首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Loblolly pine (Pinus taeda L.), silver maple (Acer saccharinum L.), and cottonwood (Populus deltoides Bartr.) are short-rotation woody crops with potential use for biomass plantations. The study of fine-root production and mortality in these intensively managed crops is important to understand carbon and nutrient cycling in these systems. We used minirhizotrons to measure monthly fine-root production and mortality of each species in a biomass plantation during the second growing season in Collins, Arkansas, USA. Images were taken and digitized on a monthly basis from March 2008 to February 2009 to calculate volumes and were converted into dry-weight biomass. Data analysis showed that net fine-root production varied among the species and the time of year. Loblolly pine had significantly greater net fine-root production and mortality than others. Overall fine-root production was greatest during fall months, whereas fine-root mortality showed no seasonal difference.  相似文献   

2.
Fine roots play an important role in organic matter accumulation in reclaimed mine soils. However, estimation of the increment of fine root biomass is difficult and none of the existing methods is universal. The paper examined two methods for measurement of fine roots biomass increment (FRBI): i) with using the root-ingrowth core method (RIC) and ii) the monolith sampling method (MSC). The study was conducted under alder plantings (Alnus incana, A. glutinosa and A. viridis) introduced on technosols at a combustion waste disposal site and a former open-cast sand mine. The FRBI determined using MSC method was significantly lower (33–481 g m?2 yr?1) and less variable than the FRBI measured with RIC (85–2317 g m?2 yr?1). However, the results obtained with both methods were correlated (r = 0.70, P = 0,05). Consequently, MSC is better to qualitatively compare the habitats of tree species in terms of their ability to produce fine roots. However, in the initial soils where plants very often produce more fine roots, RIC seems to be more suitable. This method shows the actual ability of trees to produce roots in order to satisfy their life needs when acquiring a new habitat on reclaimed soils. Such information is particularly important in oligotrophic soils where nutrient deficiency may be balanced only by the efficient circulation and decomposition of organic matter (SOM) including the fine roots that die off after each growing season.  相似文献   

3.
Termites are reported to improve soil physicochemical properties thereby enhance soil fertility of their mound and foraging areas. Empirical study pertaining to these effects is missing in Southwest Ethiopia. For this study, soil samples affected by termite activities were collected at 1 m interval within 0–3 m distance from the base of six termite mounds on gently sloping and sloping land and analyzed for physicochemical parameters. The result of the analysis depicted that soil bulk density (1.38–1.15 g cm?3) and moisture content (21.1–9.9%) decreased with increased distance from the mound base. While clay content decreased with increased distance from the mound base from72.0% to 45.5%, sand and silt contents increased from 8.0% to 21.3% and 19.3% to 28.5%, respectively. PH (6.23), organic carbon (3.85%), total nitrogen (0.4%), cation exchange capacity CEC (30.43 cmol kg?1), exchangeable Ca (13.73 cmol kg?1), Mg (3.15 cmol kg?1), and PBS (56.8%) were higher on termite mounds. While, electrical conductivity (0.03 dS m?1–0.06 dS m?1), exchangeable K (0.52–0.93 cmol kg?1) and Na (0.02–0.03 cmol kg?1) showed increasing trend with the distance from the mound base. Our results indicated that termite mounds are important sinks of organic matter and mineral nutrients, and hence contribute to the enhancement of soil fertility. Thus, for subsistent farmers the uses of termite mounds as a fertilizer present an opportunity to improve agricultural production.  相似文献   

4.
Artificial restoration by shrub plantation in semi-arid sandy land can increase carbon sequestration. However, little information is available on the carbon flux input to soil resulted from fine roots turnover and leaf fallen during restoration. The present study relying on the ingrowth core and sequential core methods investigated the fine-root dynamics and fine-root production of three shrub stands (dominated by Artemisia halodendron, Caragana microphylla and Salix gordejevii respectively) which have different life-forms and root architectures. The soil carbon and nitrogen stock was also estimated in the restoration, and the relative contribution of carbon input related to fine root mortality and leaf fallen was assessed. The mean standing live and dead fine-root biomass in A. halodendron stand at the primary restoration were significantly less than in C. microphylla stand at moderate restoration and S. gordejevii stand in lowland. Consistent with leaf production, fine root production showed a positive correlation with soil water content and followed the order of A. halodendron < C. microphylla < S. gordejevii. In contrast, the fine-root turnover rate was quicker in primary restoration phase (2.12 year−1) than in moderate restoration phase (1.55 year−1) and lowland (1.28 year−1). The annual carbon and nitrogen inputs via fine root mortality and leaf fallen increased from 74.78 g C m−2 year−1 and 1.25 g N m−2 year−1 in A. halodendron stand to 189.66 g C m−2 year−1 and 1.67 g N m−2 year−1 in S. gordejevii stand. Although the share of the fine roots of A. halodendron seized a relatively smaller proportion in the net primary production compared with those in C. microphylla and S. gordejevii, the relative contribution of carbon input related to fine roots mortality in primary restoration phase was higher than in the other two shrub stands. The present study proved that the carbon input to soil by fine-root mortality considerably contributed to the restoration of soil carbon and nitrogen stock in semi-arid degraded lands.  相似文献   

5.
Abstract

In three field trials in southern Norway, Italian ryegrass (Lolium multiflorum Lam.), white clover (Trifolium repens L.) or subterranean clover (T. subterraneuni L.) was undersown in spring grain at three N fertilizer rates and ploughed under in late October as a green manure for a succeeding spring grain crop. The content of topsoil (0-20 cm) mineral nitrogen was determined during the growth of the grain crop, after grain harvest and after ploughing. In addition, mineralization of nitrogen and carbon was measured in green-manured soil incubated at 15°C and controlled moisture conditions. During grain crop growth, ryegrass tended to reduce soil mineral N compared with the other treatments. After grain harvest, in a small-plot experiment where extra nitrate was added, ryegrass reduced soil nitrate N (0-18 cm) from 4.2 to 0.4 g m?2 within 13 days, while the clovers had negligible effect compared with bare soil. Up to 9.4 g N m?2 was present in above-plus below-ground ryegrass biomass at ploughing. In incubated ryegrass soil, there was a temporary net N immobilization of up to 0.9 g N m?2 as compared with unamended soil. In clover-amended soil, mineral N exceeded that in unamended soil by up to 5 g N m?2.  相似文献   

6.
(1)根据中国知网(CNKI)的《中国学术期刊影响因子年报(自然科学与工程技术.2010版)计量指标统计表》,《水土保持通报》综合统计源统计的总被引频次为3 446次(2009年版中为1 358次);复合影响因子为0.955;期刊综合影响因子为0.568(2008年为0.493),在所统计  相似文献   

7.
To reveal the impact of soil disturbance and surface watering (SW) following soil disturbance on the pulse nitrous oxide (N2O) emissions, incubated experiments were conducted on disturbed soil with two watering regimes [surface watering only (SWO) and subsurface watering followed by surface watering (SUW+SW)]. Intensive soil disturbance led to pulses N2O emissions from SUW + SW soil (>8,693 μg N2O m?2 h?1 with a peak of 30,938 μg N2O m?2 h?1), although the water-filled pore space (WFPS) was substantially lower than the previously reported optimal soil moisture range (45–75% WFPS) for peak N2O emissions. N2O emissions from the disturbed soil after SW were much lower than those from SUW + SW soil, increased as the soil dried, and peaked when the WFPS fell within the optimal soil moisture range. These peaks were considerably less than those resulting from the intensive disturbance in SUW + SW soil. Thus, SW after intensive soil disturbance may be effective for mitigating of pulse N2O emissions caused by soil disturbance.  相似文献   

8.
ABSTRACT

Mangrove ecosystems play an important role in carbon (C) accumulation in tropical and subtropical regions. Below-ground deep anoxic soil is especially important for C accumulation. However, quantitative data on below-ground soil C stocks in mangrove ecosystems are lacking compared with data on above-ground biomass. In addition, soil C accumulation processes in mangrove ecosystems have not been sufficiently clarified. In this study, we quantified soil C stocks and focused on the mass of fallen litter and below-ground roots, which are produced by tree and that may directly influence soil C stocks in a mature subtropical mangrove in the estuary of Fukido River, Ishigaki Island, southwestern Japan. The principal species in this study site were Bruguiera gymnorhiza and Rhizophora stylosa, and total above-ground biomass at the site was 80.7 ± 1.3 (mean ± SD) Mg C ha?1 over the period from 2014 to 2016. Litter was collected in six litter traps from May 2013 to November 2016, it ranged from 7.8 to 11.5 Mg C ha?1, with the major proportion of litter being from foliage (leaves and stipules). The root C density at 90-cm depth was 27.1 ± 11.3 Mg C ha?1. The soil C stock in the mangrove forest at a depth of 90 cm at the study site was 251.0 ± 34.8 Mg C ha?1, and it seems to be lower value in the tropical region but it to be higher in subtropical East Asian mangrove sites. Dead roots, especially dead fine roots, but not fallen litter, were significantly positively correlated with soil C stocks. The δ13C values obtained from soils ranged from ?29.3‰ to ?27.0‰; these values are consistent with those for below-ground fine roots. These results strongly suggest that dead fine roots could be a main factor controlling soil C stocks at this study site.  相似文献   

9.
Rates of C2H2-reduction in surface soil and litter from pine and eucalypt forests were measured for 1 yr. Rates of reduction increased significantly with moisture content, and mean rates (nmol kg?1 h?1) decreased in the order pine litter (339), eucalypt litter (220), eucalypt soil (54), pine soil (7). Asymbiotic N2-fixation in litter and surface soil was estimated to be 108 mg m?2 yr?1 in eucalypt forest and 64 mg m?2 yr?1 in pine forest. About 80% of total fixation in eucalypt was in the soil, while 80% of the total in pine was in the litter. N2ase was active in rotting wood but not in fresh foliage.  相似文献   

10.
为探究在南方红壤区不同管理措施对于新开发果园土壤有机碳迁移的影响,以典型红壤坡地柑橘园(建园2年)为研究对象,监测评估自然降雨背景下清耕(CB)、稻草全覆盖(CS)、萝卜花生轮作(CRP)、三叶草条带覆盖(CCS)、三叶草全覆盖(CC)和苔藓覆盖(CT)6种管理措施对开发初期果园水土流失和土壤有机碳迁移的影响。结果表明:(1)6种管理措施CB、CS、CRP、CCS、CC和CT的径流量分别为7.88,4.45,4.64,3.24,3.25,4.70 m3,与CB相比,CS、CRP、CCS、CC和CT措施下截流效益分别为43.51%,41.10%,58.94%,58.82%,40.38%,产沙量分别为71.35,21.27,31.03,14.24,14.18,35.05 kg,产沙量与CB相比分别减少70.18%,56.51%,80.04%,80.13%,50.87%;(2)泥沙有机碳流失强度分别为CB(20.75 g/m2),CS(4.78 g/m2),CRP(8.68 g/m2),CCS(3.52 g/m2),CC(3.38 g/m2),CT(9.94 g/m2),相比于对照组CB分别减少76.94%,58.16%,83.01%,83.71%,52.11%;(3)泥沙有机碳和DOC流失强度均与径流量呈显著正相关关系(R2分别为0.412和0.419)。地面管理措施主要通过调控地表径流的产生来影响红壤坡地新开发果园土壤有机碳的迁移。综合来看,三叶草条带覆盖和全覆盖在抑制土壤侵蚀和土壤有机碳迁移损失方面效果较明显。研究结果可为南方红壤区新开发果园水土流失和土壤有机碳迁移损失的防控提供科学依据。  相似文献   

11.
Soil salinity and arbuscular mycorrhizal fungi (AMF) influence the soil hydrophobicity. An experiment was performed to determine the effects of soil salinity and AMF species on soil water repellency (SWR) under wheat (Triticum aestivum L.) crop. Six AMF treatments, including four exotic species (Rhizophagus irregularis, Funneliformis mosseae and Claroideoglomus claroideum, a mix of three species), one mix native AMF species treatment and an AMF-free soil in combination with four salinity levels (1, 5, 10, and 15 dS m?1) were used. The soil repellency index (RI) increased with salinity increment ranging from 2.4 to 10.5. The mix of three exotic and native AMF treatments enhanced the RI significantly compared to AMF-free soil in all salinity levels with one exception for native treatment at 1 dS m?1. Among individual AMF species, the C. claroideum treatment at 10 dS m?1 increased the RI by 67% compared to AMF-free soil. The native AMF treatment was more efficient in root colonization, glomalin production and SWR development at 10 and 15 dS m?1, compared to exotic species. In addition to the net positive effect of salinity on SWR, the AMF influences on the RI were greatly dependent on salinity levels.  相似文献   

12.
The need for bioenergy is increasing with increase in global energy demand, and sustainable soil and fertilizer management practices for bioenergy feedstock production are gaining importance. In this greenhouse study, we evaluated the effects of biochar and fertilizer nitrogen on soil and energy crop sunflower (Helianthus annuus L. var. Giganteus). Sunflower plants were treated with three rates of biochar, control (0 Mg ha?1), low (25 Mg ha?1) and high (50 Mg ha?1), and three rates of fertilizers, 0% (control), 50% (low) and 100% (high) of the recommended nitrogen dose. Plant height, quality (chlorophyll content), biomass yield, feedstock energy, ash content and tissue nutrients were measured along with soil moisture and pH. Results showed an 11% increase in mean plant height under low biochar compared to control biochar-treated plants. High nitrogen treatment produced 26% and 18% more stalk and total above-ground plant (whole plant) biomass, respectively, compared to the control nitrogen treatment. High biochar treatment resulted in higher soil moisture holding, but lower soil pH than the control biochar treatment. Plant quality, energy and ash contents were not affected by either biochar or nitrogen. The plant tissue analysis provides a complete tissue macro- and micronutrient information on sunflower cultivar Giganteus, which was not done previously.  相似文献   

13.
The mountainous region of the Himalayas is covered with forest, grassland, and arable land, but the variation in ecosystem functions has not been fully explored because of the lack of available data. This study appraises the changes in soil properties over the course of a year (spring, summer, autumn, winter) for forest, grassland, and arable soils in a typical hilly and mountainous region of Azad Jammu and Kashmir, Pakistan. Soil samples were collected from major land-cover types in the mountain region: natural forest, grassland, and cultivated land (arable). The natural forest served as a control against which changes in soil properties resulting from removal of natural vegetation and cultivation of soil were assessed. Soil samples were collected from depths of 0–15 and 15–30 cm six times during the year and examined for changes in temperature, moisture, electrical conductivity (EC), micronutrients [iron, manganese, copper, and zinc (Fe, Mn, Cu, Zn, respectively)], and microbial population. Significant differences were found in soil temperature, soil moisture, Fe, Mn, Cu, Zn, and number of bacteria, actinomycetes, and fungi among the three land-cover types. Soil under cultivation had 4–5 °C higher temperature and 3–6% lower moisture than the adjacent soils under grassland and forest. Electrical conductivity (EC) values of forest, grassland, and arable soil were 0.36, 0.30, and 0.31 dS m?1, indicating that soil collected from the forest had 18–20% more EC than the adjacent arable and grassland soils. On average, amounts of Fe, Mn, Cu, and Zn in the soil collected from the arable site were 6.6, 5.7, 1.7, and 0.8 mg kg?1, compared with 24.0, 12.1, 3.5, and 1.2 mg kg?1 soil in the forest soil, showing that arable had two to four times less micronutrients than grassland and forest. Populations of bacteria, actinomycetes, and fungi in the forest were 22.3 (105), 8.2 (105), and 2.5 (103), respectively, while arable land exhibited 8.2 (105), 3.2 (105), and 0.87 (103). Season (temperature) and depth showed significant effects on microbial activity and nutrient concentration, and both decreased significantly in winter and in the subsurface layer of 15?30 cm. Different contents of the parameters among arable, grassland, and forest soils indicated an extractive effect of cultivation and agricultural practices on soil. Natural vegetation appeared to be a main contributor to soil quality as it maintained the moisture content and increased the nutrient status and microbial growth of soil. Therefore, it is important to sustain high-altitude ecosystems and reinstate the degraded lands in the mountain region.  相似文献   

14.
Abstract

The study aimed at quantifying the rates of soil CO2 efflux under the influence of common tillage systems of moldboard plow (PT), chisel plow (CT), rotary tiller (RT), heavy disc harrow (DT), and no-tillage (NT) for 46 days in October and November in a field left fallow after wheat harvest located in southern Turkey. The NT and DT plots produced the lowest soil CO2 effluxes of 0.3 and 0.7 g m?2 h?1, respectively, relative to the other plots (P < 0.001). Following the highest rainfall amount of 87 mm on the tenth day after the tillage, soil CO2 efflux rates of all the plots peaked on the 12th day, with less influence on soil CO2 efflux in the NT plot than in the conventional tillage plots. Soil evaporation in NT (64 mmol m?2 s?1) was significantly lower than in the PT (85 mmol m?2 s?1) and RT (89 mmol m?2 s?1) tillage treatments (P < 0.01). The best multiple-regression model selected explained 46% of variation in soil respiration rates as a function of the tillage treatments, soil temperature, and soil evaporation (P < 0.001). The tillage systems of RT, PT, and CT led, on average, to 0.23, 0.22, and 0.18 g m?2 h?1 more soil CO2 efflux than the baseline of NT, respectively (P≤0.001).  相似文献   

15.
A field experiment was conducted to examine responses of soil respiration, nitrification, and denitrification to warming in a winter wheat (Triticum aestivum L.)–soybean (Glycine max (L.) Merr) rotation cropland. The results showed that seasonal variations in soil respiration were positively related to seasonal fluctuations in soil temperature. Seasonal mean soil respiration rates for the experimental warming (EW) and control (CK) plots were 3.98 ± 0.43 and 2.54 ± 0.45 μmol m?2 s?1, respectively, in the winter wheat growing season, and they were 4.59 ± 0.16 and 4.36 ± 0.08 μmol m?2 s?1, respectively, in the soybean growing season. There was a marginally significant level (p = 0.097) for mean nitrification rates between EW and CK plots. Soil temperature and moisture accounted for 58.2% and 58.1% of the seasonal variations observed in the winter wheat and soybean plots, respectively.  相似文献   

16.
Abstract

Plant litter and fine roots are important in maintaining soil organic carbon (C) levels as well as for nutrient cycling. The decomposition of surface‐placed litter and fine roots of wheat (Triticum aestivum), lucerne (Medicago sativa), buffel grass (Cenchrus ciliaris), and mulga (Acacia aneura), placed at 10‐cm and 30‐cm depths, was studied in the field in a Rhodic Paleustalf. After 2 years, ≤10% of wheat and lucerne roots and ≥60% of mulga roots and twigs remained undecomposed. The rate of decomposition varied from 4.2 year?1 for wheat roots to 0.22 year?1 for mulga twigs, which was significantly correlated with the lignin concentration of both tops and roots. Aryl+O‐aryl C concentration, as measured by 13C nuclear magnetic resonance spectroscopy, was also significantly correlated with the decomposition parameters, although with a lower R 2 value than the lignin concentration. Thus, lignin concentration provides a good predictor of litter and fine root decomposition in the field.  相似文献   

17.
The effects of zeolite application (0, 4, 8 and16 g kg?1) and saline water (0.5, 1.5, 3.0 and 5.0 dS m?1) on saturated hydraulic conductivity (K s) and sorptivity (S) in different soils were evaluated under laboratory conditions. Results showed that K s was increased at salinity levels of 0.5‐1.5 dS m?1 in clay loam and loam with 8 and 4 g zeolite kg?1 soil, respectively, and at salinity levels of 3.0–5.0 dS m?1 with 16 g zeolite kg?1 soil. K s was decreased by using low and high salinity levels in sandy loam with application of 8 and 16 g zeolite kg?1, respectively. In clay loam, salinity levels of 0.5–3.0 dS m?1 with application of 16 g kg?1 zeolite and 5.0 dS m?1 with application of 8 g zeolite kg?1 soil resulted in the lowest values of S. In loam, all salinity levels with application of 16 g zeolite kg?1 soil increased S compared with other zeolite application rates. In sandy loam, only a salinity level of 0.5 dS m?1 with application of 4 g zeolite kg?1 soil increased S. Other zeolite applications decreased S, whereas increasing the zeolite application to 16 g kg?1 soil resulted in the lowest value of S.  相似文献   

18.
A field experiment was conducted to study the effects of tillage and mulch on weed growth, soil moisture storage, productivity and profitability of upland rice during 2012–2013 at Lembucherra, India. Tillage treatments included CT-RI: conventional tillage with 100% residue incorporation and NT-RR: no-till with 100% residue retention. Mulches included rice straw (SM), Gliricidia (GM), brown manuring (BM) and none (NM). CT-RI registered the highest total weed density (89–168 weeds m?2) and biomass (9.6–183 g dry weight m?2) than those for the NT-RR (75–161 weed m?2 and 8–155 g dry weight m?2). In addition, NT-RR stored (122–172 mm) more soil moisture (0–40 cm soil depth) in comparison with that for the CT-RI treatment (110–161 mm) during crop growing season. Tillage treatments did not have the significant effect on yields. NT-RR reduced the cost of cultivation by 31.5% compared with that for the CT-RI. Thus, the net returns under NT-RR were more than those for the CT-RI. The BM recorded the lowest weed biomass and density as compared to that under other mulches. Therefore, cultivation of upland rice using NT along with BM mulching enhanced productivity and profitability of rice cultivation in India.  相似文献   

19.
Low soil fertility and soil acidity are among the major bottlenecks that limit agricultural productivity in the humid tropics. Soil management systems that enhance soil fertility and biological cycling of nutrients are crucial to sustain soil productivity. This study was, therefore, conducted to determine the effects of coffee‐husk biochar (0, 2.7, 5.4, and 16.2 g biochar kg?1 soil), rhizobium inoculation (with and without), and P fertilizer application (0 and 9 mg P kg?1 soil) on arbuscular mycorrhyzal fungi (AMF) root colonization, yield, P accumulation, and N2 fixation of soybean [Glycine max (L.) Merrill cv. Clark 63‐K] grown in a tropical Nitisol in Ethiopia. ANOVA showed that integrated application of biochar and P fertilizer significantly improved soil chemical properties, P accumulation, and seed yield. Compared to the seed yield of the control (without inoculation, P, and biochar), inoculation, together with 9 and 16.2 g biochar kg?1 soil gave more than two‐fold increment of seed yield and the highest total P accumulation (4.5 g plant?1). However, the highest AMF root colonization (80%) was obtained at 16.2 g biochar kg?1 soil without P and declined with application of 9 mg P kg?1 soil. The highest total N content (4.2 g plant?1) and N2 fixed (4.6 g plant?1) were obtained with inoculation, 9 mg P kg?1, and 16.2 g biochar kg?1 soil. However, the highest %N derived from the atmosphere (%Ndfa) (> 98%) did not significantly change between 5.4 and 16.2 g kg?1 soil biochar treatments at each level of inoculation and P addition. The improved soil chemical properties, seed yield, P accumulation and N2 fixation through combined use of biochar and P fertilizer suggest the importance of integrated use of biochar with P fertilizer to ensure that soybean crops are adequately supplied with P for nodulation and N2‐fixation in tropical acid soils for sustainable soybean production in the long term.  相似文献   

20.
Reclamation of sodic soils is proving increasingly vital as greater land area becomes salt-affected in the northern Great Plains of the United States. Flue gas desulfurization gypsum (FGDG) can be an agriculturally important resource for increasing land productivity through the amelioration of sodic soils. Biochar is also considered as an aid in reclaiming degraded soils. In this incubation study, two rates of FGDG (33.6 Mg ha?1 and 66.2 Mg ha?1), two rates of biochar made from sugar beet (Beta vulgaris L.) pulp (16.8 Mg ha?1), and one rate of FGDG combined with one rate of biochar (33.6 Mg ha?1 ea.) were applied to a sodic soil. Soil physicochemical properties, including cationic exchange, pH, electrical conductivity (ECe), sodium adsorption ratio (SARe), total organic carbon (TOC), water retention, and soil respiration rate, were assessed during and at the end of the incubation period. Addition of FGDG to sodic soil increased ECe from 3.5 to 8.4 dS m?1 and decreased SARe from 16 to 9. Biochar addition to sodic soil increased TOC from 62.2 to 99.5 μg g?1 and increased soil respiration rate (mg C kg?1 soil day?1) on every measurement period. When FGDG and biochar were both added to the sodic soil, TOC did not significantly improve; however, ECe increased from 3.5 to 7.7 dS m?1, SARe decreased from 16 to 9, and soil respiration rate increased for all measurements. The results confirm there is potential for FGDG and biochar to reclaim sodic soils alone, and applied in combination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号