首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Differences in elemental content of pecan [Carya illinoensis (Wang.) K. Koch] leaves among cultivars were found for N, P, K, Ca, Mg, Mn and Zn. Of the 7 elements studied, only leaf K indicated a date by cultivar interaction. Differences in leaf K among cultivars became greater as the season progressed. Increasing rate of application of N‐P‐K fertilizer increased leaf N, Ca, Mn, and Al, but had very little or erratic effect on leaf P, K, Fe, B, Cu, Zn, and Sr. There were very few consistent significant fertilizer rate by date interactions for the 13 elements tested. Seasonal trends for element leaf contents from mid‐May through October were generally downward for N, upward for Ca, Mn, Fe, B, Cu, Al, and Ba and changed very little for Mg, Zn, and Sr. Leaf P and K responses to sampling date varied with year. Large year to year variations in leaf trends over dates suggests difficulty in selecting a period for leaf sampling where little change in leaf levels consistently occurs.  相似文献   

2.
Abstract

Elemental concentrations of N, P, K, Ca, Mg, Fe, Al, Zn, Mn, and Cu in peach tree short life (PTSL) trees were compared to concentrations in apparently healthy trees in the same orchard. Leaf and stem concentration of K were significantly less and concentrations of Fe and Al were significantly greater in PTSL trees than healthy trees. Leaf concentrations of Ca and Mg and stem concentrations of N, P, and Cu were also significantly less in PTSL trees than healthy trees. Increased levels of Fe and Al and a K:Fe ratio of less than 150:1 in the leaves and stems was associated with PTSL.

There were no detected differences in prunasin, amino acid, or sugar content of PTSL and healthy trees in leaf and stem samples, but significant differences in elemental content suggest some type of stress on the root system of PTSL trees.  相似文献   

3.
Critical concentrations of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and manganese (Mn) with respect to dry matter yield end antagonistic and synergistic relationships among these nutrients were studied in which tomato (Lycopersicon esculentum L.) was grown in recirculating nutrient solution (NFT). Increments of nutrient elements in the nutrient solution increased the proportional rate of the corresponding nutrient elements. Increasing levels of N negatively correlated with plant P and positively correlated with Ca, Fe, and Zn. Iron and Mn contents of the plants were increased and N, K, Ca, and Mg were decreased as a function of P applied. Increases in K in the nutrient solution caused increases in the concentrations of K, N, P, and Zn, and decreases in the concentration of Ca and Fe. Applied Ca increased the concentrations of Ca and N, and decreased the concentrations of P, Mg, Fe, Zn, and Mn. Potassium, Ca, and Fe contents of the plants were decreased and Zn increased, while N, P, and Mn were not affected by the increasing levels of external Mg. Iron suppressed the plant Mg, Zn, and Mn contents. Synergism between Zn and Fe was seen, while P, K, Ca, Mg, and Mn contents were not affected by Zn levels. Potassium, Ca, Mg, and Fe were not responsive to applied Mn, however, N and P contents of the plants were decreased at the highest levels of Mn.  相似文献   

4.
Abstract

Information about Açaí palm (Euterpe oleracea Mart.) nutrition, that gives support for yield increase is sparse. The aim of this study was to assess the nutritional status of fertigated Açaí palm by the Index called Diagnosis and Recommendation Integrated System (DRIS), as well as the spatial variability of this Index and its productivity. We achieved a sampling of 80 geo-referenced points in an Açaí palm commercial crop area. Then we assessed the yield and contents of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn. The DRIS evaluation indicated that the frequency of nutrients in suitable status was N?>?S?>?Zn?>?B>Fe?>?K>Ca?>?Mg?>?P>Mn?>?Cu, in deficiency was Mn?>?Ca >?B>Cu?>?Mg?>?Fe?>?K?>?P?>?S>Zn?>?N, and in excess was P?>?Cu?>?Mg?> K?>?N?=?Zn?>?Fe?>?Ca?>?S?=?B?>?Mn. The nutrients N and S were well balanced, whereas Mn, Ca and B were the nutrients with the highest frequency of deficiency. The sampling points were close enough to detect the spatial variability of DRIS Index. Thus, it was possible to observe the patterns for the nutritional deficiencies, occurring at the final part of the irrigation, as well as the variability of the Açaí palm yield. The spatial variability of the DRIS Index was efficient to indicate the points in which fittings in the fertilization doses are required.  相似文献   

5.
巨桉人工林叶片养分交互效应   总被引:1,自引:0,他引:1  
在四川巨桉栽培区设立了60个标准地,采用相关分析和矢量诊断法进行分析,以了解巨桉人工林养分的相互作用关系。结果表明,巨桉人工林叶片的养分交互作用较为复杂。N可促进P、K、Ca、Mn等的吸收,但易受到Fe、Zn、高Ca、高Mg的拮抗,而且高N抑制了Mn的吸收;P可促进K、Mg、Mn等的吸收,但易受Zn、Fe、高Mn、高K、高Ca、高Mg的拮抗,而高浓度的P将抑制K、Zn、Fe等的吸收;K对其他养分元素均没有明显的促进作用,但高浓度K限制P的吸收;Ca、Mg之间可相互促进吸收。同时,低浓度的Ca和Mg有利于Fe、Zn的吸收,高浓度的Ca和Mg将对N、P、Fe、Mn、S、B等养分产生拮抗,限制吸收;S可促进Zn的吸收,但易受高Ca、高Mg拮抗;Cu、Zn、Fe、Mn之间主要以拮抗为主。B相互作用较少,对其他养分几乎没有明显的促进作用。  相似文献   

6.
Sunflower seeds (Helianthus annuus L., cv. Dwarf) were grown with distilled water only or increasingly saline solutions (NaCl) to determine the influence of salinity on seedling growth and on the distribution of mineral nutrients obtained exclusively from cotyledons. Seedling growth was decreased by moderate (50mM) and high (100mM) concentrations of NaCl in the growth solution. Salinity generally decreased mineral transport (especially Fe, Mn, Mg, and Ca) from seed to seedling, except for K. Transport of Fe, Mg, and Ca to the aerial part was also markedly reduced.  相似文献   

7.
Abstract

The effects of three levels of salinity [0, 50, and 100 mM of sodium chloride (NaCl)] and the addition of potassium, calcium, nitrogen, phosphorus, iron, manganese, and boron (K, Ca, N, P, Fe, Mn, and B) on seed germination and survival of Helianthus annuus L. plants grown in an inert medium were studied. Increasing levels of salinity significantly decreased germination percentage. The presence of NaCl affected seedling survival rather than germination. Nitrogen addition damaged seedling growth, especially in high saline conditions. Addition of some nutrients may alleviate the effects induced by NaCl. Calcium additions to the culture medium significantly improved germination percentage and seedling survival, which markedly decreased after addition of K and B under saline conditions. Iron addition, especially in the ferrous form, counteracted the effects of salinity on seed germination and seedling survival. Phosphorus addition showed detrimental effects on germination and especially in seedling survival; however, it benefited the surviving seedling's growth.  相似文献   

8.
Abstract

In Turkey, fruit growers have started to shift from flood irrigation to drip irrigation in apple orchards in the recent years. It was thought that such a transition might have adverse effects on nutrition of the plants throughout the transition period. In this study, effects of transition from flood irrigation to drip irrigation on nutrient uptake of the plants were investigated through leaf analyses for two years. Experiment was conducted in randomized blocks design with three replications and four trees in each replication. Flood irrigation (control) and drip irrigation with two different irrigation intervals (4 and 7?days) were compared. Leaf samples were collected in the middle of the growth period and their nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) contents were determined. Present findings revealed that transition from flood irrigation to drip irrigation did not result in any nutritional problems. On the other hand, significant increases were observed in contrary, the uptake of P, Fe, Mn, Zn, and B uptake of the plants.  相似文献   

9.
李营养累积、分布及叶片养分动态研究   总被引:9,自引:0,他引:9  
李鑫  张丽娟  刘威生  杨建民  马峙英 《土壤》2007,39(6):982-986
基于保障生态和果品安全以及合理实施果园养分管理的前提,对大石早生李树体各部位营养元素积累、分布以及各营养元素的周年变化规律进行了分析.结果表明:①营养元素在各个器官的相对含量,除K、Zn在果实中含量最高外,N、P、Ca、Mg均以叶片中含量为最高,以叶片做营养诊断是适宜的.②大石早生李树体营养元素N、P、K、Ca、Mg、Fe、Zn的元素比值为10.00:1.26:6.42:12.57:2.46:1.87:0.14.⑧100 kg鲜果的养分吸收量分别为:N 772.47g,P74.25 g,K 730.33g,Ca874.16 g,Mg 169.82 g,Fe 66.05 g,Zn 7.53 g,N:P:K的比例为1.00:0.10:0.95.④N、P、K、Ca、Mg、Fe、Zn、Mn、Cu的含量随物侯期呈规律性变化.生长季初期,N、P、K、Zn、Cu的含量迅速下降,Fe、Mn、Ca、Mg呈逐渐上升的趋势;中期这9种元素总体变化幅度较小;后期Fe,Cu.N、P、K的含量呈下降趋势,Mn、Zn、Ca,Mg依然上升.本结果既丰富了国内李营养理论,同时又为制定合理的施肥措施及建立绿色优质果品科技示范基地提供了理论依据.  相似文献   

10.
ABSTRACT

Roots of young ‘Golden Delicious’ apple on M9 rootstock were inoculated with four strains of Azotobacter chroococcum, which were isolated from various soils. Effects of these strains in combination with different levels of nitrogen (N) fertilizer and compost on plant growth and nutrient uptake were studied over two seasons. Therefore, a factorial arrangement included four strains of A. chroococcum, two levels of N-fertilizer (0 and 35 mg N kg?1soil of ammonium nitrate) and two levels of compost (0 and 12 g kg?1 soil of air-dried vermicompost). Among the four strains, AFA146 was the most beneficial strain, as it increased leaf area, leaf potassium (K), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and boron (B) uptake and root N, phosphorus (P), potassium (K), Mn, and Zn. The combination of AFA146 strain, compost and N fertilizer increased leaf uptake of Ca, Mg, Fe, Mn, Zn, and B, and root uptake of P, K, Ca, Mg, Mn, and copper (Cu), and root dry weight.  相似文献   

11.
In this investigation the extraction curve of macronutrients (N, P, K, Ca, Mg) and micronutrients (Fe, Cu, Zn and Mn) were determined in the cultivation of fig. A system of intensive production of fig in greenhouse and hydroponics was established with 1.25 plants m?2. The determination of the nitrogen content was done by the micro-Kjeldahl method. The P was by the yellow molybdovanadate method throughon a spectrophotometer. The K was determined by flamometry and the Ca, Mg, Fe, Cu, Zn and Mn were determined by atomic absorption spectrophotometry. Of the organs analyzed, the stem was the that accumulated more dry matter, then, the leaves and finally the fruits. The nutrient extraction dynamics presented similar upward behavior in all nutrients. The demand for macronutrients in decreasing order was N?>?K?>?P?>?Ca?>?Mg and for the micronutrients Cu?>?Fe?>?Mn?>?Zn.  相似文献   

12.
Abstract

Seasonal changes in leaf element composition were measured at 2‐week intervals in A Oregon cranberry bogs from June 1 to September 15 for a 3‐year period. Nitrogen, P, K, and Zn leaf concentrations decreased during the season while concentrations of Ca, Mg, B, Mn, and Fe increased. Periods of 30‐day minimal internal flux varied from July 15 to September 15, depending on the element. It was concluded that 2 samples, 1 from June 15 to July 15 for Mg, Mn, and Fe and 1 from August 15 to Sep‐ tember 1 for N, P, K, Ca, Cu, B, and Zn, would have to be taken to adequately diagnose the nutrient status of all of the essential elements for cranberry.  相似文献   

13.
Abstract

In our experiments, application of carbonated water (CW) modified the nutritional status of a field‐grown tomato crop. Fruit concentrations of zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) were initially increased by CW, after which they were similar to the controls (Zn and Mn) or lower (Cu and Fe). Leaf concentrations of the same group of elements were also increased in the later growth stages. Calcium (Ca) and magnesium (Mg) in the earlier stages showed diminished concentrations in all plant parts in response to CW treatment; later on, a slightly higher Ca content was found in the fruit and lower in the leaves, while the fruit Mg content was decreased. Higher cation contents were found in the plant in response to the higher irrigation frequency and interaction with CW effect was detected in most of the cases. In the first period, leaf and fruit contents of all elements, except for Mg in the fruit were increased by daily irrigation. In the second one, leaf content of all nutrients was also increased; the fruit content of Mg, Ca and Zn was increased, while that of Cu, Fe, and Mn was decreased.  相似文献   

14.
ABSTRACT

The fertilizer absorption characteristics of strawberries are not clear, although appropriate fertilization is definitely necessary to ensure produce quality and quantity. This study aimed to determine the amounts of macro- and micronutrients absorbed during cultivation of strawberries and their biodistribution and utilization in the plant body. We cultivated Japanese strawberries ‘Benihoppe’ and ‘Kirapika’ in small hydroponic equipment containing a nutrient solution and determined the amounts of N, P, K, Ca, Mg, Fe, Mn, B, Zn, Cu, and Mo absorbed during and at the end of cultivation. The results revealed the adsorption levels of these elements during the cultivation period. The nutrient concentrations varied greatly among plant organs. In particular, P and B accumulated at high levels in the leaves and stem, K, Ca, Mg, Mn, Zn, and Cu accumulated in the crown, and N, Fe, and Mo accumulated in the roots. In addition, the uptake levels of N, P, K, Mg, Mn, Zn, and Cu differed between Benihoppe and Kirapika. Our results provide useful information for determining fertilizer application rates in strawberry cultivation.  相似文献   

15.
《Journal of plant nutrition》2013,36(9):1505-1515
Abstract

The nutrient status [annual fluctuation of leaf nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn)], yield and fruit quality [soluble solids concentration (SSC), titratable acids (TA), SSS/TA and juice content] of “Encore” mandarin trees cultivated in two sites of the same orchard were studied. The trees were grafted on Carrizo citrange rootstock and grown under identical conditions, apart from some soil properties. Soil B (site B of orchard) contained more K, Ca, Mg, and organic matter than soil A (site A of orchard). The patterns of annual variation of leaf nutrient concentrations were similar in both soils, although leaf concentrations of Ca, Mg, Mn, and Fe in soil A were significantly higher than those of soil boron (B), while leaf K concentrations were significantly lower. The mineral analyses of the leaves revealed some interesting antagonisms between K–Mg, K–Ca, and K–Mn. Manganese deficiency was especially limited in the trees grown in soil B. The average fruit yield per tree in soil A, on two-year basis, was significantly higher than this in soil B. The significantly higher water infiltration rate in soil B, in contrast to soil A, seemed to be the dominant factor responsible for the differences among the two sites in yielding and leaf mineral composition.  相似文献   

16.
Abstract

A study was made of the comparative nutrient content of healthy and declining sweet orange trees. Leaves were analysed for 12 elements using Kjeldahl and Spectrographic methods. No statistical differences were observed between healthy and declining trees in their content of N, P, Mg, Na, Mn, Fe, B, Cu, Mo, and Zn. Significant differences were obtained for K and Ca; healthy Blood Red trees were found to be lower in K but higher in Ca than declining trees. Phosphorus content was observed to be borderline to low in both healthy and declining trees. Magnesium was low to deficient. Boron content was high to excessive in most orchards regardless of tree condition.  相似文献   

17.
The present investigation aimed to study the leaf mineral composition of sweet cherry trees on different rootstocks, since the literature data on uptake efficiency of different rootstocks is inconsistent. Results confirmed the different uptake efficiency of rootstocks. The efficiency of ‘GiSelA 6’ root is emphasized in uptake and supply of leaves with nitrogen (N), phosphorus (P), potassium (K), zinc (Zn), boron (B), and manganese (Mn), but trees on this rootstock tend to develop calcium (Ca), magnesium (Mg), and copper (Cu) deficiencies. The Prunus mahaleb rootstocks on calcareous sandy soil are efficient supplier of N, P, K, Ca, Mg, Fe, and Cu, but this root tends to develop Zn, B, and Mn deficiencies. Prunus avium seedling as rootstock proved to be less efficient in supply of leaves by N, P, K, Ca, and Cu. Prunus fruticosa ‘Prob’ root showed tendency in developing several leaf nutrient deficiencies. The applied fertilizer program led to low nutrient levels or even deficiency symptoms in leaves.  相似文献   

18.
Abstract

A non digestion method described earlier for K determination was tested for its ability to extract several other elements in plant tissues of sorghum, pearl millet, chickpea, and pigeonpea. The method involves shaking 0.5 g finely ground (<0.4 mm) plant sample with 40 ml of 0.5 N HCl for 5 minutes at room temperature (25°C) followed by measurement of element concentrations in the filtrate. The values of Ca, Mg, Zn, and Mn obtained by this method were in good agreement with those obtained using the triacid digestion technique. However, this was not the case for P, Fe and Cu. The precision obtained in determining Ca, Mg, Zn and Mn by the HCl extraction method was generally comparable to that obtained by the triacid digestion method. These results suggest that the HCl extraction method can be used for routine and rapid analysis of plant tissues for Ca, Mg, Zn and Mn contents as well as for K content.  相似文献   

19.
Abstract

A compost of high copper (Cu) and zinc (Zn) content was added to soil, and the growth of barley (Hordeum vulgare L.) was evaluated. Four treatments were established, based on the addition of increasing quantities of compost (0, 2, 5, and 10% w/w). Germination, plant growth, biomass production, and element [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), sodium (Na), magnesium (Mg), iron (Fe), Cu, manganese (Mn), and Zn] contents of soil and barley were determined following a 16‐week growing period. Following harvesting of the barley, analysis of the different mixtures of soil and compost was performed. Micronutrient contents in soils as affected by compost additions were determined with diethylene–triamine–pentaacetic acid (DTPA) (Cu, Mn, Fe, and Zn) or ammonium acetate [Ca, Na, Mg, K, cation exchange capacity (CEC)] extractions, and soils levels were compared to plant uptake where appropriate. Increasing rates of compost had no affect on Ca, Mg, or K concentration in barley. Levels of Cu, Zn, Mn, and Na, however, increased with compost application. High correlations were found for DTPA‐extractable Cu and Zn with barley head and shoot content and for Mn‐DTPA and shoot Mn content. Ammonium acetate–extractable Na was highly correlated with Na content in the shoot. High levels of electrical conductivity (EC), Cu, Zn, and Na may limit utilization of the compost.  相似文献   

20.
The dry weight accumulation per male and female flower as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree (Juglans regia L.) catkins and female flowers at the stage of flower bud and during the flower development. Catkin emergence was accompanied by a very fast hydration of the tissues. After the catkin matured, the fresh and dry weights were reduced. The female flower development period was accompanied by the dry and fresh weight increase. Total N, P, K, Fe, Mn, Cu and Zn concentrations in catkin buds were detected at lower levels, Mg in equal levels, and Ca at higher levels as compared to the nutrient concentrations in young growing leaves. The estimated values of the ratio NCmfb/NCygl were: total N = 0.54, P = 0.83, K = 0.56, Ca = 1.5, Mg = 1.0, Fe = 0.46, Mn = 0.71, Cu = 0.85, and Zn = 0.60. Nutrient concentration in female flower buds was detected in almost equal levels with the exception of total N and Fe. The estimated values of the ratio: NCffb/NCygl were: total N = 0.57, P = 1.1, K = 1.17, Ca = 1.06, Mg = 0.9, Fe = 0.47, Mn = 1.0, Cu = 0.92, and Zn = 0.85. Total N, P, Mn, Cu, and Zn accumulations in the catkin were increased during the fast growing phase and decreased after catkin maturing. Potassium, Mg, and Fe accumulation continued to increase in the mature catkin. Calcium accumulation decreased at a very late mature catkin phase. Total N, P, and K accumulation rates during the catkin fast growing phase were higher than the dry weight accumulation rate. Calcium, Mg, Fe, Mn, Cu, and Zn accumulation rates at the same period were lower or equal to dry weight accumulation rates. In mature catkins, the total N, P, Mn, Cu, and Zn depletion rates were higher than the dry weight depletion rate. The continual increase of K, Ca, Mg, and Fe accumulation in mature catkin resulted in the increase of nutrients concentration also. Total N and P showed the highest remobilization values from mature catkin of 51.4% and 45%, respectively. Calcium, K, Mg, Cu, Mn, and Zn remobilization values estimated to be 22.1%, 7.5%, 3.2%, 45.3%, 33.4%, and 31.8%, respectively. Iron showed no remobilization at all. Nutrients remobilization from catkins as compared to the leaves had almost similar values for total N, Zn, and Cu, higher for P, Ca, and Mn, and lower for Mg, Fe, and K. Accumulation of all nutrients in female flowers increased after fertilization. The dry weight accumulation rate was higher than the nutrient accumulation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号