首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The current method for comparing the reactivity of different limestones used to correct pH in horticultural substrates is based on batch trials, where the limestones are incorporated into the substrate and the pH is measured over time (typically up to 28 days). The objective was to test a laboratory approach to provide a rapid analytical test on reactivity of various limestone sources. To a lime sample, 4M hydrochloric acid (HCl) was added, and the volume of carbon dioxide (CO2) released into a burette was measured over time. Reagent‐grade calcium carbonate (CaCO3) and two commercially available pulverized dolomitic limestones were tested. In addition, six particle‐size fractions derived from each of the limestone samples were also evaluated for reaction rate and the corresponding pH responses. In less than 1 min after acid addition, 100% of CaCO3 reacted, whereas it took 3.9 and 11.5 min, respectively, for 50% of the limestone samples to react, and 14 and 52 min, respectively, for 90% neutralization. Reaction rate increased as the particle size decreased; however, a similar reaction rate was observed for the particle sizes larger than 150 µm (>100 U.S. mesh). Time to 90% reaction was negatively correlated with pH response when 6 g of each lime was incorporated per L of peat substrate. It may be possible to establish a lime reactivity index, for example based on the time required for 50% or 90% reaction, and thereby provide a rapid screening of different limestone sources.  相似文献   

2.
The relationship of specific surface to particle diameter and calcium carbonate (CaCO3) content of limestone was examined. Limestones obtained from 20 North American quarries were wet sieved into eight particle diameter fractions (600 to ?38 µm). Specific surface of particles was measured in each fraction following the Brunauer-Emmett-Teller theory. The range in specific surface across the 20 sources varied from 74-fold in the coarsest particles (600–300 µm) to 20-fold in the finest particles (?38 µm). The pattern of specific surface progressing from the coarsest to the finest particles varied radically between sources. The relationship between specific surface and CaCO3 content was likewise very weak. While particle diameter and CaCO3 equivalent remain the traditional measurements for defining limestone for field production, specific surface provides additional information valuable to define the stricter neutralization capacities of limestone for soilless root substrates.  相似文献   

3.
The objective was to quantify how the concentration and particle size of unreacted “residual” limestone affected pH buffering capacity for ten commercial and nine research container substrates that varied in residual calcium carbonate equivalents (CCE) from 0.3 to 4.9 g CCE·L?1. The nine research substrates contained 70% peat:30% perlite (by volume) with dolomitic hydrated lime at 2.1 g·L?1, followed by incorporation of one of four particle size fractions [850 to 2000 μm (10 to 20 US mesh), 250 to 850 μm (20 to 60 US mesh), 150 to 250 μm (60 to 100 US mesh), or 75 to 150 μm (100 to 200 US mesh)] of a dolomitic carbonate limestone at 0, 1.5 or 3.0 g·L?1. Substrate-pH buffering was quantified by measuring the pH change following either (a) mineral acid drenches without plants, or (b) a greenhouse experiment where an ammonium-based (acidic) or nitrate-based (basic) fertilizer was applied to Impatiens wallerana Hook. F. Increasing residual CCE in commercial substrates was correlated with greater pH buffering following either the hydrochloric acid (HCl) drench or impatiens growth with an ammonium-based fertilizer. Research substrates with high applied lime rate (3.0 kg·m?3) had greater pH buffering than at 0 or 1.5 g·L?1. At 3 g·L?1, the intermediate limestone particle size fractions of 250 to 850 μm and 150 to 250 (20 to 60 or 60 to 100 US mesh) provided the greatest pH-buffering with impatiens. Particle fractions finer than 150 μm reacted quickly over time, whereas buffering by particles coarser than 850 μm was limited because of the excessively slow reaction rate during the experimental periods. Addition of acid from either an ammonium-based fertilizer or HCl reduced residual CCE over time. Dosage with 40 meq acid from HCl per liter of substrate or titration with HCl acid to substrate-pH of 4.5 were well-correlated with pH buffering in the greenhouse trials and may be useful laboratory protocols to compare pH buffering of substrates. With nitrate fertilizer application, residual CCE did not affect buffering against increasing pH. Residual limestone is an important substrate property that should be considered for pH management in greenhouse crop production under acidic conditions.  相似文献   

4.
The efficiency of limestone in amending soil acidity is primarily based on the particle size and the neutralization value of the ground rock, but the origin of the rock can also affect its reactivity. The aim of this work was to evaluate, under controlled conditions, the efficiency of the reactivity of sedimentary limestones of different particle sizes in neutralizing soil acidity. The experiment was conducted using a clayey and a sandy soil, and the treatments consisted of four samples of a sedimentary limestone (with the same neutralization values but different particle sizes), two metamorphic limestones and an untreated control. In the first months of incubation, the sedimentary limestones demonstrated higher soil amelioration abilities than the metamorphic limestones, but all samples used in the study achieved the goal of neutralizing soil acidity to desired values: a base saturation (BS) of ~70% and a pH > 6.0. In sedimentary limestones, the availability of calcium (Ca) and magnesium (Mg) was more closely related to the levels of Ca oxide (CaO) in the amendment than to the size of the particles. The results of this study suggest that the currently used equation may underestimate the reactivity of certain limestones.  相似文献   

5.
Abstract

Dissolution capacity and kinetics of carbonates by sodium acetate (NaOAc)‐acetic acid (HOAc) at various pHs were studied. A comparative study of the selectivity, specificity, and effectivity of NaOAc‐HOAc solution on carbonate bound fraction during the sequential selective dissolution procedure was conducted by comparing the dissolution of major and trace elements from arid zone soils by this buffer solution at various pHs. The effect of the pH of NaOAc‐HOAc solution on the following fractions in the sequential selective dissolution procedure was also studied. NaOAc‐HOAc solution at pH 5.5 at a soil to solution ratio of 1:25, can dissolve all the carbonate from calcareous soils with 10–20% of carbonate; at pH 5.0 it can dissolve all the carbonate in soils with about 30–50% calcium carbonate (CaCO3). A second extraction with fresh buffer solution at pH 5.0 is required for soils with more than 50% of carbonate. Six hours of extraction time is generally sufficient for complete carbonate dissolution. For most of agricultural soils in arid and semi‐arid zones, the attack of the buffer solution at pH 5.0 on other solid‐phases seems to be limited. But the buffer solution at pH 5.5 would be better for some forest soils with low carbonate content and high organic matter content. The part of carbonate fraction not be dissolved in this step is released in the following steps: easily reducible oxides fraction (ERO), organic matter fraction (OM), and reducible oxides fraction (RO), leading to gross misinterpretation of the elemental partitioning in arid zone soils.  相似文献   

6.
Abstract

Changes in the chemistry of the acidic Chilean Andisols in response to various ameliorant treatments (gypsum, dolomitic, and calcitic limestone) and their effects on ryegrass (Lolium perenne) production were studied in laboratory incubation and greenhouse experiments. Dolomitic and calcitic limestone alone and in combination with gypsum increased pH significantly and, at the same time, decreased exchangeable aluminum (Al) concentration to low concentrations. Gypsum alone increased pH slightly and reduced Al concentration by 50%, but its effect on ryegrass yield was similar to calcitic and dolomitic limestone. The Al/calcium (Ca) ratio was not a good predictor of the Al toxicity for plant growth but the Al/sulfur (S) ratio in the soil showed a good relationship with dry matter yield. The Ca + magnesium (Mg) + potassium (K) content in shoots was highly correlated with dry matter yield.  相似文献   

7.
Methods used to compare the effectiveness of liming materials (e.g., relative neutralizing value, RNV; effective calcium carbonate equivalent, ECCE) were developed for ground limestone. This method is relatively untested on industrial byproducts that could be used when limestone is expensive or unavailable. The objective was to determine if RNV applies to both ground limestones and industrial byproducts. A 42-d incubation study was performed on three acid soils with 11 ground limestones and 9 different byproducts at four rates based on titration and the modified Adams-Evans buffer method. Overall effectiveness, assessed as RNV compared to Ca(OH)2, averaged 101.5 ± 0.9% for all the evaluated liming materials, except the paper sludge and dolomitic marble. Thus, RNV was a good estimate of neutralizing ability when particle size was accurate. Addition of RNV to packaging would facilitate the commercial use of byproducts as liming materials allowing consumers to compare products by price and properties.  相似文献   

8.
Abstract

Four liming and Mg materials were compared in a greenhouse experiment with soybeans for their ability to raise soil pH, supply Mg, and their effect on the availability of Mn, Cu, Fe, and Zn. Three materials were added at rates of 0, 1, and 2 times the lime requirement, calcitic lime, dolomitic lime, and Hydra‐Mag (an industrial by‐product containing 20% Mg). Sul‐Po‐Mag was the fourth material added as a plus Mg check at a rate based on an equivalent amount of Mg to that supplied by Hydra‐Mag. Plant growth, plant tissue element content and extractable soil elements were determined after growing the soybeans for 5 weeks. Plants in treatments where no lime/Mg materials were added were very small due possibly to Mg deficiency and Al toxicity. The 1 and 2 times rates of the materials gave about equal growth except that the high Sul‐Po‐Mag rate caused salt injury. Hydra‐Mag increased soil pH more than calcitic lime which increased soil pH more than dolomitic lime. Soil and plant Mg levels were increased more by Hydra‐Mag than dolomitic lime when applied at equivalent rates based on the lime requirement. Dolomitic lime gave very good plant growth indicating that it made adequate amounts of Mg available. Hydra‐Mag reduced plant and extractable soil Zn, Cu, and Fe but no more so than calcitic or dolomitic lime. Hydra‐Mag reduced plant Mn more than for the other limes.  相似文献   

9.
《Journal of plant nutrition》2013,36(7):1513-1526
Abstract

Many tropical plant species originated in areas with acidic soils and do not grow well in calcareous (high pH) soils. It is impossible to acidify soils that have high contents of calcium carbonate in south Florida. Replacing calcareous soils with acidic soils obtained from distant regions is an alternative. Unfortunately, such introduced acidic soils may eventually be neutralized by irrigation and ground water that is saturated with calcium carbonate. The objective of this investigation was to examine the acidity changes and buffering capacities of three types of acidic soils (silica sand soil, red loamy sand soil, and a mixed soil) used to establish tropical plants in a rainforest exhibition at Fairchild Tropical Garden, Miami, FL. The three areas were excavated to remove native calcareous soil, limestone bedrock, and filled with acidic soils. Various rainforest plants were planted. Soil samples were collected in contiguous 10 cm‐deep segments from the soil surface to the bedrock shortly after deposition of the soils and one year later. Soil pH, EC, particle distribution, buffering capacity were determined. Results showed that both silica sand and mixed soils had been neutralized and the soil pH values had risen over 7 in all soil depths after one year. However, less than 10 cm of the surface and bottom soil layers of red loamy sand had been neutralized and the soil pH in the middle of soil profile remained unchanged due to its higher buffering capacity. A column leaching study showed that the acidity in the red loamy sand soil would be neutralized by irrigation water and by capillary movement of groundwater with a high concentration of calcium bicarbonate. Buffering curves indicate that it is easier to maintain acidity in sandy soil than of loamy sand and mixed soils with acidified irrigation water. Indeed it is difficult to acidify the mixed soils with high organic matter content after these soils have been neutralized.  相似文献   

10.
Abstract

Large amounts of flue gas desulfurization (FGD) and fluidized bed combustion (FBC) by‐products from burning coal, consisting primarily of gypsum, are available for potential use as a soil amendment. However, information is limited on longer‐term changes in chemical and physical properties induced over time and over small depth increments of the upper soil profile after applying these amendments. This study examined longer‐term effects in an abandoned Appalachian pasture soil amended with various liming materials and coal combustion by‐products (CCBPs). Soil chemical and physical properties were investigated over time and depths. The results indicated limited dissolution and movement of the calcium (Ca) and magnesium (Mg) applied with the chemical amendments, except for Ca and Mg associated with sulfate. However, sufficient dissolution occurred to cause significant increases in exchangeable Ca and Mg and decreases in exchangeable Al that were reflected in corresponding increases in soil pH. These beneficial effects persisted over time and were confined to the upper 0‐ to 15‐cm depth of the profile. The greatest benefits appeared to be in the upper 0‐ to 5‐cm surface layer. Both Ca and Mg applied as calcitic dolomitic limestone tended to be immobilized in the upper 0‐ to 5‐cm layer of the soil profile; Ca more so than Mg. The presence of S applied in the FGD and FBC amendments appeared to enhance the mobility of Ca and Mg. The ratio of Ca/Mg in HCI extracts from the calcitic dolomitic treatment was close to that of applied calcitic dolomite, implying that the inactive component in soil might be the original calcitic dolomite particles. Soil physical properties measured over small depth increments showed that application of the amendments improved the saturated hydraulic conductivity only in the upper 0‐ to 5‐cm depth and had little or no significant effect on the dry bulk density and plant‐available water.  相似文献   

11.
Abstract

Fluidized bed material (FBM, a coal/limestone combustion byproduct) was used as a Ca source and lime substitute in established apple (Malus domestica Borkh) and peach (Prunus persia L.) orchards. FBM or limestone had little effect on apple tree Ca status over three growing seasons. Peach leaf Ca concentrations were significantly greater from FBM applied at three times the soil lime requirement (on a weight basis) than limestone applied at the lime requiremnt or a non‐amended control. Peach peel and flesh Ca, however, were not significantly altered. Tissue trace element concentrations (Mn, Fe, Cu, Zn, B ,Al, Sr, Pb) were not affected by treatments. FBM applied at twice the lime requirement, on a weight basis, maintained soil pH at levels equivalent to agricultural limestone applied at the lime requirement during the three growing seasons in both studies. FBM was found to be a satisfactory substitute for agricultural limestone under orchard conditions and when applied at mutiples up to three times the soil lime requirement.  相似文献   

12.
Abstract

A number of procedures were tested for determining carbonate‐C in soils and limestones, using a simple technique for digesting and collecting the CO2, previously described by the author10. Some of the procedures appeared suitable for removing and quantifying carbonate‐C prior to the determination of organic‐C. Depending on the digestion solution and the length of treatment, between 0.25 and 0.68 % of the organic‐C in cultivated mineral soils was released as CO2 during the digestion, and thus included in the figures for carbonate‐C.

The study includes furthermore, an examination of the effects of particle size and the length of the heating period on the rate of dissolution of calcite and dolomite. A semi‐quantitative EDTA extraction procedure is described for separation of these minerals in limestones.  相似文献   

13.
Morphology and age of soils in the ‘Südliche Frankenalb’ and the noncarbonate mineral composition of the limestones Soils in the ‘Südliche Frankenalb’ are described according to their local particle size and color characteristics, and their typical situation in the landscape. ‘Solifluction’ (mixing of limestone fragments with terra fusca solum) and sedimentation of aeolian material were the important processes which complicate the reconstruction of soil formation. The quantities of carbonate-free residues of limestones vary in a wide range between 0.7 and 25.4%. With this property, a grain size- and a mineralogical property, the limestone samples are separated by discriminant analysis in three groups. In contrast, the clay mineral composition of all the limestone residues is very homogeneous. In the fine clay fraction (< 0.2 μm) and coarse clay fraction (2-0.2 μm) illite and illite/smectite mixed layer minerals are the predominant minerals with proportions of 90% and 80–85%, respectively. The time necessary for soil formation is calculated to be 1.6 (20 cm depth, IIT-horizon) and 2.7 million years (36 cm depth, IIT + Bv2-horizon), respectively. This calculation is based on a Malm Delta limestone (0.7% residue). The carbonate output is calculated from CaCO3 solution rates in the CO2-H2O system and actual leaching rates derived from local climate data. The period of soil formation from other limestones was not as long.  相似文献   

14.
Abstract

Zinc (Zn) deficiency is believed to be a consequence of reactions taking place between soluble Zn and the soil solid phase. This study was carried out to obtain quantitative relationships between Zn in equilibrium solution and that retained by the soil solids in calcareous soils. Twenty calcareous soils (saturated paste pH 6.9–7.9; calcium carbonate equivalent 4.64–22.80%) from Tehran province, Iran, were equilibrated with varying solution concentrations of Zn, and the amounts removed from the solution were used to check the fit to five adsorption isotherms, namely, Freundlich, Langmuir, Temkin, Gunary, and two‐surface Langmuir. Adsorption data of all soils showed statistically significant fit to the first four adsorption isotherms, but only 7 of the 20 soils tested showed fit to the two‐surface Langmuir. Coefficients of the adsorption isotherms showed statistically significant relationship with soil characteristics. Clay percentage, calcium carbonate equivalent percentage, and cation exchange capacity appeared to be the most influential soil characteristics with regard to Zn adsorption, whereas soil organic matter seemed to be of no importance under the conditions of this study.  相似文献   

15.
Abstract

Root crops constitute an important part in the diet of millions of people throughout the Tropics. These crops are produced by subsistence farmers in poor soils where acidity is the most common problem and liming materials, such as limestone, are scarce and expensive. Few experimental data are available on the fertility requirements and liming response of tanier (Xanthosoma sagittifolium). This study was conducted to determine the effect on yield of limestone application. Rates of 0, 1, 2, 3, and 4 t/ha of calcitic and dolomitic limestome, respectively, were applied in an Ultisol. Tanier shows tolerance to soil acidity with yields 58% a of maximum with 64% aluminum (Al) saturation. The limestone additions of 4 t/ha resulted in a pH of 4.38 and 4.68 with calcitic and dolomitic limestone, respectively, which produced the highest yield.  相似文献   

16.
Abstract

The changes in availability and uptake of boron (B) by M.26 apple rootstocks as affected by applications of different forms and rates of nitrogen (N) were examined. The study was carried out in a greenhouse using soil with low contents of organic matter, clay, calcium carbonate, NH4‐oxalate soluble aluminum (Al) and iron (Fe), NH2OH·HCl extractable manganese (Mn), poor cation exchange capacity and low pH. Soil N application was in the form of urea, calcium nitrate, ammonium sulphate, or ammonium nitrate at rates of 0, 17, 34, and 51 mg N kg?1. After 1, 3, and 5 days of N application, soil B fractions were determined: B in soil solution, B specifically and non‐specifically adsorbed on soil surfaces, B occluded in Mn oxyhydroxides, and B occluded in crystalline Al and Fe oxides. The results showed that N as calcium nitrate and ammonium nitrate increased B both in soil solution and non‐specifically adsorbed on soil surface and decreased B concentration on Al and Fe oxides. This indicates that N‐NO3 inhibited B sorption on Fe and Al oxides. Maximum B desorption from Fe and Al oxides was obtained within one day after N‐NO3 was supplied. Nitrogen application as calcium nitrate and ammonium nitrate increased availability and uptake of B by plant roots. Thus, it was concluded that apple trees planted on coarse‐textured soils where risk of B deficiency is high, calcium nitrate or ammonium nitrates would be appropriately to apply to keep B more available.  相似文献   

17.
Soil organic matter can be divided into different organic carbon (C) pools with different turnover rates. The organic pollutants in soils associated with these organic C pools may have different bioavailability and environmental risks during the decomposition of soil organic matter. We studied the distribution patterns of 15 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in different particle‐size separates (clay, fine silt, coarse silt, fine sand and coarse sand) and density fractions (light and heavy fractions) of nine agricultural topsoils (0–20 cm depth) from a contaminated area in the Yangtze River Delta region of east China. There was a decreasing trend in PAH concentration in particle‐size separates with decreasing particle size. However, the different particle‐size separates had similar PAH composition. The concentration of PAHs in the light fraction ranged from 13 037 to 107 299 μg kg?1, far higher than in the heavy fraction, which ranged from 222 to 298 μg kg?1. Although the light fraction accounted for only 0.4–2.3% of the soils, it was associated with 31.5–69.5% of soil PAHs. The organic matter in coarse silt had the strongest capacity for enrichment with PAHs. Combining the distributions of PAHs and the turnover rates of organic matter in different soil fractions, the environmental risks of PAH‐polluted soils may be due mainly to the PAHs associated with sand and the light fraction.  相似文献   

18.
The aim of this study was to determine the effect of land‐use and forest cover depletion on the distribution of soil organic carbon (SOC) within particle‐size fractions in a volcanic soil. Emphasis was given to the thermal properties of soils. Six representative sites in Mexico were selected in an area dominated by Andosols: a grassland site, four forested sites with different levels of degradation and an agricultural site. Soils were fractionated using ultrasonic energy until complete dispersion was achieved. The particle‐size fractions were coarse sand, fine sand, silt, clay and particulate organic matter from the coarse sand sized fraction (POM‐CS) and fine sand (POM‐FS). Soil organic carbon decreased by 70% after forest conversion to cropland and long‐term cultivation; forest cover loss resulted in a decrease in SOC of up to 60%. The grassland soil contained 45% more SOC than the cropland one. Soil organic carbon was mainly associated with the silt‐size fraction; the most sensitive fractions to land‐use change and forest cover depletion were POM followed by SOC associated with the silt and clay‐sized fractions. Particulate organic matter can be used as an early indicator of SOC loss. The C lost from the clay and silt‐sized fractions was thermally labile; therefore, the SOC stored in the more degraded forest soils was more recalcitrant (thermally resistant). Only the transformation of forest to agricultural land produced a similar loss of thermally stable C associated with the silt‐sized fraction.  相似文献   

19.
The present study investigated the impact of long‐term soil management on the metal retention capacity of soil. We examined the sorption behaviour of Cu, Cd and Zn in soils and in the various particle‐size fractions of these soils, which had been amended with farmyard manure, mineral fertilizers or were fallow for 38 years in a long‐term field experiment. The soils investigated contained different amounts and origins of organic matter and differed in soil pH, but the mineral phase showed less response to the different soil managements. Batch adsorption and desorption experiments as well as a sequential fractionation schema, which defines seven geochemical fractions, were used to investigate the retention properties of soil. Sequential extraction was conducted with original as well as with metal‐spiked soils. Results showed that amounts of Cu, Cd and Zn retained differed by a factor of more than 3 among the treatments in the long‐term field experiment, when a massive concentration of metal was added to soil. An increased sorption on smaller particle size fractions occurred (clay ≫ silt > fine sand ≥ coarse sand) due to the larger surface area as well as the greater carbon content in the smaller fractions. Soil sorption behaviour in another long‐term field experiment was estimated based on the present particle‐sorption data. Differences in the sorption behaviour were related to differences in soil mineralogy and amounts of Fe‐ and Mn‐oxides. Fractionation of the original and the metal‐spiked soil underlined the contribution of organic matter to sorption capacity (sequence: Cu ≫ Cd > Zn). Different organic matter contents and a different soil pH considerably changed the amounts of metals in the defined geochemical fractions. Freshly added Cu, Cd and Zn ions were found mainly in more mobile fractions. In contrast, metals in non‐spiked soils appeared in less‐mobile fractions reflecting their long‐term sorption behaviour.  相似文献   

20.
Abstract

Magnesium (Mg) is a nutrient that affects the development of plants and is mainly supplied through liming performed to correct soil acidity. By acting on photosynthesis and influencing carbohydrate partitioning in the plant, supplementary Mg supplied through soil or foliar application can increase the yield and quality of potato (Solanum tuberosum L.) tubers. The aim of this study was to evaluate the effect of supplemental Mg fertilization by soil or foliar application on plant nutritional status, tuber yield, and carbohydrate partitioning in potato crops in soil corrected with calcitic and dolomitic limestones. The experiment was carried out in pots under greenhouse conditions with a randomized block design in a 2?×?3 factorial scheme with four replications. Dolomitic limestone application and supplemental Mg fertilization via soil increased the concentrations of this nutrient in potato leaves. Liming with dolomitic limestone reduced the uptake of Ca and K by plants, but supplemental Mg fertilization did not alter the uptake of Ca, Mg or K. Supplemental Mg fertilization did not increase plant growth and tuber yield, even when calcitic limestone was used to elevate the base saturation to 60%; the exchangeable Mg concentration in soil was 9?mmolc dm?3, and the Ca:Mg relationship was 3.7. Liming with dolomitic limestone or providing supplemental Mg fertilization did not increase sugar and starch partitioning to the tubers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号