首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Sorption of trace quantities of Cd in four soils of different chemical and mineralogical properties, was studied. Initial Cd concentrations were between 15 to 150 μg. 1?1. The sorption isotherms were linear and had a positive intercept in three of the soils, indicating a constant partition‐high affinity sorption isotherm (Giles et. al6). The data also followed the Freundlich sorption isotherm, and the Freundlich K parameter was taken as a measure of the relative affinity of the different soils for the Cd metal sorbed. Cadmium sorbed was extracted by IN‐NH4C1 followed by 0.1N HC1, and the fraction remaining in the soils was considered specifically sorbed Cd. This fraction also followed a linear sorption isotherm, and was around 30% for the four soils studied. The sorption order for the amount of specifically sorbed Cd showed that the Boomer soil (kaolinite‐iron oxides) had the lowest affinity for specific sorption of this metal. This was taken as evidence that kaolinite and iron oxides have a lower capacity for retaining cadmium through specific sorption mechanism(s) than the materials present on the other soils (2:1 layer silicates and humic substances). The existence of specific mecha‐nism(s) responsible by the sorption of trace quantities of Cd in soil solutions has important implications on soil‐plant relationships, Cd mobility in soil profiles and control of Cd activity in soil solutions.  相似文献   

2.
Abstract

The effect of alternating waterlogged and drying conditions on phosphorus (P) availability and sorption was studied in three soils of contrasting chemical and physical properties. Soils were treated with two levels of P (0 and 50 mg kg‐1; P0 and P50), waterlogged for 21 days, then allowed to dry at room temperature for 14 days. The availability of P, iron (Fe), and manganese (Mn) over the waterlogged and drying periods was determined by shaking samples of each soil with 1M NaOAc (pH 3). Increasing concentrations of 1M NaOAc (pH 3) extractable P (Pac) over the waterlogged period was attributed to solubilization of Fe(OH)3 materials under reducing conditions with the release of sorbed and occluded P. The released P appeared to be resorbed by freshly precipitated amorphous Fe(OH)2 material since earlier studies showed that water soluble P concentrations in these soils were reduced to negligible levels under waterlogged conditions. The Fe(OH)2 material remained readily extractable with 1M NaOAc (pH 3) since Feac increased dramatically with waterlogging. Drying the waterlogged soils caused a rapid decrease in Pac, Feac and Mnac suggesting the Fe(OH)2 may have been transformed into more stable forms [e.g., Fe(OH)3]. Much of the changes in Pac appeared to be due to changes in Feac, with limited influence from Mnac. and mineralization of organic P. Phosphate sorption isotherms were determined using the standard batch technique for air‐dry, waterlogged (with and without ponded water), and waterlogged/dried conditions. Sorption isotherms were not affected by waterlogging and subsequent drying. Most soils sorbed all of the added phosphate irrespective of moisture treatment.  相似文献   

3.
Cadmium sorption was measured in 10 agricultural soils with pH ranging from 4.5 to 7.9, and total Cd content from 0.27 to 1.04 μg g?1 dry soil. With initial Cd concentrations of 0.5 to 100.0 μM, sorption from 0.002 M CaCl2 was described by the Freundlich adsorption equation but the gradients of the isotherms increased when the initial concentrations were below 0.5 μm. This indicates that there are specific sites of differing sorption energy; differences between soils in the gradients of the isotherms at low initial concentration could largely be accounted for by their contents of ‘free’ Fe2O3. When initial concentrations were below 0.5 μm there was a linear relationship between the quantity of Cd sorbed and the final concentration in solution. This relationship held with all soils except that of lowest pH from which there was a net loss of Cd to the solutions. Desorption was measured from three soils with contrasting pH. With the soil of lowest pH, over 80 per cent of sorbed Cd was desorbed to 0.002 m CaCl2 and up to 30 per cent to 100 or 500 μm solutions of heavy metal chlorides. In contrast, only very small proportions (<1.25 per cent) were desorbed from the other soils with pH 6.7 and 7.8. The results indicate that Cd is strongly sorbed by soils of pH of above 6.0 when added in amounts comparable to additions in sewage sludges or phosphatic fertilizers, and illustrate the importance of liming as a means of reducing the mobility of this metal in soils.  相似文献   

4.
Abstract

The study aims at determining the cobalt retention properties of various soil components. Therefore, cobalt (Co) sorptions and extractions were carried out using an Oxisol sample before (untreated) and after successive removal of organic matter and active manganese (Mn) oxides (H2O2‐treated) and iron (Fe) oxides (H2O2+CBD‐treated). A synthetic goethite was included for comparison. Sorption of the four sorbents was determined over a range of Co concentrations (initially 10‐8 M to 10‐4 M), pH values (3 to 8) and reaction times (2 hours to 504 hours). The Co species sorbed was Co(ll), since oxygen exclusion during sorption had no effect on the amount sorbed. The pH‐dependent sorption curve (sorption edge) was shifted to lower pH at decreasing initial Co concentration and increasing reaction time. The displacements, in particular of the sorption edges corresponding to the lowest initial Co concentrations, to successively higher pH following removal of Mn oxides, organic matter and Fe oxides could be attributed to sorption onto sites of decreasing Co affinity [Mn oxides (and organic matter) > Fe oxides > kaolinite]. Extractions of sorbed Co at pH 5.5–7.5 with 2 M HCI showed that the extractability decreased with increasing sorption time and decreasing initial Co concentration. The untreated and H2O2‐treated soil samples retained sorbed Co at least as firmly as the synthetic goethite, whereas the H2O2+CBD‐treated sample (kaolinite) was clearly less effective. The results emphasized the importance of the soil Mn and Fe oxides for Co retention in soils but also the necessity of taken interior sorption sites into consideration.  相似文献   

5.
In most phosphorus (P) sorption studies, P is added as an inorganic salt to a predefined background solution such as calcium chloride (CaCl2) or potassium chloride (KCl); however, in many regions, the application of P to agricultural fields is in the form of animal manure. The purpose of this study, therefore, was to compare the sorption behavior of dissolved reactive P (DRP) in monopotassium phosphate (KH2PO4)–amended CaCl2 and KCl solutions with sorption behavior of DRP in three different animal manure extracts. Phosphorus single‐point isotherms (PSI) were conducted on eight soils with the following solutions: KH2PO4‐amended 0.01 M CaCl2 solution, KH2PO4‐amended 0.03 M KCl solution, water‐extracted dairy manure, water‐extracted poultry litter, and swine lagoon effluent. The PSI values for the dairy manure extract were significantly lower than the CaCl2 solution for all eight soils and lower than the KCl solution for six soils. The PSI values were significantly higher, on the other hand, for poultry litter extract and swine effluent than the inorganic solutions in four and five of the soils, respectively. Our observations that the sorption of DRP in manure solutions differs significantly from that of KH2PO4‐amended CaCl2 and KCl solutions indicates that manure application rates based on sorption data collected from inorganic P salt experiments may be inaccurate.  相似文献   

6.
Abstract

Salinity and sodicity effects on manganese (Mn) sorption in a mixed sodium‐calcium (Na‐Ca) soil system were studied. Soil samples were taken at 0–30 cm depth from Vertisols (El‐Hosh and El‐Suleimi) and Aridisols (El‐Laota) at three sites in Gezira scheme (Sudan). No Mn was applied to these soils. Prior to analysis the soils were equilibrated with NaCl‐CaCL2 mixed salt solutions to attain SAR values at different salt concentrations. The results indicated that saline soils sorbed less Mn and had higher equilibrium Mn concentrations. Sodic soils retained more Mn but had low equilibrium concentrations. Sodicity had a pronounced effect only on increasing Mn retention at higher SAR values. Salinity tended to alleviate sodicity effects on Mn retention, but soluble salts that increased soil pH decreased Mn concentration.  相似文献   

7.
Abstract

Zinc solubility in soils can be affected by both pH and pyrophosphate (PP), yet the reaction of PP is influenced by pH, thus there is a need to evaluate pH effect on Zn transformation in soils treated with PP. Samples of three autoclaved soils, a Dalhousie (DT) clay, a St. Bernard (ST) loam, and an Uplands (UT) sand were equilibrated first with PP (0.0 and 9.0 P mM), then with Zn (0.0, 0.5, 1.0 Zn mM) and followed by 0.03 M KC104 solutions at the initial pH of 4.5, 6.0, and 7.5 with constant ionic strength. The first equilibration was for PP sorption, the second for Zn sorption and PP desorption, and the third for Zn desorption and further PP desorption. And finally, Zn of selected samples were extracted with 0.5 M KNO3 (exchangeable Zn, ZnKNO3), 0.5 M NaOH (organic and Fe oxides associated Zn, ZnNaOH) solutions, and concentrated HNO3+H2O2 (residual Zn, ZnHNO3).

Increases in pH reduced PP sorption in the UT and the ST soils while high or low pH values tended to reduced it in the DT soil, indicating a competition between PP and OH ions for sorption sites. Zinc sorption was linearly related to solution pH, the slopes varied from 0.10 to 1.06, lower values were associated with PP addition, with low Zn rate, with finer textured soils, with high contents of Fe and Al materials, and with high pH buffer capacity. The values of Zn desorption and ZnKN03 were greater at low than high pH while the reverse was true for ZnNaOH. The pH effects on Zn sorption‐desorption and fraction distributions were less significant in soil with than without PP. The overall effect of high pH and the presence of the sorbed PP was the increased Zn specific sorption, compared to the pH or PP effect alone.  相似文献   

8.
Abstract

The adsorption of selenium (Se) in the selenate form and its desorption by phosphate in four soils with different physiochemical properties were studied in the laboratory. To determine adsorption isotherms for selenate 25 mL of solutions containing 1 to 100 ppm of Se were added to 2.5 g of soil. Desorption isotherms were determined by resuspending the samples in phosphate solution. The selenate sorption process was adequately described by the Freundlich equation. In pine forest and woodland soils, characterized by the highest organic matter content and cation exchange capacity (CEC) values, the isotherms were classified as L type, since the amount of Se sorbed appeared to move towards saturation. The organic matter content played the most important part in the adsorption of Se, while pH appeared to have a small effect on the ability of the soil to adsorb Se. The high CaCO3 content of the pine forest soil may have contributed in increasing the Se adsorption notwithstanding the high pH value. The cultivated and arable soils showed a reduced sorption capacity. The sorption could be described by an S type curve. At low concentrations of Se the affinity of the solid phase was less than that of the liquid phase. By increasing the concentration of Se in solution, the affinity of the solid phase increased and the sorption was favored. Selenate desorption by water was negligible, whereas the amount of Se desorbed by phosphate varied among the different soils. The desorption experiments indicated that a significant portion of the sorbed Se was irreversibly retained. This suggests the existence of linkages which allow the release of Se in the soil solution only after physico‐chemical variation such as exchange with phosphate ions.  相似文献   

9.
The objective of this study was to examine the effect of soil pH on zinc (Zn) sorption and desorption for four surface soils from the Canterbury Plains region of New Zealand. Zinc sorption by the soils, adjusted to different pH values, was measured from various initial solution Zn concentrations in the presence of 0.01 M calcium nitrate [Ca(NO3)2]. Zinc desorption isotherms were derived from the cumulative Zn desorbed (µg g?1 soil) after each of 10 desorption periods by sequentially suspending the same soil samples in fresh Zn‐free 0.01 M Ca(NO3)2. Zinc sorption and desorption varied widely with soil pH. Desorption of both native and added Zn decreased continuously with rising pH and became very low at pH values greater than 6.5. The proportion of sorbed Zn that could be desorbed back into solution decreased substantially as pH increased to more than 5.5. However, there were differences between soils regarding the extent of the hysteresis effect.  相似文献   

10.
Cadmium (Cd) sorption and desorption characteristics by Alfisols from different land uses were examined, and the relationships between soil and sorption/desorption characteristics were investigated. Adsorption studies were done using Cd concentrations (0–100 mg Cd kg?1) in 0.01 M CaCl2. The Cd sorbed by the soils was then subjected to two desorption runs. The soils' adsorption conformed to Freundlich and Langmuir equations. The amount of Cd sorbed by the soils varied. Two desorption runs detached more than 95% of sorbed Cd, but the first accounted for more than 80% of the total. Desorption of Cd in degraded soils was more than in soils from other land uses. The amount of Cd desorbed correlated with amount applied (r = 0.90??), solution concentration (r = 0.83??), and amount sorbed (r = 0.70??). A positive relationship exists between the adsorption maxima of the soils and soil organic matter (r = 0.13, p = 0.87). The relationship between amount of Cd desorbed and sorbed is quadratic for all the soil.  相似文献   

11.
Abstract

The content of dissolved carbonates and exchanged acidity in triethanolamine‐buffered BaCl2‐solutions which were percolated through soil samples containing carbonates is determined by two titration‐procedures to pH 4.0 and 10.25. because a single titration value gives no information of the amounts of both ionic species in solution. The amount of dissolved carbonates calculated on the bases of these titration‐procedures, however, is smaller than that determined by measuring the content of inorganic carbon in solution. The difference is attributed to the sorption of protonized triethanolamine‐buffer during percolation, which leads to an underestimation of CEC when measured by re‐exchanged Ba++, whereas the amount of exchangeable bases is overestimated due to dissolution of carbonates. The amount of exchanged acidity calculated from the data obtained is surprisingly high and is at least partly attributed to the existence of HCO3 ‐sorbed on the surface of (wet) soils.  相似文献   

12.
Abstract

Three soils, Hiwassee loam (clayey, kaolinitic, thermic, Typic Rhodudults), Vaiden clay (very fine, montmorillonitic, thermic, Vertic Hapludalfs) and Marvyn sand (fine, loamy, siliceous, thermic, Typic Hapludults), were used in this study. Phosphorus sorption and desorption isotherms of the soils were determined in the laboratory. Average P sorption maximum (b) was calculated using the Langmuir isotherm equation. Based on the P sorption capacity, each soil was fertilized with different P rates and teff [Eragrostis tef (Zucc)] was grown in the greenhouse. The amount of P sorbed and desorbed increased as the concentration of equilibrating solution P increased. Phosphorus sorption maximum from sorption and desorption isotherms was 278, 251, and 37 mg P/kg for Hiwassee, Vaiden, and Marvyn soils, respectively, and for maximum dry matter yield of teff the soils needed a minimum of 0.029, 0.048, and 0.065 mg/L soil solution P, respectively, which were all below the soil solution P at P adsorption maximum.

Soil P was extracted by the Mehlich I, Mehlich III, modified Mississippi, Bray P‐l and Olsen methods. Plant‐available P extracted by each of the five methods was significantly correlated with teff dry matter yield, and statistically any of the five methods can be used as the basis for predicting teff yield responses.  相似文献   

13.
The amounts of inorganic phosphate (P) sorbed by four contrasting unfertilized soils during 40 h were influenced by the ionic strength and cation species of the contacting solution (support medium) used, as indicated by isotherms over the final P concentration range of 0 to 1 μg P/ml and 0 to 10 μg P/ml. An increase in ionic strength enhanced P sorption during 40 h but the species of cation also influenced the amount of P sorbed, as shown by the isotherms obtained in 10?2M Ca and 3 × 10?2M Na systems. Although pH affected the amounts of P sorbed, pH effects alone could not adequately explain the differences in P sorption. Kinetic studies indicated that within the range of P addition used for each soil, the equilibrium P concentration, at infinite time, was independent of ionic strength and cation species. Consequently, the composition of the solution affected only the rate at which equilibrium was attained. The results are attributed to the effects of ionic strength on the surface charge of retaining components and the thickness of the diffuse double layer, and the effects of specilic sorption of a divalent cation on surface charge, as they relate to the rate of P sorption.  相似文献   

14.
The sorption of the iron‐cyanide complexes ferricyanide, [Fe(CN)6]3—, and ferrocyanide, [Fe(CN)6]4—, on ferrihydrite was investigated in batch experiments including the effects of pH (pH 3.5 to 8) and ionic strength (0.001 to 0.1 M). The pH‐dependent sorption data were evaluated with a model approach by Barrow (1999): c = a exp(bS)S/(Smax‐S), where c is the solution concentration; S is the sorbed amount; Smax is maximum sorption; b is a parameter; and a is a parameter at constant pH. Ferricyanide sorption was negatively affected by increasing ionic strength, ferrocyanide sorption not at all. More ferricyanide than ferrocyanide was sorbed in the acidic range. In the neutral range the opposite was true. Fitting the pH‐dependent sorption to the model resulted in a strong correlation for both iron‐cyanide complexes with a common sorption maximum of 1.6 μmol m—2. Only little negative charge was conveyed to the ferrihydrite surface by sorption of iron‐cyanide complexes. The sorption of iron‐cyanide complexes on ferrihydrite is weaker than that on goethite, as a comparison of the model calculations shows. This may be caused by the lower relative amount of high‐affinity sites present on the ferrihydrite surface.  相似文献   

15.
The potential for surface and groundwater contamination of soil applied herbicides is partly dependent on soil properties. Sorption and desorption of diuron and norflurazon were studied in seven soils representative of the southern citrus-belt of Florida using the batch-equilibrium technique. Sorption of herbicides was influenced by soil properties. Sorption coefficients (K d) ranged from 0.84 to 3.26 mL g?1 for diuron and 0.63 to 2.20 mL g?1 for norflurazon indicating weak to moderate binding of herbicides to soil. For norflurazon, K dwas significantly related to organic C content, soil pH, and cation exchange capacity. For diuron, absence of a significant relationship between K dand selected soil properties suggests that the soil properties other than those studied may play a role in determining sorption on these soils. Desorption studies showed that higher amounts of diuron and norflurazon was desorbed by water than by 0.5 M CaCl2. An inverse relationship was apparent between herbicides sorbed and that which was desorbed among the soils studied. The soil which exhibited higher sorption had lower desorption and the soil which exhibited lower sorption had higher desorption.  相似文献   

16.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

17.
Oxygen-18-labeled phosphate (OLP) and natural abundance 18O have been used as tools for elucidating the dynamics of phosphorus (P) in soils, yet much remains poorly understood. The objective of this research was to determine the extent of preferential soil sorption across the range of species contained within OLP. A variety of soils were shaken with water containing 65.5 mg L?1 OLP-P for a 24-h period. Following shaking, the OLP species remaining in the solution were determined. Increasing the oxygen-18 atoms in the phosphate molecule by one resulted in a 1.8% increase in the amount of that OLP species sorbed to the soil, and this increase in sorption was uniform across soils. A strong correlation (r2 = 0.94) was found between the amount of phosphate sorbed and the Mehlich 3 P saturation ratio of the soil. These results will be useful for studies using natural abundance and enriched 18O-phosphate in soils.  相似文献   

18.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

19.
Effects of soil organic matter (80M) on P sorption of soils still remain to be clarified because contradictory results have been reported in the literature. In the present study, pH-dependent P sorption on an allophanic Andisol and an alluvial soil was compared with that on hydrogen peroxide (H202)-treated, acid-oxalate (OX)-treated, and dithionite-citrate- bicarbonate (DCB)-treated soils. Removal of 80M increased or decreased P sorption depending on the equilibrium pH values and soil types. In the H2O2 OX-, and DCB-treated soils, P sorption was pH-dependent, but this trend was not conspicuous in the untreated soils. It is likely that 80M affects P sorption of soils through three factors, competitive sorption, inhibition of polymerization and crystallization of metals such as AI and Fe, and flexible structure of metal-80M complexes. As a result, the number of available sites for P sorption would remain relatively constant in the wide range of equilibrium pH values in the presence of 80M. The P sorption characteristics were analyzed at constant equilibrium pH values (4.0 to 7.0) using the Langmuir equation as a local isotherm. The maximum number of available sites for P sorption (Q max) was pH-dependent in the H202-, OX-, and DCBtreated soils, while this trend was not conspicuous in the untreated soils. Affinity constants related to binding strength (K) were less affected by the equilibrium pH values, soil types, and soil treatments, and were almost constant (log K ≈ 4.5). These findings support the hypothesis that 80M plays a role in keeping the number of available sites for P sorption relatively constant but does not affect the P sorption affinity. By estimating the Q max and K values as a function of equilibrium pH values, pH-dependent P sorption was well simulated with four or two adjustable parameters. This empirical model could be useful and convenient for a rough estimation of the pH-dependent P sorption of soils.  相似文献   

20.
Abstract

The one and two Langmuir, the Freundlich, and the Temkin isotherms were fitted to phsophorus (P) sorption data for P sorption by calcium (Ca)‐bentonite at different initial concentration and pH values of 3.8, 4.8, 6.0, 7.0, 8.0, and 9.0. Each was found to describe P sorption by Ca‐bentonite with comparable success. The effect of pH on P adsorption by Ca‐bentonite was studied and Langmuir, Temkin, and Freundlich isotherms were converted to the forms:

Langmuir: (Co‐X)X= 1/(0.0275–0.0025pH)(12.323–1.061pH) + (Co‐X)(12.323–1.016pH) Temkin: X = (2.45–0.211pH)In(AC) Freundlich: X = (1.324–0.146pH)C(0.172+0044 P H) where: X = (mmol P/kg) the amount of P sorbed per unit weight of soil, C = (μmol P/L) the P concentration in the equilibrium solution, and Co = ((μmol P/L) initial P concentration. It is noteworthy, that the maximum amount (Xm) of P that can be sorbed in a monolayer decreases by increasing of pH. Finally, the B constant of Temkin isotherms is indepented from pH changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号