrations than Sultan Raya under P stress. The differences in cation concentrations decreased with increased P availability, but Zn supply had no significant effect. In Brown Raya, the ratio of potassium in roots to shoots was always greater than in Sultan Raya. This suggested that lower cation concentrations in Brown Raya were due to root carboxylate exudations, which in turn were related to better P acquisition and PUE under insufficiently buffered P-stress environment.  相似文献   

13.
《Journal of plant nutrition》2013,36(12):2391-2401
Abstract

Availability of phosphorus (P) in soil and its acquisition by plants is affected by the release of high and low molecular weight root exudates. A study was carried out to ascertain the qualitative and quantitative differences in root exudation among the genotypes of maize (Zea mays L.) and green gram (Vigna radiata L.) under P‐stress. Results showed that both inter‐ and intra‐species differences do exist among maize and green gram in terms of root exudation, P uptake, and shoot and root P content. In general, green gram, a legume crop, had greater root exudation compared to maize. However, the amino acid content of the total root exudates in maize was two‐fold as compared to green gram. The maize and green gram genotypes possessed genetic variability in root exudation. Irrespective of the species or genotypes, a positive relationship was found among P uptake rates, total root exudation, and shoot and root 32P content. The amount of sugars and amino acid present in the root exudates of P‐starved seedlings also add to the variation in P uptake efficiency of genotypes.  相似文献   

14.
Four most efficient phytase and phosphatase producing fungi belonging to genera Aspergillus, Trichoderma, and Penicillium were isolated from the rhizosphere soil of leguminous, cereal, and vegetable crops. Efficacy order of fungi in terms of phytate hydrolysis under laboratory conditions was Aspergillus > Penicillium > Trichoderma. The test fungi released more of extracellular (E) phytase than intracellular (I) phytase (E: I- 3.44 - 6.03:1) and produced acid phosphatase activity ranging from 367- 830 μmol pNP ml?1 h?1. Aspergillus niger possessed the twin ability of phosphate mineralization and solubilization. The incubation studies in compost-amended soil exhibited the higher competence of Penicillium chrysogenum to improve the soil available P and increase the level of extractable organic P under alkaline soil to benefit P nutrition. Developing microbial inoculant using P. chrysogenum strain and its subsequent application to soil may help the marginal farmer to replenish soil P more economically compared to chemical fertilizer.  相似文献   

15.
Phosphorus (P) is an essential element for all forms of life and is applied as fertilizer in agriculture. The P availability for plants may be highly dependent on the chemical state of P in fertilizers and soils; however, the nature of this dependence remains obscure due to the limitations of generally applied wet chemical and instrumental analytical approaches. This paper focuses on recently developed infrared, Raman, ultraviolet and X-ray microspectroscopic techniques for the characterization of P in soil. Microspectroscopic techniques have the advantage that discrete P phases can be distinguished and characterized even if their mass fractions are very low. However, only small volumes of soil can be analyzed by microspectroscopic methods hence a combination of macro- and microspectroscopic techniques is a promising concept.  相似文献   

16.
Influence of Organic Manure on Organic Phosphorus Fraction in Soils   总被引:5,自引:0,他引:5  
The transformation of organic P(Po) from organic manures in two types of soils (ultisol and entisol) and the influences of external addition of organic substance or inorganic P(Pi) on Po under the condition of the 60% maximum water capacity were investigated.The results obtained from Po fractionation experiments indicated that all the Po fractions except for the highly resistant Po fraction decreased during incubation.Application of pig feces and cow feces could largely increase each fraction of Po in the soils.Immediately after application of organic manure into the soils a large part of labile and moderately labile Po from organic manure was transferred into moderately resistant Po,which might be due to the fact that Ca-or Mg-inositol P was precipitated into Fe-inositol P.However,the availability of Po from organic manure in the soils would increase again after incubation because of the transformation of moderately labile and resistant Po fractions into labile Po fractions.Addition of cellulose or Pi into the soils showed a good effect on increasing all the Po fractions except for the highly resistant Po,and this effect was much more pronounced when cellulose was applied in combination with Pi.Therefore,in view of the effect of organic manure on improving P nutrition to plant,attention should be paid to both the Po and the organic substances from organic manure,It is suggested that application of Pi fertilizer combined with organic manure may be referred to as an effective means of protecting Pi from chemical fixation in soil.  相似文献   

17.
Abstract

Phosphorus (P) deficiency is one of the most yield‐limiting factors in lowland acid soils of Brazil. A field experiment was conducted during two consecutive years to determine dry‐matter and grain yield, nutrient uptake, and P‐use efficiency of lowland rice (Oryza sativa L.) grown on an acidic Inceptisol. Phosphorus rates used in the experiment were 0, 131, 262, 393, 524, and 655 kg P ha?1 applied as broadcast through termophosphate yoorin. Dry‐matter yield of shoot and grain yield were significantly (P<0.01) and quadratically increased with P fertilization. Concentrations (content per unit dry‐weight leaves) of nitrogen (N), P, and magnesium (Mg) were significantly increased in a quadratic fashion with the increasing P rates. However, concentrations of potassium (K), calcium (Ca), zinc (Zn), copper (Cu), and iron (Fe) were not influenced significantly with P fertilization, and Mn concentration was significantly decreased with increasing P rates. Phosphorus use efficiencies (agronomic, physiological, agrophysiological, recovery, and utilization) were decreased with increasing P rates. However, magnitude of decrease varied from efficiency to efficiency.  相似文献   

18.
Abstract

Water treatment residuals (WTR) can adsorb tremendous amounts of phosphorus (P). A soil that had biosolids applied eight times over 16 years at a rate of 6.7 Mg ha?1 y?1 contained 28 mg kg?1 ammonium–bicarbonate diethylenetriaminepentaacetic acid (AB‐DTPA), 57 mg kg?1 Olsen, 95 mg kg?1 Bray‐1, and 53 mg kg?1 Mehlich‐III extractable P. To 10 g of soil, WTRs were added at rates of 0, 0.1, 1, 2, 4, 6, 8, and 10 g, then 20 mL of distilled deionized H20 (DI) were added and the mixtures were shaken for 1 week, filtered, and analyzed for soluble (ortho‐P) and total soluble P. The soil–WTR mixtures were dried and P extracted using DI, AB‐DTPA, Olsen, Bray‐1, and Mehlich‐III. Results indicated that all methods except AB‐DTPA showed reduced extractable‐P concentrations with increasing WTR. The AB‐DTPA extractable P increased with increasing WTR rate. The water‐extractable method predicted P reduction best, followed by Bray‐1 and Mehlich‐III, and finally Olsen.  相似文献   

19.
20.
Based on recent mining rates and the exhaustion of global phosphorus(P)reserves,there is a need to mobilize P already stored in soils,and its recovery from secondary resources such as Ca-and Fe-phosphates is important.The Ca-phosphate hydroxyapatite forms a good fertilizer source,while vivianite is formed in waterlogged soils and sediments.During sludge treatment,the formation of vivianite has been identified,being mainly Fe-phosphate.Long-term P release from both hydroxyapatite and vivianite was studied using different inorganic(CaCl2 and CaSO4)and organic(citric and humic acid)reagents during batch experiments.Reagents CaCl2 and CaSO4 represent the soil solution,while citric and humic acids as organic constituents affect P availability in the rhizosphere and during the process of humification.Additionally,the flow-through reactor(FTR)technique with an infinite sink was used to study the long-term P release kinetics.The cumulative P release was higher by organic acids than by inorganic compounds.The cumulative P release rates were higher in the FTR with CaCl2 as compared to the batch technique.The infinite sink application caused a continuously high concentration gradient between the solid and liquid phases,leading to higher desorption rates as compared to the batch technique.The predominant amount of the total P released over time was available for a short term.While inorganic anion exchange occurred at easily available binding sites,organic acids affected the more heavily available binding sites,which could be embedded within the mineral structure.The results showed that organic compounds,especially citric acid,play a superior role as compared to the inorganic constituents of the soil solution during the recovery of already stored P from the tertiary phosphates vivianite and hydroxyapatite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号